Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.627
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 261, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715108

RESUMO

BACKGROUND: Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS: An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS: We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION: We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.


Assuntos
Movimento Celular , Proliferação de Células , Receptores de Interleucina-6 , Humanos , Proliferação de Células/efeitos dos fármacos , Receptores de Interleucina-6/metabolismo , Movimento Celular/efeitos dos fármacos , Células HEK293 , Linhagem Celular Tumoral , Ligação Proteica/efeitos dos fármacos
2.
J Transl Med ; 22(1): 450, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741146

RESUMO

BACKGROUND: Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERß, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS: The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS: After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS: Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.


Assuntos
Movimento Celular , Estetrol , Regulação Neoplásica da Expressão Gênica , Inibidor 2 de Ativador de Plasminogênio , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Estrogênio/metabolismo , Estetrol/farmacologia , Estetrol/metabolismo , Feminino , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Ligação Proteica/efeitos dos fármacos , Invasividade Neoplásica
3.
PLoS One ; 19(5): e0303213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753710

RESUMO

Ischemic stroke causes a lack of oxygen and glucose supply to brain, eventually leads to severe neurological disorders. Retinoic acid is a major metabolic product of vitamin A and has various biological effects. The PI3K-Akt signaling pathway is an important survival pathway in brain. Phosphorylated Akt is important in regulating survival and apoptosis. We examined whether retinoic acid has neuroprotective effects in stroke model by regulating Akt and its downstream protein, Bad. Moreover, we investigated the relationship between retinoic acid and Bcl-2 family protein interactions. Animals were intraperitoneally administered vehicle or retinoic acid (5 mg/kg) for four days before surgery and ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Neurobehavioral tests were performed 24 h after MCAO and cerebral cortical tissues were collected. Cresyl violet staining and TUNEL histochemistry were performed, Western blot and immunoprecipitation analysis were performed to elucidate the expression of various proteins. Retinoic acid reduced neurological deficits and histopathological changes, decreased the number of TUNEL-positive cells, and alleviated reduction of phospho-PDK1, phospho-Akt, and phospho-Bad expression caused by MCAO damage. Immunoprecipitation analysis showed that MCAO damage reduced the interaction between phospho-Bad and 14-3-3, which was attenuated by retinoic acid. Furthermore, retinoic acid mitigated the increase in Bcl-2/Bad and Bcl-xL/Bad binding levels and the reduction in Bcl-2/Bax and Bcl-xL/Bax binding levels caused by MCAO damage. Retinoic acid alleviated MCAO-induced increase of caspase-3 and cleaved caspase-3 expression. We demonstrate that retinoic acid prevented apoptosis against cerebral ischemia through phosphorylation of Akt and Bad, maintenance of phospho-Bad and 14-3-3 binding, and regulation of Bcl-2 family protein interactions. .


Assuntos
Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Tretinoína , Proteína de Morte Celular Associada a bcl , Animais , Proteína de Morte Celular Associada a bcl/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tretinoína/farmacologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fármacos Neuroprotetores/farmacologia , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Apoptose/efeitos dos fármacos , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
4.
Ann Clin Lab Sci ; 54(2): 137-148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38802154

RESUMO

OBJECTIVE: We have previously shown that the anti-cancer peptide PNC-27 kills cancer cells by co-localizing with membrane-expressed HDM-2, resulting in transmembrane pore formation causing extrusion of intracellular contents. We have also observed cancer cell mitochondrial disruption in PNC-27-treated cancer cells. Our objectives are to determine: 1. if PNC-27 binds to the p53 binding site of HDM-2 (residues 1-109) in the cancer cell membrane and 2. if this peptide causes selective disruption of cancer cell mitochondria. METHODS: For aim 1, we incubated MIA-PaCa-2 human pancreatic carcinoma cells with PNC-27 in the presence of a monoclonal antibody against the amino terminal p53 binding site of HDM-2 to determine if it, but not negative control immune serum, blocks PNC-27-induced tumor cell necrosis. For the second aim, we incubated these cells with PNC-27 in the presence of two specific dyes that highlight normal organelle function: mitotracker for mitochondria and lysotracker for lysosomes. We also performed immuno-electron microscopy (IEM) with gold-labeled anti-PNC-27 antibody on the mitochondria of these cells treated with PNC-27. RESULTS: Monoclonal antibody to the p53 binding site of HDM-2 blocks PNC-27-induced cancer cell necrosis, whereas negative control immune serum does not. The mitochondria of PNC-27-treated cancer cells fail to retain mitotracker dye while their lysosomes retain lysotracker dye. IEM of the mitochondria cancer cells reveals gold particles present on the mitochondrial membranes. CONCLUSIONS: PNC-27 binds to the p53 binding site of HDM-2 (residues 1-109) inducing transmembrane pore formation and cancer cell necrosis. Furthermore, this peptide enters cancer cells and binds to the membranes of mitochondria, resulting in their disruption.


Assuntos
Membrana Celular , Membranas Mitocondriais , Proteínas Proto-Oncogênicas c-mdm2 , Humanos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/metabolismo , Necrose
5.
SLAS Discov ; 29(3): 100154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521503

RESUMO

Sorafenib is a multikinase inhibitor indicated for first-line treatment of unresectable hepatocellular carcinoma. Despite its widespread use in the clinic, the existing knowledge of sorafenib mode-of-action remains incomplete. To build upon the current understanding, we used the Cellular Thermal Shift Assay (CETSA) coupled to Mass Spectrometry (CETSA-MS) to monitor compound binding to its target proteins in the cellular context on a proteome-wide scale. Among the potential sorafenib targets, we identified aldehyde dehydrogenase 2 (ALDH2), an enzyme that plays a major role in alcohol metabolism. We validated the interaction of sorafenib with ALDH2 by orthogonal methods using pure recombinant protein, proving that this interaction is not mediated by other cellular components. Moreover, we showed that sorafenib inhibits ALDH2 activity, supporting a functional role for this interaction. Finally, we were able to demonstrate that both ALDH2 protein expression and activity were reduced in sorafenib-resistant cells compared to the parental cell line. Overall, our study allowed the identification of ALDH2 as a novel sorafenib target and sheds light on its potential role in both hepatocellular carcinoma and sorafenib resistance condition.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteoma , Sorafenibe , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ligação Proteica/efeitos dos fármacos
6.
Life Sci ; 336: 122283, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993094

RESUMO

Chronic temporomandibular joint (TMJ) pain profoundly affects patients' quality of life. Trigeminal tumor necrosis factor-α (TNFα) plays a pivotal role in mediating TMJ pain in mice, yet the underlying epigenetic mechanisms remain enigmatic. To unravel these epigenetic intricacies, we employed a multifaceted approach. Hydroxymethylated DNA immunoprecipitation (hMeDIP) and chromatin immunoprecipitation (ChIP) followed by qPCR were employed to investigate the demethylation of TNFα gene (Tnfa) and its regulation by ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in a chronic TMJ pain mouse model. The global levels of 5-hydroxymethylcytosine (5hmc) and percentage of 5hmc at the Tnfa promoter region were measured in the trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) following complete Freund's adjuvant (CFA) or saline treatment. TET1 knockdown and pain behavioral testing were conducted to ascertain the role of TET1-mediated epigenetic regulation of TNFα in the pathogenesis of chronic TMJ pain. Our finding revealed an increase in 5hmc at the Tnfa promoter region in both TG and Sp5C of CFA-treated mice. TET1 was upregulated in the mouse TG, and the ChIP result showed TET1 direct binding to the Tnfa promoter, with higher efficiency in the CFA-treated group. Immunofluorescence revealed the predominant expression of TET1 in trigeminal neurons. TET1 knockdown in the TG significantly reversed CFA-induced TNFα upregulation and alleviated chronic TMJ pain. In conclusion, our study implicates TET1 as a vital epigenetic regulator contributing to chronic inflammatory TMJ pain via trigeminal TNFα signaling. Targeting TET1 holds promise for epigenetic interventions in TMJ pain management.


Assuntos
Artralgia , Proteínas de Ligação a DNA , Articulação Temporomandibular , Gânglio Trigeminal , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Epigênese Genética/genética , Proteínas de Ligação a DNA/metabolismo , Gânglio Trigeminal/fisiopatologia , Artralgia/induzido quimicamente , Artralgia/fisiopatologia , Articulação Temporomandibular/fisiopatologia , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Adjuvante de Freund/farmacologia , Regulação para Cima/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Silenciamento de Genes , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos
7.
J Biol Chem ; 299(12): 105369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865311

RESUMO

Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.


Assuntos
Proteínas de Transporte , Descoberta de Drogas , Insuficiência Cardíaca , Miofibrilas , Bibliotecas de Moléculas Pequenas , Humanos , Actinas/metabolismo , Descoberta de Drogas/métodos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Miofibrilas/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Técnicas Biossensoriais , Adenosina Trifosfatases/metabolismo , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência
8.
Nature ; 617(7960): 377-385, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138075

RESUMO

The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Melanoma , Microbiota , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transplante de Microbiota Fecal , Vida Livre de Germes , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/imunologia , Melanoma/microbiologia , Melanoma/terapia , Ligação Proteica/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
9.
J Biol Chem ; 299(7): 104855, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224961

RESUMO

Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.


Assuntos
Proteínas 14-3-3 , Receptor alfa de Estrogênio , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ligantes , Tamoxifeno/farmacologia , Ligação Proteica/efeitos dos fármacos , Descoberta de Drogas , Antagonistas de Estrogênios/farmacologia
10.
Nature ; 615(7954): 913-919, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922589

RESUMO

Chromatin-binding proteins are critical regulators of cell state in haematopoiesis1,2. Acute leukaemias driven by rearrangement of the mixed lineage leukaemia 1 gene (KMT2Ar) or mutation of the nucleophosmin gene (NPM1) require the chromatin adapter protein menin, encoded by the MEN1 gene, to sustain aberrant leukaemogenic gene expression programs3-5. In a phase 1 first-in-human clinical trial, the menin inhibitor revumenib, which is designed to disrupt the menin-MLL1 interaction, induced clinical responses in patients with leukaemia with KMT2Ar or mutated NPM1 (ref. 6). Here we identified somatic mutations in MEN1 at the revumenib-menin interface in patients with acquired resistance to menin inhibition. Consistent with the genetic data in patients, inhibitor-menin interface mutations represent a conserved mechanism of therapeutic resistance in xenograft models and in an unbiased base-editor screen. These mutants attenuate drug-target binding by generating structural perturbations that impact small-molecule binding but not the interaction with the natural ligand MLL1, and prevent inhibitor-induced eviction of menin and MLL1 from chromatin. To our knowledge, this study is the first to demonstrate that a chromatin-targeting therapeutic drug exerts sufficient selection pressure in patients to drive the evolution of escape mutants that lead to sustained chromatin occupancy, suggesting a common mechanism of therapeutic resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia , Mutação , Proteínas Proto-Oncogênicas , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Cromatina/genética , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Leucemia/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
11.
Nature ; 615(7954): 920-924, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922593

RESUMO

Targeting critical epigenetic regulators reverses aberrant transcription in cancer, thereby restoring normal tissue function1-3. The interaction of menin with lysine methyltransferase 2A (KMT2A), an epigenetic regulator, is a dependence in acute leukaemia caused by either rearrangement of KMT2A or mutation of the nucleophosmin 1 gene (NPM1)4-6. KMT2A rearrangements occur in up to 10% of acute leukaemias and have an adverse prognosis, whereas NPM1 mutations occur in up to 30%, forming the most common genetic alteration in acute myeloid leukaemia7,8. Here, we describe the results of the first-in-human phase 1 clinical trial investigating revumenib (SNDX-5613), a potent and selective oral inhibitor of the menin-KMT2A interaction, in patients with relapsed or refractory acute leukaemia (ClinicalTrials.gov, NCT04065399). We show that therapy with revumenib was associated with a low frequency of grade 3 or higher treatment-related adverse events and a 30% rate of complete remission or complete remission with partial haematologic recovery (CR/CRh) in the efficacy analysis population. Asymptomatic prolongation of the QT interval on electrocardiography was identified as the only dose-limiting toxicity. Remissions occurred in leukaemias refractory to multiple previous lines of therapy. We demonstrate clearance of residual disease using sensitive clinical assays and identify hallmarks of differentiation into normal haematopoietic cells, including differentiation syndrome. These data establish menin inhibition as a therapeutic strategy for susceptible acute leukaemia subtypes.


Assuntos
Antineoplásicos , Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda , Nucleofosmina , Proteínas Proto-Oncogênicas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual/tratamento farmacológico , Nucleofosmina/genética , Prognóstico , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Indução de Remissão
12.
J Biol Chem ; 299(2): 102873, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621625

RESUMO

Variants of isocitrate dehydrogenase (IDH) 1 and 2 (IDH1/2) alter metabolism in cancer cells by catalyzing the NADPH-dependent reduction of 2-oxoglutarate (2OG) to (2R)-hydroxyglutarate. However, it is unclear how derivatives of 2OG can affect cancer cell metabolism. Here, we used synthetic C3- and C4-alkylated 2OG derivatives to investigate the substrate selectivities of the most common cancer-associated IDH1 variant (R132H IDH1), of two cancer-associated IDH2 variants (R172K IDH2, R140Q IDH2), and of WT IDH1/2. Absorbance-based, NMR, and electrochemical assays were employed to monitor WT IDH1/2 and IDH1/2 variant-catalyzed 2OG derivative turnover in the presence and absence of 2OG. Our results reveal that 2OG derivatives can serve as substrates of the investigated IDH1/2 variants, but not of WT IDH1/2, and have the potential to act as 2OG-competitive inhibitors. Kinetic parameters reveal that some 2OG derivatives, including the natural product 3-methyl-2OG, are equally or even more efficient IDH1/2 variant substrates than 2OG. Furthermore, NMR and mass spectrometry studies confirmed IDH1/2 variant-catalyzed production of alcohols in the cases of the 3-methyl-, 3-butyl-, and 3-benzyl-substituted 2OG derivatives; a crystal structure of 3-butyl-2OG with an IDH1 variant (R132C/S280F IDH1) reveals active site binding. The combined results highlight the potential for (i) IDH1/2 variant-catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhibition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv) possible use of IDH1/2 variants as biocatalysts.


Assuntos
Isocitrato Desidrogenase , Ácidos Cetoglutáricos , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Neoplasias/metabolismo , Especificidade por Substrato , Ligação Proteica/efeitos dos fármacos , Cristalografia
13.
J Biol Chem ; 298(12): 102675, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372234

RESUMO

Duchenne muscular dystrophy is a lethal muscle disease, caused by mutations in the gene encoding dystrophin, an actin-binding cytoskeletal protein. Absence of functional dystrophin results in muscle weakness and degeneration, eventually leading to cardiac and respiratory failure. Strategies to replace the missing dystrophin via gene therapy have been intensively pursued. However, the dystrophin gene is too large for current gene therapy approaches. Currently available micro-dystrophin constructs lack the actin-binding domain 2 and show decreased actin-binding affinity in vitro compared to full-length dystrophin. Thus, increasing the actin-binding affinity of micro-dystrophin, using small molecules, could be a beneficial therapeutic approach. Here, we have developed and validated a novel high-throughput screening (HTS) assay to discover small molecules that increase the binding affinity of dystrophin's actin-binding domain 1 (ABD1). We engineered a novel FRET biosensor, consisting of the mClover3, fluorescent protein (donor) attached to the C-terminus of dystrophin ABD1, and Alexa Fluor 568 (acceptor) attached to the C-terminal cysteine of actin. We used this biosensor in small-molecule screening, using a unique high-precision, HTS fluorescence lifetime assay, identifying several compounds from an FDA-approved library that significantly increase the binding between actin and ABD1. This HTS assay establishes feasibility for the discovery of small-molecule modulators of the actin-dystrophin interaction, with the ultimate goal of developing therapies for muscular dystrophy.


Assuntos
Actinas , Distrofina , Distrofia Muscular de Duchenne , Humanos , Actinas/metabolismo , Distrofina/genética , Distrofina/química , Terapia Genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Domínios Proteicos
14.
Oxid Med Cell Longev ; 2022: 4592170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251473

RESUMO

Lysine ß-hydroxybutyrylation (Kbhb) is a newly identified protein posttranslational modification (PTM) derived from ß-hydroxybutyrate (BHB), a product of ketone body metabolism in liver. BHB could serve as an energy source and play a role in the suppression of oxidative stress. The plasma concentration of BHB could increase up to 20 mM during starvation and in pathological conditions. Despite the progress, how the cells derived from extrahepatic tissues respond to elevated environmental BHB remains largely unknown. Given that BHB can significantly drive Kbhb, we characterized the BHB-induced lysine ß-hydroxybutyrylome and acetylome by quantitative proteomics. A total of 840 unique Kbhb sites on 429 proteins were identified, with 42 sites on 39 proteins increased by more than 50% in response to BHB. The results showed that the upregulated Kbhb induced by BHB was involved in aminoacyl-tRNA biosynthesis, 2-oxocarboxylic acid metabolism, citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism pathways. Moreover, some BHB-induced Kbhb substrates were significantly involved in diseases such as cancer. Taken together, we investigate the dynamics of lysine ß-hydroxybutyrylome and acetylome induced by environmental BHB, which reveals the roles of Kbhb in regulating various biological processes and expands the biological functions of BHB.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Células Cultivadas , Camundongos , Ligação Proteica/efeitos dos fármacos , Proteoma/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269785

RESUMO

The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-ß-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Taninos/farmacologia , Algoritmos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , COVID-19/virologia , Proteases 3C de Coronavírus , Glucosídeos/química , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Humanos , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/metabolismo , Taninos Hidrolisáveis/farmacologia , Cinética , Pandemias/prevenção & controle , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ressonância de Plasmônio de Superfície , Taninos/química , Taninos/metabolismo , Internalização do Vírus/efeitos dos fármacos
16.
Bioorg Med Chem Lett ; 61: 128625, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35158044

RESUMO

The discovery of potent, bioavailable small molecule inhibitors of p53-HDM2 PPI led us to investigate subsequent modifications to address a CYP3A4 time-dependent inhibition liability. On the basis of the crystal structure of HDM2 in complex with 2, further functionalization of the solvent exposed area of the molecule that binds to Phe19 pocket were investigated as a strategy to modulate the molecule liphophilicity. Introduction of 2-oxo-nicotinic amide at Phe19 proved a viable strategy in obtaining inhibitors exempt from CYP3A4 time-dependent inhibition liability.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Fenilalanina/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fenilalanina/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo
17.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209065

RESUMO

Striae distensae (SD) or stretch marks are common linear scars of atrophic skin with disintegrating extracellular matrix (ECM) structures. Although fibroblasts contribute to the construction of ECM structure in SD, some studies have reported that mast cell degranulation causes the disruption of ECM in early SD lesions. Lagerstroemia indica flower (LIF) has traditionally been used in India as a diuretic. However, little is known about the effect and molecular action of Lagerstroemia indica flower extract (LIFE) on alleviating SD. This study evaluated the effects of LIFE on mast cell degranulation and the synthesis of ECM components in fibroblasts. LIFE inhibits the adhesion of rat basophilic leukemia (RBL) cells, RBL-2H3 on fibronectin (FN) and the expression of integrin, a receptor for FN, thereby reducing focal adhesion kinase (FAK) phosphorylation. In addition, LIFE attenuated the allergen-induced granules and cytokine interleukin 3 (IL-3) through the adhesion with FN. Moreover, the conditioned medium (CM) of activated mast cells decreases the synthesis of ECM components, and LIFE restores the abnormal expressions induced by activated mast cells. These results demonstrate that LIFE suppresses FN-induced mast cell activation and promotes the synthesis of ECM components in fibroblast, which indicates that LIFE may be a useful cosmetic agent for SD treatment.


Assuntos
Flores/química , Lagerstroemia/química , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biomarcadores , Adesão Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Linhagem Celular , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Expressão Gênica , Imunoglobulina E/imunologia , Cadeias alfa de Integrinas/genética , Cadeias beta de Integrinas/genética , Fosforilação , Ligação Proteica/efeitos dos fármacos , Estrias de Distensão
18.
Cell Rep ; 38(7): 110396, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172151

RESUMO

Fasciculation and elongation protein zeta-1 (FEZ1) is a multifunctional kinesin adaptor involved in processes ranging from neurodegeneration to retrovirus and polyomavirus infection. Here, we show that, although modulating FEZ1 expression also impacts infection by large DNA viruses in human microglia, macrophages, and fibroblasts, this broad antiviral phenotype is associated with the pre-induction of interferon-stimulated genes (ISGs) in a STING-independent manner. We further reveal that S58, a key phosphorylation site in FEZ1's kinesin regulatory domain, controls both binding to, and the nuclear-cytoplasmic localization of, heat shock protein 8 (HSPA8), as well as ISG expression. FEZ1- and HSPA8-induced changes in ISG expression further involved changes in DNA-dependent protein kinase (DNA-PK) accumulation in the nucleus. Moreover, phosphorylation of endogenous FEZ1 at S58 was reduced and HSPA8 and DNA-PK translocated to the nucleus in cells stimulated with DNA, suggesting that FEZ1 is a regulatory component of the recently identified HSPA8/DNA-PK innate immune pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSC70/metabolismo , Interferons/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Vírus de DNA/fisiologia , Proteína Quinase Ativada por DNA/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Fatores Reguladores de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Células Vero
19.
Biochem Biophys Res Commun ; 596: 63-70, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35114586

RESUMO

Owing to lacking protective effect of estrogen, OVX mice have higher risk of non-alcoholic fatty liver disease compared with normal female mice, when fed with high fat diet. Our study was to explore how estrogen protect against nonalcoholic steatohepatitis in female mice. We found that, lacking estrogen, M1 macrphages was activated and promoted steatohepatitis in obese OVX mice. And, ERα was responsible for estrogen to inhibit M1 macrphages activation and steatohepatitis. ERα knockdown aggravated M1 macrophages infiltration by transcriptionally upregulated its CCR2 expression. CCR2 antagonist effectively improved nonalcoholic steatohepatitis, ER stress and insulin resistance in ERα knockdown obese female mice. These results demonstrated ERα mediated M1 macrophages activation played a key role in nonalcoholic steatohepatitis.


Assuntos
Receptor alfa de Estrogênio/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/classificação , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ovariectomia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Med Chem ; 65(3): 1898-1914, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35104933

RESUMO

RAS is a major anticancer drug target which requires membrane localization to activate downstream signal transduction. The direct inhibition of RAS has proven to be challenging. Here, we present a novel strategy for targeting RAS by stabilizing its interaction with the prenyl-binding protein PDE6D and disrupting its localization. Using rationally designed RAS point mutations, we were able to stabilize the RAS:PDE6D complex by increasing the affinity of RAS for PDE6D, which resulted in the redirection of RAS to the cytoplasm and the primary cilium and inhibition of oncogenic RAS/ERK signaling. We developed an SPR fragment screening and identified fragments that bind at the KRAS:PDE6D interface, as shown through cocrystal structures. Finally, we show that the stoichiometric ratios of KRAS:PDE6D vary in different cell lines, suggesting that the impact of this strategy might be cell-type-dependent. This study forms the foundation from which a potential anticancer small-molecule RAS:PDE6D complex stabilizer could be developed.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/análise , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA