Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Int Immunopharmacol ; 132: 111984, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565043

RESUMO

Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.


Assuntos
Fator de Crescimento Insulin-Like II , Macrófagos , Proteínas de Membrana , Nucleotidiltransferases , Periodontite , Animais , Humanos , Masculino , Camundongos , Regeneração Óssea/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Periodontite/imunologia , Periodontite/metabolismo , Periodontite/tratamento farmacológico , Transdução de Sinais
2.
Mol Cells ; 47(4): 100059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554844

RESUMO

Periodontitis (PD) is an inflammatory disease with alveolar bone destruction by osteoclasts (OCs). In PD, both inflammation and OC activation are significantly influenced by periodontal ligament fibroblasts (PDL-Fib). Yet, whether PDL-Fib has heterogeneity and whether distinct PDL-Fib subsets have specific functions have not been investigated. In this study, we discovered the complexity of PDL-Fib in PD, utilizing single-cell RNA sequencing data from human PD patients. We identified distinct subpopulations of PDL-Fib: one expressing interleukin-1 beta (IL-1ß) and another expressing the receptor activator of nuclear factor-kappa B ligand (RANKL), both crucial in OC differentiation and bone resorption. In periodontal tissues of mice with PD, active IL-1ß, cleaved caspase 1, and nucleotide-binding oligomerization domain-like receptor 3 (NLPR3) were significantly elevated, implicating the NLRP3 inflammasome in IL-1ß production. Upon stimulation of PDL-Fib with LPS from Porphyromonas gingivalis (pg), the most well-characterized periodontal bacteria, a more rapid increase in IL-1ß, followed by RANKL induction, was observed. IL-1ß and tumor necrosis factor alpha (TNF-α), another LPS-responsive cytokine, effectively increased RANKL in PDL-Fib, suggesting an indirect effect of pgLPS through IL-1ß and TNF-α on RANKL induction. Immunohistological analyses of mouse periodontal tissues also showed markedly elevated levels of IL-1ß and RANKL upon PD induction and displayed separate locations of IL-1ß-expressing PDL-Fib and RANKL-expressing PDL-Fib in PD. The heterogenic feature of fibroblasts expressing IL-1ß and RANKL was also mirrored in our combined cross-tissue single-cell RNA sequencing datasets analysis. In summary, our study elucidates the heterogeneity of PDL-Fib, highlighting distinct functional groups for producing RANKL and IL-1ß, which collectively promote OC generation and bone destruction in PD.


Assuntos
Fibroblastos , Interleucina-1beta , Ligamento Periodontal , Periodontite , Ligante RANK , Análise de Célula Única , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Ligante RANK/metabolismo , Ligante RANK/genética , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Periodontite/metabolismo , Periodontite/genética , Periodontite/patologia , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica , Osteoclastos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Análise da Expressão Gênica de Célula Única
3.
Discov Med ; 36(182): 518-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531792

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease resulting from bacterial plaque infection. While the involvement of activating transcription factor 1 (ATF1) has been extensively explored in various human diseases, its specific role in periodontitis remains unclear. This study aims to elucidate the expression and biological function of ATF1 in the context of periodontitis. METHODS: Primary human periodontal ligament cells (hPDLCs) were procured from clinical samples and subsequently characterized. Following treatment with P. gingivalis lipopolysaccharide (LPS, 10 µg/mL), hPDLCs underwent transfection with either ATF1 vector or siRNA. The expression levels of ATF1 in LPS-treated hPDLCs or transfected cells were evaluated through real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Inflammatory factors, including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1ß), were quantified using Enzyme-linked Immunosorbent Assay (ELISA). The assessment of osteogenic proteins, such as runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG), as well as noncanonical nuclear factor-kappaB (NF-κB) pathway-related proteins (p65, p-p65, IkBα, p-IkBα), was conducted using western blot assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry assays were employed to detect cell viability. RESULTS: LPS induced an inflammatory response and hindered the osteogenic differentiation of hPDLCs (p < 0.05, p < 0.01). Furthermore, ATF1 silencing enhanced cell proliferation and suppressed apoptosis in LPS-stimulated hPDLCs (p < 0.05, p < 0.01). ATF1 silencing not only restrained the inflammatory response but also promoted the osteogenic differentiation of LPS-stimulated hPDLCs (p < 0.05, p < 0.01). Importantly, ATF1 silencing effectively blocked the LPS-induced activation of the NF-κB signaling pathway (p < 0.05, p < 0.01, p < 0.001). CONCLUSIONS: ATF1 emerges as a promising treatment option, inhibiting the osteogenic differentiation of hPDLCs and mitigating the inflammatory response by preventing the phosphorylation of the NF-κB signaling pathway.


Assuntos
NF-kappa B , Periodontite , Humanos , Fator 1 Ativador da Transcrição/metabolismo , Células Cultivadas , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Osteogênese , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Periodontite/patologia
4.
ACS Biomater Sci Eng ; 9(4): 1961-1975, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36942823

RESUMO

Periodontal tissue regeneration is a major challenge in tissue engineering due to its regenerated environment complexity. It aims to regenerate not only the supporting alveolar bone and cementum around teeth but also the key connecting periodontal ligament. Herein, a constructed aligned porous hydrogel scaffold carrying cells based on chitosan (CHI) and oxidized chondroitin sulfate (OCS) treated with a freeze-casting technique was fabricated, which aimed to induce the arrangement of periodontal tissue regeneration. The microscopic morphology and physical and chemical properties of the hydrogel scaffold were evaluated. The biocompatibilities with periodontal ligament stem cells (PDLSCs) or gingival-derived mesenchymal stem cells (GMSCs) were verified, respectively, by Live/Dead staining and CCK8 in vitro. Furthermore, the regeneration effect of the aligned porous hydrogel scaffold combined with PDLSCs and GMSCs was evaluated in vivo. The biocompatibility experiments showed no statistical significance between the hydrogel culture group and blank control (P > 0.05). In a rat periodontal defect model, PDLSC and GMSC hydrogel experimental groups showed more pronounced bone tissue repair than the blank control (P < 0.05) in micro-CT. In addition, there was more tissue repair (P < 0.05) of PDLSC and GMSC hydrogel groups from histological staining images. Higher expressions of OPN, Runx-2, and COL-I were detected in both of the above groups via immunohistochemistry staining. More importantly, the group with the aligned porous hydrogel induced more order periodontal ligament formation than that with the ordinary hydrogel in Masson's trichrome analysis. Collectively, it is expected to promote periodontal tissue regeneration utilizing an aligned porous hydrogel scaffold combined with PDLSCs and GMSCs (CHI-OCS-PDLSC/GMSC composite), which provides an alternative possibility for clinical application.


Assuntos
Células-Tronco Mesenquimais , Ligamento Periodontal , Ratos , Animais , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Porosidade , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Células-Tronco , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo
5.
Braz Oral Res ; 36: e056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507743

RESUMO

The understanding of the biological mechanisms involved in root resorption in deciduous teeth is important to the future development of preventive measures and treatments of this condition. The aim of the present study was to compare the expression and immunostaining of iNOS, MMP-9, OPG and RANKL in the periodontal ligament (PDL) of deciduous teeth with physiologic root resorption (GI), inflammatory pathological root resorption (GII) and permanent teeth (GIII), the negative control. Teeth in GI (n = 10), GII (n = 10) and (GIII) (n = 10) were submitted to immunohistochemical analysis to determine the expression of iNOS, MMP-9, OPG, and RANKL. The immunostaining was analysed by optical density. Statistical analysis included one-way ANOVA, followed by Student-Newman-Keuls post hoc test (p < 0.05). The results showed that iNOS, MMP-9 and RANKL expression in the PDL was higher in GII compared to GI and GIII (p < 0.05). Moreover, RANKL expression was higher in GI compared to GIII (p < 0.001), while OPG immunolabelling was lower in GII compared to GI and GIII (p < 0.001). The PDL of deciduous teeth bearing inflammatory processed exhibited upregulation of resorption-associated factors as well as enzymes related to tissue degradation which, in turn explains the exacerbation and greater susceptibility of those teeth to root resorption process.


Assuntos
Ligamento Periodontal , Reabsorção da Raiz , Humanos , Ligamento Periodontal/patologia , Reabsorção da Raiz/patologia , Metaloproteinase 9 da Matriz , Osteoprotegerina , Dente Decíduo , Ligante RANK , Inflamação/patologia
6.
Sci Rep ; 12(1): 382, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013397

RESUMO

The epithelial cell rests of Malassez (ERM) are essential in preventing ankylosis between the alveolar bone and the tooth (dentoalveolar ankylosis). Despite extensive research, the mechanism by which ERM cells suppress ankylosis remains uncertain; perhaps its varied population is to reason. Therefore, in this study, eighteen unique clones of ERM (CRUDE) were isolated using the single-cell limiting dilution and designated as ERM 1-18. qRT-PCR, ELISA, and western blot analyses revealed that ERM-2 and -3 had the highest and lowest amelogenin expression, respectively. Mineralization of human periodontal ligament fibroblasts (HPDLF) was reduced in vitro co-culture with CRUDE ERM, ERM-2, and -3 cells, but recovered when an anti-amelogenin antibody was introduced. Transplanted rat molars grown in ERM-2 cell supernatants produced substantially less bone than those cultured in other cell supernatants; inhibition was rescued when an anti-amelogenin antibody was added to the supernatants. Anti-Osterix antibody staining was used to confirm the development of new bones. In addition, next-generation sequencing (NGS) data were analysed to discover genes related to the distinct roles of CRUDE ERM, ERM-2, and ERM-3. According to this study, amelogenin produced by ERM cells helps to prevent dentoalveolar ankylosis and maintain periodontal ligament (PDL) space, depending on their clonal diversity.


Assuntos
Amelogenina/metabolismo , Separação Celular , Células Epiteliais/metabolismo , Ligamento Periodontal/metabolismo , Anquilose Dental/metabolismo , Amelogenina/genética , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Dente Molar/metabolismo , Dente Molar/patologia , Dente Molar/transplante , Osteogênese , Ligamento Periodontal/patologia , Fenótipo , Ratos Wistar , Sus scrofa , Anquilose Dental/genética , Anquilose Dental/patologia , Anquilose Dental/prevenção & controle
7.
Clin Oral Investig ; 26(3): 3151-3166, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35006293

RESUMO

OBJECTIVES: This study's aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P11-4 for the treatment of periodontal disease in a controlled pre-clinical study. MATERIALS AND METHODS: Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P11-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point. Four weeks after the second surgery and treatment, the animals were sacrificed, the mandibles measured by micro-computed tomography (µ-CT) and sections of the tissue were stained and evaluated histologically. RESULTS: Clinically and histologically, no safety concerns or pathological issues due to the treatments were observed in any of the study groups at any time point. All groups showed overall similar results after 4 and 12 weeks of healing regarding new cementum, functionality of newly formed periodontal ligament and recovery of height and volume of the new alveolar bone and mineral density. CONCLUSION: A controlled clinical study in humans should be performed in a next step as no adverse effects or safety issues, which might affect clinical usage of the product, were observed. CLINICAL RELEVANCE: The synthetic SAPM P11-4 may offer an alternative to the animal-derived product Emdogain® in the future.


Assuntos
Regeneração Tecidual Guiada Periodontal , Oligopeptídeos , Ligamento Periodontal , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/cirurgia , Animais , Regeneração Óssea , Cemento Dentário , Cães , Regeneração Tecidual Guiada Periodontal/veterinária , Mandíbula/cirurgia , Oligopeptídeos/efeitos adversos , Ligamento Periodontal/patologia , Raiz Dentária/cirurgia , Microtomografia por Raio-X
8.
J Immunol Res ; 2021: 9577695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34734092

RESUMO

Periodontitis involves chronic inflammation of the tissues around the teeth caused by plaque and the corresponding immune response. Growth arrest-specific protein 6 (GAS6) and AXL receptor tyrosine kinase (AXL) are known to be involved in inflammatory diseases, while signal transducer and activator of transcription-1 (STAT1) and suppressor of cytokine signaling (SOCS) are related to inflammatory processes. Moreover, miRNA34a directly targets AXL to regulate the AXL expression. However, the specific roles of GAS6 and AXL in periodontitis remain unclear. This study was designed to explore the effect and mechanism of AXL on the expression of inflammatory cytokines induced by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in human periodontal ligament cells (hPDLCs). The effects of different concentrations of P. gingivalis LPS on the expression of GAS6/AXL in hPDLCs were observed. Additionally, the effect of LPS on AXL was investigated by transfection of the miRNA34a inhibitor. AXL was knocked down or overexpressed to observe the release of inflammatory cytokines interleukin- (IL-) 8 and IL-6. The results showed that the expression levels of GAS6 and AXL decreased after P. gingivalis LPS infection. Transfection of a miR-34a inhibitor to hPDLCs demonstrated a role of miR-34a in the downregulation of AXL expression induced by LPS. Moreover, AXL knockdown or overexpression influencing the expression of IL-8 and IL-6 was investigated under LPS stimulation. AXL knockdown decreased the expression of STAT1 and SOCS1/3. Overall, these results demonstrate that AXL inhibits the expression of LPS-induced inflammatory cytokines in hPDLCs and that STAT1 and SOCS1/3 are involved in the regulation of inflammation by GAS6/AXL.


Assuntos
Periodontite/imunologia , Porphyromonas gingivalis/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipopolissacarídeos/imunologia , Ligamento Periodontal/citologia , Ligamento Periodontal/imunologia , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Periodontite/microbiologia , Periodontite/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Receptor Tirosina Quinase Axl
9.
Nutrients ; 13(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684576

RESUMO

Numerous studies highlight that astaxanthin (ASTX) ameliorates hyperglycemic condition and hyperglycemia-associated chronic complications. While periodontitis and periodontic tissue degradation are also triggered under chronic hyperglycemia, the roles of ASTX on diabetes-associated periodontal destruction and the related mechanisms therein are not yet fully understood. Here, we explored the impacts of supplemental ASTX on periodontal destruction and systemic complications in type I diabetic mice. To induce diabetes, C57BL/6 mice received a single intraperitoneal injection of streptozotocin (STZ; 150 mg/kg), and the hyperglycemic mice were orally administered with ASTX (12.5 mg/kg) (STZ+ASTX group) or vehicle only (STZ group) daily for 60 days. Supplemental ASTX did not improve hyperglycemic condition, but ameliorated excessive water and feed consumptions and lethality in STZ-induced diabetic mice. Compared with the non-diabetic and STZ+ASTX groups, the STZ group exhibited severe periodontal destruction. Oral gavage with ASTX inhibited osteoclastic formation and the expression of receptor activator of nuclear factor (NF)-κB ligand, 8-OHdG, γ-H2AX, cyclooxygenase 2, and interleukin-1ß in the periodontium of STZ-injected mice. Supplemental ASTX not only increased the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and osteogenic transcription factors in the periodontium, but also recovered circulating lymphocytes and endogenous antioxidant enzyme activity in the blood of STZ-injected mice. Furthermore, the addition of ASTX blocked advanced glycation end products-induced oxidative stress and growth inhibition in human-derived periodontal ligament cells by upregulating the Nrf2 pathway. Together, our results suggest that ASTX does not directly improve hyperglycemia, but ameliorates hyperglycemia-triggered periodontal destruction and oxidative systemic complications in type I diabetes.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Experimental/complicações , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Periodontite/tratamento farmacológico , Periodontite/etiologia , Estreptozocina/administração & dosagem , Adolescente , Processo Alveolar/patologia , Animais , Glicemia/metabolismo , Catalase/sangue , Proliferação de Células , Citocinas/metabolismo , Dano ao DNA , Diabetes Mellitus Experimental/sangue , Suplementos Nutricionais , Comportamento Alimentar , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Hiperglicemia/complicações , Mediadores da Inflamação/metabolismo , Injeções , Linfócitos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Ligamento Periodontal/patologia , Periodontite/sangue , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/sangue , Regulação para Cima , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Adulto Jovem
10.
Cell Stress Chaperones ; 26(6): 937-944, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34495492

RESUMO

Human periodontal ligament fibroblast (HPDLF) is a major component of the resident cells in the periodontal microenvironment, and plays important roles in periodontitis through multiple mechanisms. Although lipopolysaccharide (LPS) has been shown to cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) in HPDLF, the mechanisms governing HPDLF function in periodontitis are unclear. In this study, we tested the ability of unfolded protein response (UPR) to regulate HPDLF in vitro and examined the underlying mechanisms. We found LPS-pretreated HPDLF induced macrophage polarization toward M1 phenotype. UPR activation reduced the inflammatory cytokine production and downregulated the expression of TLR4 in HPDLF. The phosphorylation of NF-κB p65 and I-κB was also inhibited by UPR activation. Our findings demonstrate that the connection of LPS, UPR, and HPDLF may represent a new concrete theory of innate immunity regulation in periodontal diseases, and suggest that targeting of UPR in HPDLF may be developed as a potent therapy for periodontitis.


Assuntos
Inflamação/genética , Ligamento Periodontal/metabolismo , Periodontite/genética , Resposta a Proteínas não Dobradas/genética , Polaridade Celular/genética , Microambiente Celular/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imunidade Inata/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , NF-kappa B/genética , Ligamento Periodontal/patologia , Periodontite/terapia , Fosforilação , Fator de Transcrição RelA/genética
11.
Int Immunopharmacol ; 100: 107991, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34438336

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are involved in the regulation of osteoclast biology and several pathogenic progression. This study aimed to identify the role of miR-26a in osteoclastogenesis and orthodontically induced inflammatory root resorption(OIIRR). METHODS: Rat orthodontic tooth movement (OTM) model was established by ligating a closed coil spring between maxillary first molar and incisor, and 50 g orthodontic force was applied to move upper first molar to middle for 7 days. Human periodontal ligament (hPDL) cells were isolated from periodontium of healthy donors, and then subjected to compression force (CF) for 24 h to mimic an in vitro OTM model. The levels of associated factors in vivo and in vitro were measured subsequently. RESULT: The distance of tooth movement was increased and root resorption pits were occurred in rat OTM model. The expression of miR-26a was decreased in vivo and vitro experiments. CF treatment enhanced the secretion of inflammatory factors receptor activator of nuclear factor-kappa B ligand (RANKL) and IL-6, osteoclast marker levels, and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, while miR-26a overexpression reversed these results. Furthermore, miR-26a overexpression inhibited the osteoclastogenesis and rescued the root resorption in OTM rats through inhibition of Jagged1. Additionally, Runx1 could bind to miR-26a promoter and promote its expression, thereby suppressing the osteoclastogenesis. CONCLUSION: We concluded that Runx1/miR-26a/Jagged1 signaling axis restrained osteoclastogenesis and alleviated OIIRR.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Reabsorção da Raiz/imunologia , Técnicas de Movimentação Dentária/efeitos adversos , Adolescente , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Feminino , Humanos , Proteína Jagged-1/genética , Masculino , Osteoclastos , Osteogênese/imunologia , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Ratos , Reabsorção da Raiz/genética , Reabsorção da Raiz/patologia , Regulação para Cima/imunologia , Adulto Jovem
12.
Inflammation ; 44(5): 1831-1842, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33846931

RESUMO

Collagen triple helix repeat containing 1 (CTHRC1), a secreted glycoprotein, is widely expressed in many tissues. It has been recently defined as a novel marker for rheumatoid arthritis (RA), a systemic inflammatory disorder. However, the precise role of CTHRC1 in other chronic inflammatory diseases, like periodontal disease, remains unclear. This research aimed to explore the presence of CTHRC1 in periodontal inflammation, determine the precise role in inflammatory response modulation in periodontal ligament cells (PDLCs), and explore its underlying mechanisms. In vivo gingival crevicular fluid (GCF) and gingivae were obtained from healthy people and chronic periodontitis patients. Maxillary tissues of mice with or without ligature-induced periodontitis were immunostained for CTHRC1. In vitro human PDLCs were treated with tumor necrosis factor alpha (TNF-α) to mimic the inflammatory environment. Small interfering RNA (siRNA) was used to silence CTHRC1. SB203580 was used to inhibit the p38 mitogen-activated protein kinase (MAPK) pathway. CTHRC1 was highly expressed in GCF and gingival tissues of periodontitis patients. Animal models also revealed the same tendency. CTHRC1 knockdown promoted inflammatory cytokine production and activated the p38 MAPK signaling pathway in PDLCs. Inhibiting the p38 MAPK signaling pathway partially attenuated the inflammatory responses. This study revealed that CTHRC1 was highly expressed in periodontitis and suggested that CTHRC1 might play an important role in modulating periodontal inflammation.


Assuntos
Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/biossíntese , Técnicas de Silenciamento de Genes/métodos , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Ligamento Periodontal/metabolismo , Adolescente , Animais , Células Cultivadas , Criança , Ativação Enzimática/fisiologia , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligamento Periodontal/patologia , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia , Adulto Jovem
13.
Int J Mol Med ; 47(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33537804

RESUMO

Quercetin (Quer) is a typical antioxidant flavonoid from plants that is involved in bone metabolism, as well as in the progression of inflammatory diseases. Elevated levels of tumor necrosis factor­α (TNF­α), a typical pro­inflammatory cytokine, can affect osteogenesis. In the present study, TNF­α was used to establish an in vitro model of periodontitis. The effects of Quer on, as well as its potential role in the osteogenic response of human periodontal ligament stem cells (hPDLSCs) under TNF­α­induced inflammatory conditions and the underlying mechanisms were then investigated. Within the appropriate concentration range, Quer did not exhibit any cytotoxicity. More importantly, Quer significantly attenuated the TNF­α induced the suppression of osteogenesis­related genes and proteins, alkaline phosphatase (ALP) activity and mineralized matrix in the hPDLSCs. These findings were associated with the fact that Quer inhibited the activation of the NF­κB signaling pathway, as well as the expression of NLRP3 inflammation­associated proteins in the inflammatory microenvironment. Moreover, the silencing of NLRP3 by small interfering RNA (siRNA) was found to protect the hPDLSCs against TNF­α­induced osteogenic damage, which was in accordance with the effects of Quer. On the whole, the present study demonstrates that Quer reduces the impaired osteogenesis of hPDLSCs under TNF­α­induced inflammatory conditions by inhibiting the NF­κB/NLRP3 inflammasome pathway. Thus, Quer may prove to be a potential remedy against periodontal bone defects.


Assuntos
Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/patologia , Quercetina/farmacologia , Células-Tronco/patologia , Fator de Necrose Tumoral alfa/toxicidade , Adolescente , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adulto Jovem
14.
Mol Biol Rep ; 48(2): 1423-1431, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33507476

RESUMO

Periodontal ligament fibroblasts (PDLFs) are integral to the homeostasis of periodontal tissue. The transcription factor Dec1 functions to modulate Porphyromonas gingivalis-induced periodontal inflammation. Here, we aimed to characterize the Dec1-mediated autophagy in PDLFs under inflammatory conditions. Human PDLFs were subjected to an inflammatory environment using P. gingivalis Lipopolysaccaride (LPS) along with Dec1 siRNA in vitro. Quantitative real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression levels of autophagy-related genes and their upstream AKT/mTOR signaling pathways. An experimental P. gingivalis-treated Dec1 knockout (Dec1KO) mouse model was used to confirm the expression of autophagy in PDLFs in vivo. Treatment with P. gingivalis LPS induced the expression of ATG5, Beclin1 and microtubule-associated protein 1 light chain 3 (LC3) and elevated the expression of pro-inflammatory cytokine IL-1ß and Dec1 in human PDLFs. Knockdown of Dec1 partly reversed the detrimental influences of LPS on these autophagy markers in human PDLFs. The inhibition of autophagy with Dec1 siRNA suppressed the inflammatory effect of AKT/mTOR signaling pathways following treatment with P. gingivalis LPS. P. gingivalis-treated Dec1KO mice partly reduced autophagy expression. These findings suggest that a Dec1 deficiency can modulate the interaction between autophagy and inflammation in PDLFs.


Assuntos
Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Inflamação/genética , Ligamento Periodontal/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Proteína 5 Relacionada à Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Proteína Beclina-1/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
16.
Int J Nanomedicine ; 15: 9241-9253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262586

RESUMO

PURPOSE: Reducing toxicity, immunogenicity, and costs of small interfering RNAs (siRNA) carrier materials are key goals for RNA interference (RNAi) technology transition from bench to bed. Recently, calcium ions (Ca2+) have garnered attention as a novel, alternative material for delivering siRNA to cells. However, the tolerance for Ca2+ concentration varies in different cell types, which has limited its applications in vivo. Bovine serum albumin (BSA) can bind to Ca2+ through chelation. Moreover, BSA is a favorable coating material for nanoparticles owing to its excellent biocompatibility. Therefore, we hypothesized that coating Ca2+-siRNA with BSA helps buffer Ca2+ toxicity in vivo. METHODS: BSA-Ca2+-siRNA nanoparticles were prepared, and the size, shape, encapsulation, and release efficiency were characterized using atomic force microscopy, scanning electronic microcopy, and gel electrophoresis. Binding nanoparticles were evaluated using attenuated total reflection-Fourier-transform infrared spectroscopy. The cellular uptake, intracellular release, cytotoxicity, and gene knockdown of nanoparticles were evaluated in periodontal ligament stem cells (PDLSCs) using laser-scanning confocal microscope, flow cytometry, and real-time quantitative polymerase chain reaction. RESULTS: BSA and Ca2+-siRNA could form a stable nano-scale complex (~140 nm in diameter). The nanocomplexes could maintain siRNA release for more than 1 week in neutral phosphate-buffered saline (PBS) and could induce accelerated degradation in acidic PBS (pH 5.0). The nanoparticles were taken up by the cells, primarily through macropinocytosis, and were then released intracellularly through the acidification of endosomes/lysosomes. Importantly, the BSA-Ca2+ carrier had high transfection efficiency and biocompatibility both in vitro and in vivo. To demonstrate the therapeutic potential of our BSA coating-optimized Ca2+-siRNA technology, we showed that BSA-Ca2+-siWWP1 complexes strongly enhanced the osteogenic differentiation of inflammatory PDLSCs. CONCLUSION: BSA-Ca2+ could potentially be used for siRNA delivery, which is not only highly efficient and cost-effective but also biocompatible to host tissues owing to the BSA coating.


Assuntos
Cálcio/metabolismo , Técnicas de Transferência de Genes , Nanopartículas/química , Periodontite/terapia , RNA Interferente Pequeno/metabolismo , Soroalbumina Bovina/química , Adulto , Animais , Morte Celular , Diferenciação Celular , Endocitose , Humanos , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Osteogênese , Ligamento Periodontal/patologia , Periodontite/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem
17.
Acta Biochim Biophys Sin (Shanghai) ; 52(9): 1016-1029, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845287

RESUMO

Recent studies have reported an increasing incidence of ischemic stroke, particularly in younger age groups. Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) are the most common stem cells acquired from the teeth of adults, even elderly people. However, there are no detailed reports on whether DPSCs or PDLSCs are suitable for the treatment of ischemic stroke. In this study, the in vitro differentiation of DPSCs and PDLSCs into neuron-like cells was evaluated. Then, we established a rat model of cerebral ischemia. DPSCs or PDLSCs were administered to animals, and the therapeutic effects of these two types of cells were investigated. The results showed that PDLSCs had a higher differentiation rate than DPSCs. Immunofluorescence studies showed that the expression of the neuronal differentiation marker Thy-1 was higher in PDLSCs than in DPSCs, and other gene markers of neuronal differentiation showed corresponding trends, which were confirmed by western blot analysis. In this process, the Notch and Wnt signaling pathways were inhibited and activated, respectively. Finally, rats with transient occlusion of the right middle cerebral artery were used as a model to assess the therapeutic effect of PDLSCs and DPSCs on ischemia. The results showed that rats in the PDLSC-treated group emitted significantly greater red fluorescence signal than the DPSC-treated group. PDLSC transplantation promoted the recovery of neurological function more effectively than DPSC transplantation. Hence, PDLSCs represent an autogenous source of adult mesenchymal stem cells with desirable biological properties and may be an ideal candidate for clinical applications.


Assuntos
Isquemia Encefálica , Diferenciação Celular , Polpa Dentária/metabolismo , Neurônios/metabolismo , Ligamento Periodontal/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Polpa Dentária/patologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Masculino , Neurônios/patologia , Ligamento Periodontal/patologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/patologia
18.
Biosci Rep ; 40(8)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32735017

RESUMO

Tripartite motif-containing (TRIM) 52 (TRIM52) is a vital regulator of inflammation. However, the function and mechanisms of TRIM52 in lipopolysaccharide (LPS)-induced inflammatory injury of human periodontal ligament cells (HPDLCs) in periodontitis remain undefined. In the present research, gene expression was determined using a quantitative polymerase chain reaction and Western blot. The effect of TRIM52 on LPS-induced inflammatory injury was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and enyzme-linked immunosorbent assay (ELISA). We found that TRIM52 expression was up-regulated in LPS-treated HPDLCs. Knockdown of TRIM52 alleviated LPS-induced proliferative inhibition and apoptosis promotion in HPDLCs, as evidenced by a decrease in cleaved caspase-3 expression and caspase-3 activity. Silencing TRIM52 suppressed LPS-induced inflammatory response of HPDLCs, as indicated by the decrease in interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α) levels, and increase in IL-10 levels. TRIM52 knockdown inhibited LPS-induced activation of TLR4/nuclear factor-κ B (NF-κB) signaling pathway. Taken together, knockdown of TRIM52 mitigated LPS-induced inflammatory injury via the TLR4/NF-κB signaling pathway, providing an effective therapeutic target for periodontitis.


Assuntos
Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Ligamento Periodontal/efeitos dos fármacos , Periodontite/prevenção & controle , Interferência de RNA , Receptor 4 Toll-Like/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo , Humanos , NF-kappa B/genética , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Proteínas com Motivo Tripartido/genética
19.
Chem Biodivers ; 17(9): e2000295, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32649040

RESUMO

Collagen is widely used for dental therapy in several ways such as films, 3D matrix, and composites, besides traditional Chinese medicine (TCM), has been used in tissue regeneration and wound healing application for centuries. Hence, the present study was targeted for the first time to fabricate collagen film with TCM such as resveratrol and celastrol in order to investigate the human periodontal ligament fibroblasts (HPLF) growth and bone marrow macrophages (BMM) derived osteoclastogenesis. Further, the physicochemical, mechanical and biological activities of collagen-TCM films crosslinked by glycerol and EDC-NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysulfosuccinimide) were investigated. Collagen film characterization was significantly regulated by the nature of plasticizers like hydrophobic and degree of polarity. Interestingly, the collagen film's denaturation temperature was increased by EDC-NHS than glycerol. FT-IR data confirmed the functional group changes due to chemical interaction of collagen with TCM. Morphological changes of HPLF cells cultured in control and collagen films were observed by SEM. Importantly, the addition of resveratrol upregulated the proliferation of HPLF cells, while osteoclastogenesis of BMM cells treated with mCSF-RANKL was significantly downregulated by celastrol. Accordingly, the collagen-TCM film could be an interesting material for dental regeneration, and especially it is a therapeutic target to restrain the elevated bone resorption during osteoporosis.


Assuntos
Antioxidantes/farmacologia , Colágeno/farmacologia , Implantes Dentários , Triterpenos Pentacíclicos/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Resveratrol/farmacologia , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/química , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Estrutura Molecular , Osteogênese/efeitos dos fármacos , Triterpenos Pentacíclicos/química , Ligamento Periodontal/patologia , Picratos/antagonistas & inibidores , Resveratrol/química , Relação Estrutura-Atividade
20.
J Periodontal Res ; 55(5): 667-675, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32323318

RESUMO

BACKGROUND AND OBJECTIVE: Though impacts of traumatic occlusion (TO) on periodontal tissues and roles of cystathionine γ-lyase (Cth) gene in the regulation of bone homeostasis have been studied by many, no consensus has been reached so far on whether TO deteriorates the periodontium and precise roles of Cth in occlusal trauma. Therefore, this study aims to investigate the impacts of TO on periodontal tissues and the involvement of Cth gene. METHODS: Eighty C57BL/6 wild-type (WT) mice and Cth knockout (Cth-/- ) mice, 8 weeks old, were used in this study. The TO model was established using composite resin bonding on the left maxillary molar for one, two, and three weeks, respectively. Morphological and histological changes in the periodontium were assessed by micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast-related genes were analyzed by real-time polymerase chain reaction (qPCR). RESULTS: It was found that decreased alveolar bone height, expanded bone resorption area, and increased width of periodontal ligament (PDL) occurred in TO models, accompanied by an increased number of osteoclasts in a time-dependent manner by micro-CT and histological staining. Osteoclast-related genes including Ctsk, Mmp9, Rank, Trap, and Rankl/Opg were also up-regulated after one week of modeling. The up-regulated expressions of Cth gene and its protein CTH were observed in TO mouse models. After 1, 2, or 3 weeks of modeling, WT mice showed more severe alveolar bone resorption, wider PDL, higher osteoclast count, and higher levels of osteoclast-related genes Ctsk, Rank, and Rankl/Opg than Cth-/- mice. CONCLUSION: TO causes a reduction in alveolar bone height and PDL morphological disorder with their severity increases in a time-dependent manner. Cth aggravates periodontal damage caused by TO.


Assuntos
Cistationina gama-Liase , Ligamento Periodontal , Ligante RANK , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos , Osteoprotegerina , Ligamento Periodontal/diagnóstico por imagem , Ligamento Periodontal/patologia , Ligante RANK/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA