Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 468: 133851, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394901

RESUMO

As the most famous and widely used traditional Chinese medicine (TCM), Ligusticum sinense cv. Chuanxiong (L. Chuaniong) has been affected by cadmium (Cd) exceeding with high ability of Cd accumulation. There is relatively little research on Cd absorption and storage process in L. Chuanxiong, which is an important reason for the poor remediation efficiency. Hence, this study takes L. Chuanxiong as the point of penetration to explore how L. Chuanxiong affects rhizobacteria through root exudates to alter soil Cd intake, as well as to explore the migration and storage of Cd in its body with 0.10 (T0), 5.00 (T5), 10.00 (T10) mg/kg Cd contaminations. The results showed that the relative abundance of amino acids and phospholipids secreted from L. Chuanxiong root noticeably increased with increasing Cd levels, which directly activated soil Cd or extremely significantly (P < 0.01) recruited bacteria such as Bacillus, Arthrobacter to indirectly increase Cd availability. Under the interaction of root exudates and rhizobacteria, Cd bioavailability increased by 80.00% in rhizosphere soil and Cd accumulation in L. Chuanxiong increased 5.44-6.65 mg/kg. Cd subcellular distribution analysis demonstrated that Cd was mainly stored in the root (10-fold more than in the leaf), whose Cd content was cytoderm>cytoplasm>organelle in tissues. The sequential extraction results found that non-soluble phosphate and protein-chelated Cd dominated (85.00-90.00%) in the cell, while Cd cheated with alcohol soluble protein, amino acid salts, water-soluble organic acid in cell was minimal (5.50%). The phenomenon indicated that L. Chuanxiong fixed Cd in root (the medical part) with low translocation ability. This study can provide theoretical support for the high-quality production of L. Chuanxiong and other root medical plant in heavy metal influenced sites.


Assuntos
Ligusticum , Metais Pesados , Poluentes do Solo , Cádmio/metabolismo , Ligusticum/química , Ligusticum/metabolismo , Rizosfera , Metais Pesados/análise , Aminoácidos , Solo/química , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo
2.
Pest Manag Sci ; 79(12): 5374-5386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656744

RESUMO

BACKGROUND: Peanut stem rot caused by Sclerotium rolfsii is an epidemic disastrous soil-borne disease. Recently, natural products tend to be safe alternative antifungal agents to combat pathogens. RESULTS: This work determined the preliminary antifungal activity of 29 essential oils against S. rolfsii and found that Ligusticum chuanxiong essential oil (LCEO) showed the best antifungal activity, with an EC50 value of 81.79 mg L-1 . Sixteen components (98.78%) were identified in LCEO by gas chromatography-mass spectrometry analysis, the majority by volume comprising five phthalides (93.14%). Among these five phthalides, butylidenephthalide was the most effective compound against S. rolfsii. Butylidenephthalide not only exhibited favorable in vitro antifungal activity against the mycelial growth, sclerotia production and germination of S. rolfsi, but also presented efficient in vivo efficacy in the control of peanut stem rot. Seven days after application in the glasshouse, the protective and curative efficacy of butylidenephthalide at 300 mg L-1 (52.02%, 44.88%) and LCEO at 1000 mg L-1 (49.60%, 44.29%) against S. rolfsii were similar to that of the reference fungicide polyoxin at 300 mg L-1 (54.61%, 48.28%). Butylidenephthalide also significantly decreased the oxalic acid and polygalacturonase content of S. rolfsii, suggesting a decreased infection ability on plants. Results of biochemical actions indicated that butylidenephthalide did not have any effect on the cell membrane integrity and permeability but significantly decreased nutrient contents, disrupted the mitochondrial membrane, inhibited energy metabolism and induced reactive oxygen species (ROS) accumulation of S. rolfsii. CONCLUSION: Our results could provide an important reference for understanding the application potential and mechanisms of butylidenephthalide in the control of S. rolfsii. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Ligusticum , Óleos Voláteis , Antifúngicos/química , Ligusticum/metabolismo , Arachis
3.
Ecotoxicol Environ Saf ; 193: 110342, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109585

RESUMO

Agricultural production of Ligusticum chuanxiong Hort. is often affected by heavy metal pollution in soil, especially mixtures of cadmium (Cd) and lead (Pb). We assessed metal-induced phytotoxicity in L. chuanxiong by exposing the plants to soil treated with Cd, Pb, or Cd/Pb mixtures. A combined Cd/Pb treatment alleviated the inhibition in plant growth, photosynthesis, and secondary metabolite generation seen in single-metal exposures in three of the four combinations. Most combined Cd/Pb treatments resulted in preferential uptake of magnesium, copper, and nitrogen in underground plant parts and accumulation of phosphorus and calcium in aboveground plant parts, thereby leading to improvements in photosynthetic potential. Compared with single-metal exposures, combined Cd/Pb treatment significantly decreased the contents of Cd by 16.67%-40.12% and Pb by 10.68%-21.70% in the plant, respectively. At the subcellular level, the Pb presence increased the Cd percentage associated with cell wall from 64.79% to 67.93% in rhizomes and from 32.76% to 45.32% in leaves, while Cd reduced Pb contents by 9.36%-46.39% in the subcellular fractions. A combined Cd/Pb treatment decreased the contents of water- and ethanol-extractable metal forms and increased the contents of acetic acid- and hydrochloric acid-extractable forms. The lower toxic effects of the Cd/Pb mixture in L. chuanxiong were associated with photosynthetic potential, subcellular distribution, the chemical forms of Cd and Pb, and synthesis of secondary metabolites. These findings are useful for plant production strategies in soils contaminated by heavy metals.


Assuntos
Cádmio/toxicidade , Chumbo/toxicidade , Ligusticum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Cádmio/farmacocinética , Cálcio/metabolismo , Cobre/metabolismo , Interações Medicamentosas , Chumbo/farmacocinética , Ligusticum/metabolismo , Magnésio/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Poluentes do Solo/farmacocinética
4.
Bioorg Chem ; 84: 505-510, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602133

RESUMO

Seven new butylphthalide derivatives, ligusticumolide A-G (1-7), together with two known butylphthalide derivatives (8-9) were isolated from an ethanol extract of Ligusticum chuanxiong Hort. The structures of these derivatives were elucidated from analysis of 1D/2D NMR, UV, IR and HRESIMS data. The absolute configurations of these derivatives were determined by electronic circular dichroism (ECD) calculations and Mosher's method. Ligusticumolide A (1) and ligusticumolide B (2) are enantiomers that were obtained by chiral separation. Ligusticumolide C (3) and ligusticumolide D (4) are diastereomers. All of the compounds were evaluated for their hepatoprotective activity against N-acetyl-p-aminophenol-induced HepG2 cell injury. Compounds 4, 5, and 7-9 showed more significant hepatoprotective activity than that of the positive control drug (bicyclol) at a concentration of 10 µM (p < 0.01).


Assuntos
Benzofuranos/química , Ligusticum/química , Substâncias Protetoras/química , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Humanos , Ligusticum/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , Estereoisomerismo
5.
PLoS One ; 9(11): e113673, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409029

RESUMO

In traditional Chinese medicine, Ligusticum wallichii (Chuan Xiong) and its bioactive ingredient, tetramethylpyrazine (TMP), have been used to treat cardiovascular diseases and to relieve various neurological symptoms, such as those associated with ischemic injury. In the present study, we investigated whether ultrasound (US) exposure could enhance the protective effect of TMP against cerebral ischemia/reperfusion (I/R) injury. Glutamate-induced toxicity to pheochromocytoma (PC12) cells was used to model I/R injury. TMP was paired with US to examine whether this combination could alleviate glutamate-induced cytotoxicity. The administration of TMP effectively protected cells against glutamate-induced apoptosis, which could be further enhanced by US-mediated sonoporation. The anti-apoptotic effect of TMP was associated with the inhibition of oxidative stress and a change in the levels of apoptosis-related proteins, Bcl-2 and Bax. Furthermore, TMP reduced the expression of proinflammatory cytokines such as TNF-α and IL-8, which likely also contributes to its cytoprotective effects. Taken together, our findings suggest that ultrasound-enhanced TMP treatment might be a promising therapeutic strategy for ischemic stroke. Further study is required to optimize ultrasound treatment parameters.


Assuntos
Ondas de Choque de Alta Energia , Pirazinas/farmacologia , Vasodilatadores/farmacologia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Ácido Glutâmico/toxicidade , Interleucina-8/metabolismo , Ligusticum/química , Ligusticum/metabolismo , Medicina Tradicional Chinesa , Microscopia Eletrônica de Varredura , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA