Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.924
Filtrar
1.
J Hazard Mater ; 471: 134313, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669927

RESUMO

Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.


Assuntos
Cádmio , Lignina , MicroRNAs , Raízes de Plantas , Lignina/química , Cádmio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , MicroRNAs/metabolismo , MicroRNAs/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Araceae/efeitos dos fármacos , Araceae/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Chemosphere ; 358: 142133, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670511

RESUMO

The impact of Fenton-ultrasound treatment on the production of polyphenols and humic acid (HA) during corn stalk composting was investigated by analyzing the potential for microbial assimilation of polysaccharides in corn stalks to generate polyphenols using a13C-glucose tracer. The results showed that Fenton-ultrasound treatment promoted the decomposition of lignocellulose and increased the HA content, degree of polymerization (DP), and humification index (HI). The primary factor could be attributed to Fenton-ultrasound treatment-induced enhanced the abundance of lignocellulose-degrading microorganisms, as Firmicutes, Actinobacteria phylum and Aspergillis genus, which serve as the primary driving forces behind polyphenol and HA formation. Additionally, the utilization of a13C isotope tracer revealed that corn stalk polysaccharide decomposition products can be assimilated by microbes and subsequently secrete polyphenolic compounds. This study highlights the potential of microbial activity to generate phenolic compounds, offering a theoretical basis for increasing polyphenol production and promoting HA formation during composting.


Assuntos
Compostagem , Substâncias Húmicas , Polifenóis , Zea mays , Polifenóis/metabolismo , Polifenóis/química , Lignina/química , Lignina/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/química , Ferro/metabolismo , Ondas Ultrassônicas , Microbiologia do Solo , Biodegradação Ambiental
3.
Int J Biol Macromol ; 267(Pt 2): 131462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614163

RESUMO

The rapid development of the industry has led to the destruction of the earth's ozone layer, resulting in an increasingly serious problem of excessive ultraviolet radiation. Exploring effective measures to address these problems has become a hot topic. Lignin shows promise in the design and preparation of anti-ultraviolet products due to its inherent properties. However, it is important to investigate way to enhance the reactivity of lignin and determine its application form in related products. In this study, phenolic reactions with tea polyphenols were conducted through acid-catalyzed conversion, utilizing organic solvent lignin as the primary material. The phenolic hydroxyl content of the original lignin increased significantly by 218.8 %, resulting in notable improvements in UV resistance and oxidation resistance for phenolic lignin. Additionally, micro-nanocapsule emulsions were formed using phenolic lignin particles as surfactants through ultrasonic cavitation with small-molecule sunscreens. A bio-based sunscreen was prepared with phenolated lignin micro-nanocapsules as the active ingredient, achieving an SPF 100.2 and demonstrating excellent stability. The sunscreen also exhibited strong antioxidant properties and impermeability, ensuring user safety. This research offers a current solution for improving the application of lignin in sunscreens while also broadening the potential uses of plant-based materials in advanced functional products.


Assuntos
Lignina , Oxirredução , Polifenóis , Protetores Solares , Chá , Raios Ultravioleta , Lignina/química , Polifenóis/química , Catálise , Chá/química , Protetores Solares/química , Protetores Solares/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Ácidos/química
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673762

RESUMO

The WRKY gene family is crucial for regulating plant growth and development. However, the WRKY gene is rarely studied in naked kernel formation in hull-less Cucurbita pepo L. (HLCP), a natural mutant that lacks the seed coat. In this research, 76 WRKY genes were identified through bioinformatics-based methods in C. pepo, and their phylogenetics, conserved motifs, synteny, collinearity, and temporal expression during seed coat development were analyzed. The results showed that 76 CpWRKYs were identified and categorized into three main groups (I-III), with Group II further divided into five subgroups (IIa-IIe). Moreover, 31 segmental duplication events were identified in 49 CpWRKY genes. A synteny analysis revealed that C. pepo shared more collinear regions with cucumber than with melon. Furthermore, quantitative RT-PCR (qRT-PCR) results indicated the differential expression of CpWRKYs across different varieties, with notable variations in seed coat development between HLCP and CP being attributed to differences in CpWRKY5 expression. To investigate this further, CpWRKY5-overexpression tobacco plants were generated, resulting in increased lignin content and an upregulation of related genes, as confirmed by qRT-PCR. This study offers valuable insights for future functional investigations of CpWRKY genes and presents novel information for understanding the regulation mechanism of lignin synthesis.


Assuntos
Cucurbita , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Fatores de Transcrição , Cucurbita/genética , Cucurbita/crescimento & desenvolvimento , Genoma de Planta , Lignina/metabolismo , Lignina/biossíntese , Nicotiana/genética , Nicotiana/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sintenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Bioresour Technol ; 400: 130652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575096

RESUMO

The primary objective of this study is to explore the application of a deep eutectic solvent, synthesized from lactic acid and choline chloride, in combination with a pre-treatment involving ZSM-5 catalytic fast pyrolysis, aimed at upgrading the quality of bio-oil. Characterization results demonstrate a reduction in lignin content post-treatment, alongside a significant decrease in carboxyls and carbonyls, leading to an increase in the C/O ratio and noticeable enhancement in crystallinity. During catalytic fast pyrolysis experiments, the pre-treatment facilitates the production of oil fractions, achieving yields of 54.53% for total hydrocarbons and 39.99% for aromatics hydrocarbons under optimized conditions. These findings validate the positive influence of the deep eutectic solvent pre-treatment combined with ZSM-5 catalytic fast pyrolysis on the efficient production of bio-oil and high-value chemical derivatives. .


Assuntos
Biocombustíveis , Biomassa , Solventes Eutéticos Profundos , Óleos de Plantas , Polifenóis , Pirólise , Zeolitas , Catálise , Zeolitas/química , Solventes Eutéticos Profundos/química , Lignina/química , Colina/química , Solventes/química
6.
Int J Biol Macromol ; 268(Pt 2): 131883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677702

RESUMO

The present study highlights the integration of lignin with graphene oxide (GO) and its reduced form (rGO) as a significant advancement within the bio-based products industry. Lignin-phenol-formaldehyde (LPF) resin is used as a carbon source in polyurethane foams, with the addition of 1 %, 2 %, and 4 % of GO and rGO to produce carbon structures thus producing carbon foams (CFs). Two conversion routes are assessed: (i) direct addition with rGO solution, and (ii) GO reduction by heat treatment. Carbon foams are characterized by thermal, structural, and morphological analysis, alongside an assessment of their electrochemical behavior. The thermal decomposition of samples with GO is like those having rGO, indicating the effective removal of oxygen groups in GO by carbonization. The addition of GO and rGO significantly improved the electrochemical properties of CF, with the GO2% sensors displaying 39 % and 62 % larger electroactive area than control and rGO2% sensors, respectively. Furthermore, there is a significant electron transfer improvement in GO sensors, demonstrating a promising potential for ammonia detection. Detailed structural and performance analysis highlights the significant enhancement in electrochemical properties, paving the way for the development of advanced sensors for gas detection, particularly ammonia, with the prospective market demands for durable, simple, cost-effective, and efficient devices.


Assuntos
Amônia , Grafite , Lignina , Grafite/química , Lignina/química , Amônia/análise , Amônia/química , Carbono/química , Formaldeído/análise , Formaldeído/química , Técnicas Eletroquímicas/métodos , Poliuretanos/química , Gases/análise , Gases/química , Fenóis , Polímeros
7.
Int J Biol Macromol ; 268(Pt 2): 131919, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679248

RESUMO

Excessive exposure to UV and high-energy blue light (HEBL) can cause fatal eye and skin injuries. As a result, it is crucial to protect our bodies from UV and HEBL radiation. To achieve complete blocking of UV and HEBL, we developed a lignin-derived carbon quantum dot (L-CQD)/polyvinyl alcohol (PVA) film. L-CQD was synthesized from lignin, a waste woody biomass, and then blended with a PVA matrix to create a flexible L-CQD/PVA film. Thanks to simultaneous UV and HEBL absorption characteristics and bright color of L-CQD, the PVA film with 0.375 wt% L-CQD demonstrated outstanding blocking efficiency: 100 % in UV-C, UV-B, and UV-A, and at least 99.9 % in HEBL. It also exhibited a 44 % increase in lightness and a 12 % enhancement in transparency compared to lignin/PVA film. The film's ability to block UV and HEBL was further demonstrated by reducing >40 % UV-induced ROS formation in both cancerous and normal cell lines (Hs 294T, HeLa, CCD-986sk, and L929), as well as by blocking blue laser diode (LD) and LED. Since the L-CQD/PVA film is simple to produce, environmentally friendly, flexible, and thermally stable, it is suitable for use as a protective coating against sunlight and harmful emissions from IT devices.


Assuntos
Carbono , Lignina , Álcool de Polivinil , Pontos Quânticos , Raios Ultravioleta , Pontos Quânticos/química , Lignina/química , Carbono/química , Álcool de Polivinil/química , Humanos , Luz , Espécies Reativas de Oxigênio/metabolismo , Luz Azul
8.
Nature ; 628(8009): 776-781, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658683

RESUMO

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Assuntos
Carbono , Água Doce , Carbono/análise , Carbono/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Água Doce/química , Lagos/química , Lignina/química , Oxirredução , Oxigênio/química , Polifenóis/química , Rios/química , Suécia , Taninos/química , Ciclo do Carbono
9.
Plant Physiol Biochem ; 210: 108564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555719

RESUMO

Lignin is a phenolic biopolymer generated from phenylpropanoid pathway in the secondary cell wall and is required for defense of plants against various stress. Although the fact of stress-induced lignin deposition has been clearly demonstrated, it remains largely elusive how the formation of lignin is promoted under Cu stress. The present study showed that OsGLP8-7, an extracellular glycoprotein of rice (Oryza sativa L.), plays an important function against Cu stress. The loss function of OsGLP8-7 results in Cu sensitivity whereas overexpression of OsGLP8-7 scavenges Cu-induced superoxide anion (O2•-). OsGLP8-7 interacts with apoplastic peroxidase111 (OsPRX111) and elevates OsPRX111 stability when exposed to excess Cu. In OsGLP8-7 overexpressing (OE) lines, the retention of Cu within cell wall limiting Cu uptake into cytoplasm is attributed to the enhanced lignification required for Cu tolerance. Exogenous application of a lignin inhibitor can impair the Cu tolerance of transgenic Arabidopsis lines overexpressing OsGLP8-7. In addition, co-expression of OsGLP8-7 and OsPRX111 genes in tobacco leaves leads to an improved lignin deposition compared to leaves expressing each gene individually or the empty vector. Taken together, our findings provided the convincing evidences that the interaction between OsGLP8-7 and OsPRX111 facilitates effectively lignin polymerization, thereby contributing to Cu tolerance in rice.


Assuntos
Cobre , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/genética , Cobre/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Parede Celular/metabolismo
10.
Appl Environ Microbiol ; 90(4): e0204423, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38483171

RESUMO

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.


Assuntos
Basidiomycota , Manganês , Polyporales , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/metabolismo , Aldeídos , Peroxidases/metabolismo , Ácidos Graxos , Oxidantes
11.
Int J Med Mushrooms ; 26(4): 63-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523450

RESUMO

In the present study, wide diversity in the set and activity of lignin-modifying enzymes (LME) was revealed during submerged fermentation of mandarin peel with 15 strains of white rot Basidiomycetes. Among them, Trametes pubescens BCC153 was distinguished by the simultaneous production of laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP). Supplementation of CuSO4 at a concentration of 1 mM in the media for the cultivation of four Trametes species manifold increased the production of laccase. The diverse effects of chemically different lignocellulosic growth substrates and nitrogen sources on the production of individual LME have been established. The maximum laccase activity of T. pubescens was observed when the fungus was cultivated on media containing mandarin peel and wheat bran, whereas the highest MnP and LiP activities were detected in the submerged fermentation of tobacco residue. Peptone and casein hydrolysate appeared to be the best sources of nitrogen to produce laccase and both peroxidases by T. pubescens BCC153 whereas KNO3 was the worst nitrogen-containing compound for the production of all enzymes.


Assuntos
Agaricales , Agaricales/metabolismo , Lacase/metabolismo , Fermentação , Trametes , Lignina/metabolismo , Nitrogênio
12.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547360

RESUMO

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Assuntos
Lignina , Praguicidas , Estrobilurinas , Animais , Lignina/química , Praguicidas/farmacologia , Cápsulas/química , Emulsões/química , Peixe-Zebra , Água
13.
Bioresour Technol ; 398: 130517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437961

RESUMO

The utilization of lignin, an abundant and renewable bio-aromatic source, is of significant importance. In this study, lignin oxidation was examined at different temperatures with zirconium oxide (ZrO2)-supported nickel (Ni), cobalt (Co) and bimetallic Ni-Co metal catalysts under different solvents and oxygen pressure. Non-catalytic oxidation reaction produced maximum bio-oil (35.3 wt%), while catalytic oxidation significantly increased the bio-oil yield. The bimetallic catalyst Ni-Co/ZrO2 produced the highest bio-oil yield (67.4 wt%) compared to the monometallic catalyst Ni/ZrO2 (59.3 wt%) and Co/ZrO2 (54.0 wt%). The selectively higher percentage of vanillin, 2-methoxy phenol, acetovanillone, acetosyringone and vanillic acid compounds are found in the catalytic bio-oil. Moreover, it has been observed that the bimetallic Co-Ni/ZrO2 produced a higher amount of vanillin (43.7% and 13.30 wt%) compound. These results demonstrate that the bimetallic Ni-Co/ZrO2 catalyst promotes the selective cleavage of the ether ß-O-4 bond in lignin, leading to a higher yield of phenolic monomer compounds.


Assuntos
Benzaldeídos , Cobalto , Níquel , Óxidos , Óleos de Plantas , Polifenóis , Zircônio , Lignina , Fenóis
14.
Sci Rep ; 14(1): 6752, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514756

RESUMO

In this cross-sectional investigation, the primary objective was to explore the correlation between the consumption of polyphenols and the likelihood of non-alcoholic fatty liver disease (NAFLD) in the adult population participating in the Hoveyzeh cohort. Data from the Hoveyzeh cohort study, part of the Persian Cohort Study, involving 10,009 adults aged 35-70, were analyzed. Exclusions were made for missing data, extreme energy intake, and liver cancer patients. Dietary habits were assessed using a food frequency questionnaire, and polyphenol intake was calculated using the Phenol Explorer database. Logistic regression analyses, adjusted for confounders, were performed to assess the relationship between polyphenol subclasses (total polyphenols, total flavonoids, phenolic acid, and lignin) and NAFLD. Among 9894 participants, those in the highest quintile of total polyphenol (OR 0.65, CI 0.5-0.84; P = 0.007), phenolic acid (OR 0.67, CI 0.52-0.86; P < 0.001), and lignin intake (OR 0.69, CI 0.52-0.87; P = 0.001) demonstrated lower odds of NAFLD compared to the lowest quintile, even after adjusting for confounding factors. However, no significant association was found between total flavonoid intake and NAFLD (OR 1.26, CI 0.96-1.67; P = 0.47). Subgroup analysis indicated a significant inverse association between total polyphenols and NAFLD in women (OR 0.64, CI 0.42-0.93; P = 0.001). Higher intake of total polyphenols, phenolic acid, and lignin was associated with reduced odds of NAFLD among adults in the Hoveyzeh cohort. This suggests that dietary patterns rich in these polyphenols may play a role in mitigating the risk of NAFLD. Further interventional and longitudinal studies are needed to validate these findings and explore potential preventive strategies involving polyphenol-rich diets.


Assuntos
Hidroxibenzoatos , Hepatopatia Gordurosa não Alcoólica , Polifenóis , Adulto , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Estudos de Coortes , Estudos Transversais , Lignina , Dieta , Flavonoides , Fatores de Risco
15.
Int J Biol Macromol ; 265(Pt 2): 130957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499121

RESUMO

Deterioration in mechanical performances and aging resistance due to the introduction of flame retardants is a major obstacle for bio-based fire-safety polypropylene (PP). Herein, we reported a kind of functionalized lignin nanoparticles assembled with MXene (MX@LNP), and applied it to construct the flame-retardant PP composites (PP-MA) with superior fire safety, excellent mechanical performance, electromagnetic shielding effects and aging resistance. Specifically, the PP-MA doped with only 18 wt% flame-retardant additives (PP-MA18) achieved the UL-94 V-0 rating. In comparison to pure PP, PP-MA18 presented a greatly decreased peak of heat release rate (pHRR), total heat rate (THR), and peak smoke production rate (pSPR) by 79.7 %, 69.0 % and 75.8 %, respectively, and satisfactory decrease in total flammable and toxic volatiles evolved. The formed fine solid microstructure of carbon residuals effectively promoted the compactness of char layers. More importantly, the nano-effect and the strong interface interaction between the complexed MX@LNP and PP enhanced the tensile strength (45.78 MPa) and elongation at break (725.95 %) of PP-MA. Additionally, the significant ultraviolet absorption and electromagnetic wave dissipation performance of MXene and lignin enabled excellent aging resistance and electromagnetic shielding effects of PP-MA compared with PP. This achieved MX@LNP afforded a novel approach for developing flame retardant materials with excellent application performance.


Assuntos
Retardadores de Chama , Nanopartículas , Nitritos , Elementos de Transição , Lignina , Polipropilenos , Fenômenos Eletromagnéticos
16.
Int J Biol Macromol ; 265(Pt 2): 130981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513894

RESUMO

High-value utilization of bleached lignin has been widely used in different fields, whereas the investigation on darkened lignin in composite materials was often ignored. In this work, a sort of eco-friendly and structurally robust sodium carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA)/sodium lignosulfonate (SLS) black composite mulch film was elaborately designed. The chelation and redox reaction effect between Fe ions and SLS lead to the formation of a more quinones structure on lignin, darkening both lignin and the mulch films. The chelation effect between Fe ions and biopolymer formed three-dimensional structures, which can be used as sacrifice bonds to dissipate energy and improve the mechanical properties of the composite films. In particular, the maximum elongation at break and toughness increased from 48.4 % and 1141 kJ/m3 for the CMC/PVA film to 210.9 % and 1426 kJ/m3 for the optimized CMC/PVA/SLS/Fe black mulch film, respectively. In addition, the optimized black mulch film also possesses good soil water retention, thermal preservation effect, controlled urea release, and well biodegradability. This work offered a novel strategy for designing eco-friendly black mulch with reinforced mechanical strength, slow-release urea, soil moisture retention, and heat preservation performances.


Assuntos
Ferro , Lignina , Agricultura/métodos , Solo , Álcool de Polivinil/química , Ureia , Sódio
17.
Plant Sci ; 343: 112059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458573

RESUMO

Lignin is a complex biopolymer formed through the condensation of three monomeric precursors known as monolignols. However, the mechanism underlying lignin precursor transport remains elusive, with uncertainty over whether it occurs through passive diffusion or an active energized process. ATP-binding cassette 36 (ABCG36) plays important roles in abiotic stress resistance. In this study, we investigated the transport functions of LkABCG36 (Larix kaempferi) for lignin precursors and the potential effects of LkABCG36 overexpression in plants. LkABCG36 enhanced the ability of tobacco (Nicotiana tabacum) bright yellow-2 (BY-2) cells to resist monolignol alcohol stress. Furthermore, LkABCG36 overexpression promoted lignin deposition in tobacco plant stem tissue. To understand the underlying mechanism, we measured the BY-2 cell ability to export lignin monomers and the uptake of monolignol precursors in inside-out (inverted) plasma membrane vesicles. We found that the transport of coniferyl and sinapyl alcohols is an ATP-dependent process. Our data suggest that LkABCG36 contributes to lignin accumulation in tobacco stem tissues through a mechanism involving the active transport of lignin precursors to the cell wall. These findings shed light on the lignin biosynthesis process, with important implications for enhancing lignin deposition in plants, potentially leading to improved stress tolerance and biomass production.


Assuntos
Lignina , Proteínas de Membrana Transportadoras , Lignina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Parede Celular/metabolismo , Plantas/metabolismo , Trifosfato de Adenosina/metabolismo
18.
J Hazard Mater ; 469: 133965, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471381

RESUMO

Cadmium (Cd) contamination in agricultural soil has been an elevated concern due to the high health risks associated with the transfer through the soil-food chain, particularly in the case of rice. Recently, there has numerous researches on the use of nanoparticle-loaded materials for heavy metal-polluted soil remediation, resulting in favorable outcomes. However, there has been limited research focus on the field-scale application and recovery. This study was aimed to validate the Cd reduction effect of the nano-FeS loaded lignin hydrogel composites (FHC) in mildly polluted paddies, and to propose a field-scale application method. Hence, a multi-site field experiment was conducted in southern China. After the application for 94-103 days, the FHC exhibited a high integrity and elasticity, with a recovery rate of 91.90%. The single-round remediation led to decreases of 0.42-31.72% in soil Cd content and 1.52-49.11% in grain Cd content. Additionally, this remediation technique did not adversely impact rice production. Consequently, applying FHC in the field was demonstrated to be an innovative, efficient, and promising remediation technology. Simultaneously, a strategy was proposed for reducing Cd levels while cultivating rice in mildly polluted fields using the FHC.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Lignina , Hidrogéis , Poluentes do Solo/análise , Solo
19.
J Environ Manage ; 356: 120625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503232

RESUMO

The accumulation of coir pith waste, a byproduct of coconut husk processing, poses environmental and logistical challenges. An innovative and sustainable solution involves using coir pith as a substrate for solid-state fermentation (SSF). In SSF, coir pith can be converted into valuable products, such as enzymes, organic acids, and bioactive compounds. The present study aimed to evaluate laccase production by Hexagonia hirta MSF2 through SSF using the coir pith waste as substrate. Physico-chemical parameters like moisture, pH, temperature, C source, N source, and CuSO4 concentrations were pre-optimized, and optimized through RSM. Laccase activity of 1585.24 U g-1 of dry substrate was recorded by H. hirta MSF2 on coir pith containing 1 % C source, 0.5 % N source, 0.25 mM of CuSO4 concentration, moisture content of 75 % at pH 4.6 and temperature 28 °C. Subsequently, the enzyme extraction parameters including, extraction buffer, mode of extraction, and temperature were optimized. The molecular weight of laccase was 66 kDa as observed by SDS-PAGE and native-PAGE. The optimum activity of partially purified laccase was achieved at 40 °C, and pH 4.0. Increasing salt concentration and use of different inhibitors affected the laccase activity. Organic solvents like dimethyl sulphoxide (DMSO) and methanol, and metal ions like BaCl2, CaCl2, CuSO4, and MnCl2 stimulated the laccase activity. Hence, coir pith used in SSF offers a dual benefit of waste management and enzyme synthesis through an eco-friendly and cost-effective approach.


Assuntos
Lacase , Lignina , Lignina/análogos & derivados , Polyporaceae , Fermentação , Lignina/química
20.
Int J Biol Macromol ; 266(Pt 2): 130619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460629

RESUMO

Lignin, a natural polyphenol polymer, is a biocompatible, cost-effective and accessible material. To fully utilize the benefits of lignin, it is crucial to transform its complex macromolecules into nanoscale particles in a single solvent. In this research, an assembly-mediated internal cross-linking method in single solvent was proposed to manufacture cross-linked lignin colloidal particles with nanoscale particle size controlled to be around 50 nm. Then, cross-linked lignin composite particles with a unique "patchy" structure for dental cleansing were obtained by rapidly grafting the cross-linked lignin colloidal particles onto the surface of silica microspheres through the bridging effect of silane coupling agent. The resulting composite particles have rivets with adjustable hardness, significantly lower than traditional abrasives like silica in both hardness and modulus. Through the group cleansing behavior of soft interlocking, a breakthrough has been achieved in the high solid content agglomeration friction mode of traditional abrasives, which effectively reduces tooth wear and exhibits an excellent plaque removal effect.


Assuntos
Lignina , Lignina/química , Tamanho da Partícula , Dióxido de Silício/química , Reagentes de Ligações Cruzadas/química , Dureza , Microesferas , Humanos , Coloides/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA