Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
1.
Cancer Rep (Hoboken) ; 7(5): e2051, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702989

RESUMO

BACKGROUND: Glioblastomas are characterized by aggressive behavior. Surgery, radiotherapy, and alkylating agents, including temozolomide are the most common treatment options for glioblastoma. Often, conventional therapies fail to treat these tumors since they develop drug resistance. There is a need for newer agents to combat this deadly tumor. Natural products such as gedunin have shown efficacy in several human diseases. A comprehensive study of gedunin, an heat shock protein (HSP)90 inhibitor, has not been thoroughly investigated in glioblastoma cell lines with different genetic modifications. AIMS: A key objective of this study was to determine how gedunin affects the biological and signaling mechanisms in glioblastoma cells, and to determine how those mechanisms affect the proliferation and apoptosis of glioblastoma cells. METHODS: The viability potentials of gedunin were tested using MTT, cell counts, and wound healing assays. Gedunin's effects on glioma cells were further validated using LDH and colony formation assays. In addition, we investigated the survival and apoptotic molecular signaling targets perturbed by gedunin using Western blot analysis and flow cytometry. RESULTS: Our results show that there was a reduction in cell viability and inhibition of wound healing in the cells tested. Western blot analysis of the gene expression data revealed genes such as EGFR and mTOR/Akt/NF kappa B to be associated with gedunin sensitivity. Gedunin treatment induced apoptosis by cleaving poly ADP-ribose polymerase, activating caspases, and downregulating BCL-xL. Based on these results, gedunin suppressed cell growth and HSP client proteins, resulting in apoptosis in glioblastoma cell lines. CONCLUSION: Our data provide in vitro support for the anticancer activity of gedunin in glioma cells by downregulating cancer survival proteins.


Assuntos
Apoptose , Proliferação de Células , Glioblastoma , Limoninas , Humanos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
2.
Med Oncol ; 41(6): 158, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761317

RESUMO

Nimbolide, one of the main ingredients constituent of Azadirachta indica (neem) leaf extract, has garnered attention for its potential as an anticancer agent. Its efficacy against various cancers and chemopreventive action has been demonstrated through numerous in vivo and in vitro studies. This updated review aims to comprehensively explore the chemopreventive and anticancer properties of nimbolide, emphasizing its molecular mechanisms of action and potential therapeutic applications in oncology. The review synthesizes evidence from various studies that examine nimbolide's roles in apoptosis induction, anti-proliferation, cell death, metastasis inhibition, angiogenesis suppression, and modulation of carcinogen-metabolizing enzymes. Nimbolide exhibits multifaceted anticancer activities, including the modulation of multiple cell signaling pathways related to inflammation, invasion, survival, growth, metastasis, and angiogenesis. However, its pharmacological development is still in the early stages, mainly due to limited pharmacokinetic and comprehensive long-term toxicological studies. Nimbolide shows promising anticancer and chemopreventive properties, but there is need for systematic preclinical pharmacokinetic and toxicological research. Such studies are essential for establishing safe dosage ranges for first-in-human clinical trials and further advancing nimbolide's development as a therapeutic agent against various cancers. The review highlights the potential of nimbolide in cancer treatment and underscores the importance of rigorous preclinical evaluation to realize its full therapeutic potential.


Assuntos
Limoninas , Neoplasias , Humanos , Limoninas/farmacologia , Limoninas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Azadirachta/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
3.
Int J Pharm ; 656: 124086, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580074

RESUMO

Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.


Assuntos
Portadores de Fármacos , Ivermectina , Lipídeos , Nanoestruturas , Humanos , Ivermectina/administração & dosagem , Ivermectina/química , Ivermectina/farmacocinética , Ivermectina/farmacologia , Animais , Portadores de Fármacos/química , Lipídeos/química , Células K562 , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Sinergismo Farmacológico , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Limoninas/administração & dosagem , Limoninas/farmacologia , Limoninas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Ratos
4.
J Nat Med ; 78(3): 558-567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517622

RESUMO

A total of five new mexicanolides (1-5), namely alliaxylines A-E, together with two known limonoids 6 and 7, were isolated and identified from Dysoxylum alliaceum (Blume) Blume ex. A.Juss. (Meliaceae). The structures of these compounds were elucidated based on extensive spectroscopic analyses, including HR-ESI-MS, UV, IR, 1D, and 2D NMR, as well as theoretical stimulation of NMR shifts with the DP4 + algorithm. Consequently, this study aimed to examine cytotoxic activities of these compounds against MCF-7 and A549 cell lines. The results implied that compound 2 was the most potent against the two tested cells, with IC50 values of 34.95 ± 0.21 and 44.39 ± 1.03 µM.


Assuntos
Limoninas , Meliaceae , Casca de Planta , Humanos , Meliaceae/química , Casca de Planta/química , Limoninas/química , Limoninas/farmacologia , Limoninas/isolamento & purificação , Estrutura Molecular , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Células MCF-7 , Células A549 , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Caules de Planta/química
5.
Phytochemistry ; 220: 114009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342289

RESUMO

Seven previously undescribed preurianin-type limonoids, namely paraxylines A-G, and three known analogs were isolated from stem bark of Dysoxylum parasiticum. The structures, including absolute configurations, were established through spectroscopic analyses, quantum chemical calculations using the density functional theory method, as well as the DP4+ algorithm. Paraxylines A-G were identified as the first preurianin-type with full substitution at C, D-rings, leading to the highly oxygenated seco-limonoids skeleton. The secreted alkaline phosphate assay against an engineered human and murine TLR4 of HEK-Blue cells was performed to evaluate the immune regulating effects. Among them, paraxyline B was found to be a remarkable TLR4 agonist whereas two analogs (toonapubesins A and B) were found to antagonise lipopolysaccharide stimulation of the TLR4 pathway. Paraxylines A and C-E acted either as agonists or antagonists depending on the origin of the TLR4 receptor (human or mouse). The effect of these selected compounds on the expression of pro-inflammatory cytokines TNF-α, IL-1α, IL-1ß, and IL-6 of the NF-κB signaling pathway were examined in macrophage cell lines, revealing dose-dependent effects. Additionally, paraxylines A, C, D, and G also presented modest cytotoxic activity against MCF-7 and HeLa cell lines with IC50 values ranging from 23.1 to 43.5 µM.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Limoninas , Meliaceae , Humanos , Animais , Camundongos , Limoninas/farmacologia , Limoninas/química , Receptor 4 Toll-Like , Células HeLa , Casca de Planta/química , Estrutura Molecular , Antineoplásicos Fitogênicos/química , Meliaceae/química
6.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338394

RESUMO

Eight vilasinin-class limonoids, including the unusually chlorinated rubescins K-M (1-3), the 2,3-epoxylated rubescin N (4), and rubescins O-R (5-8), were newly isolated from Trichilia rubescens. The structures of the isolated compounds were determined through spectroscopic and spectrometric analyses, as well as ECD calculations. The natural occurrence of chlorinated limonoids 1-3 was confirmed by chemical methods and HPLC analysis of a roughly fractionated portion of the plant extract. Eight selected limonoids, including previously known and new compounds, were evaluated for antiproliferative activity against five human tumor cell lines. All tested limonoids, except 8, exhibited significant potency, with IC50 values of <10 µM; in particular, limonoid 14 strongly inhibited tumor cell growth, with IC50 values of 0.54-2.06 µM against all tumor cell lines, including multi-drug-resistant cells.


Assuntos
Limoninas , Meliaceae , Humanos , Limoninas/química , Linhagem Celular Tumoral , Meliaceae/química , Estrutura Molecular
7.
Theriogenology ; 218: 8-15, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290232

RESUMO

To investigate the effects of limonin (Lim) on oxidative stress and early apoptosis in bovine oocytes during in vitro maturation (IVM), different concentrations of Lim (0, 10, 20, 50 µmol/L) were added to bovine IVM medium. Oocyte maturation rates and development 24 h after in vitro fertilization (IVF) were examined to determine the optimal Lim concentration. The optimal Lim concentration was added to the IVM medium, and 0 µmol/L Lim was used as the control. Immunofluorescence staining was used to detect the abnormal rate of spindle assembly, reactive oxygen species (ROS), glutathione (GSH), mitochondrial membrane potential (MMP) levels, mitochondrial distribution, and the fluorescence intensity of cathepsin B (CB)-active LC3 protein. RT‒qPCR was used to detect the mRNA expression levels of antioxidant-, apoptosis- and autophagy-related genes in oocytes. The total number of blastocysts and the proportion of apoptotic cells among blastocysts were detected. The results showed that the PBI ejection rate, cleavage rate and blastocyst rate of bovine oocytes in the 20 µmol/L Lim group were significantly higher than those in the control group (P < 0.05). Compared with those in the control group, ROS levels, abnormal mitochondrial distribution, the proportion of abnormal spindle assembly, CB activity and LC3 protein fluorescence intensity of oocytes in the 20 µmol/L Lim group were significantly decreased (P < 0.05), and GSH and MMP levels were significantly increased (P < 0.05). The expression of antioxidant genes (Prdx3, Prdx6, Sirt1) and antiapoptotic genes (Bcl-xl, Survivin) were significantly upregulated (P < 0.05), and the expression levels of proapoptotic genes (Caspase-4, BAX) and autophagy-related genes (LC3) were significantly downregulated (P < 0.05). The total number of cells among in vitro fertilized embryos was significantly increased (P < 0.05), and the apoptosis rate of blastocysts was significantly decreased (P < 0.05). Here, we show that Lim exerts positive effects on bovine oocyte IVM by regulating REDOX homeostasis, reducing spindle damage and enhancing mitochondrial function during IVM, thereby inhibiting oocyte apoptosis and autophagy.


Assuntos
Antioxidantes , Limoninas , Animais , Bovinos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Limoninas/metabolismo , Limoninas/farmacologia , Oócitos/fisiologia , Estresse Oxidativo , Glutationa/metabolismo , Blastocisto/fisiologia , Apoptose , Desenvolvimento Embrionário
8.
J Transl Med ; 22(1): 84, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245717

RESUMO

BACKGROUND: The main challenge in personalized treatment of breast cancer (BC) is how to integrate massive amounts of computing resources and data. This study aimed to identify a novel molecular target that might be effective for BC prognosis and for targeted therapy by using network-based multidisciplinary approaches. METHODS: Differentially expressed genes (DEGs) were first identified based on ESTIMATE analysis. A risk model in the TCGA-BRCA cohort was constructed using the risk score of six DEGs and validated in external and clinical in-house cohorts. Subsequently, independent prognostic factors in the internal and external cohorts were evaluated. Cell viability CCK-8 and wound healing assays were performed after PTGES3 siRNA was transiently transfected into the BC cell lines. Drug prediction and molecular docking between PTGES3 and drugs were further analyzed. Cell viability and PTGES3 expression in two BC cell lines after drug treatment were also investigated. RESULTS: A novel six-gene signature (including APOOL, BNIP3, F2RL2, HINT3, PTGES3 and RTN3) was used to establish a prognostic risk stratification model. The risk score was an independent prognostic factor that was more accurate than clinicopathological risk factors alone in predicting overall survival (OS) in BC patients. A high risk score favored tumor stage/grade but not OS. PTGES3 had the highest hazard ratio among the six genes in the signature, and its mRNA and protein levels significantly increased in BC cell lines. PTGES3 knockdown significantly inhibited BC cell proliferation and migration. Three drugs (gedunin, genistein and diethylstilbestrol) were confirmed to target PTGES3, and genistein and diethylstilbestrol demonstrated stronger binding affinities than did gedunin. Genistein and diethylstilbestrol significantly inhibited BC cell proliferation and reduced the protein and mRNA levels of PTGES3. CONCLUSIONS: PTGES3 was found to be a novel drug target in a robust six-gene prognostic signature that may serve as a potential therapeutic strategy for BC.


Assuntos
Neoplasias da Mama , Limoninas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Dietilestilbestrol , Genisteína , Simulação de Acoplamento Molecular , Prognóstico , RNA Mensageiro
9.
Appl Biochem Biotechnol ; 196(1): 182-202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37103738

RESUMO

The non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. It is usually diagnosed at an advanced stage with poor prognosis. Nimbolide (NB), a terpenoid limonoid isolated from the flowers and leaves of neem tree, possesses anticancer properties in various cancer cell lines. However, the underlying mechanism of its anticancer effect on human NSCLC cells remains unclear. In the present study, we investigated the effect of NB on A549 human NSCLC cells. We found that NB treatment inhibits A549 cells colony formation in a dose-dependent manner. Mechanistically, NB treatment increases cellular reactive oxygen species (ROS) level, leading to endoplasmic reticulum (ER) stress, DNA damage, and eventually induction of apoptosis in NSCLC cells. Furthermore, all these effects of NB were blocked by pretreatment with antioxidant glutathione (GSH), the specific ROS inhibitor. We further knockdown CHOP protein by siRNA markedly reduced NB-induced apoptosis in A549 cells. Taken together, our findings reveal that NB is an inducer of ER stress and ROS; these findings may contribute to increasing the therapeutic efficiency of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Limoninas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Limoninas/farmacologia , Limoninas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Dano ao DNA , Estresse do Retículo Endoplasmático/genética , Linhagem Celular Tumoral
10.
Med Res Rev ; 44(2): 457-496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37589457

RESUMO

Neem (Azadirachta indica A. Juss.), a versatile evergreen tree recognized for its ethnopharmacological value, is a rich source of limonoids of the triterpenoid class, endowed with potent medicinal properties. Extracts of neem have been documented to display anticancer effects in diverse malignant cell lines as well as in preclinical animal models that has largely been attributed to the constituent limonoids. Of late, neem limonoids have become the cynosure of research attention as potential candidate agents for cancer prevention and therapy. Among the various limonoids found in neem, azadirachtin, epoxyazadiradione, gedunin, and nimbolide, have been extensively investigated for anticancer activity. Azadirachtin, a potent biodegradable pesticide, exhibits profound antiproliferative effects by preventing mitotic spindle formation and cell division. The antiproliferative activity of gedunin has been demonstrated to be mediated primarily via inhibition of heat shock protein90 and its client proteins. Epoxyazadiradione inhibits pro-inflammatory and kinase-driven signaling pathways to block tumorigenesis. Nimbolide, the most potent cytotoxic neem limonoid, inhibits the growth of cancer cells by regulating the phosphorylation of keystone kinases that drive oncogenic signaling besides modulating the epigenome. There is overwhelming evidence to indicate that neem limonoids exert anticancer effects by preventing the acquisition of hallmark traits of cancer, such as cell proliferation, apoptosis evasion, inflammation, invasion, angiogenesis, and drug resistance. Neem limonoids are value additions to the armamentarium of natural compounds that target aberrant oncogenic signaling to inhibit cancer development and progression.


Assuntos
Antineoplásicos , Azadirachta , Limoninas , Animais , Humanos , Limoninas/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais
11.
Colloids Surf B Biointerfaces ; 234: 113670, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042108

RESUMO

Self-healing hydrogels have shown great application potential in drug delivery for anti-tumor therapy and tissue engineering. In this research, Doxorubicin (DOX) was coupled onto the oxidized pectin (pec-Ald) to prepare DOX grafted pec-AD and used to fabricate self-healing hydrogel for lung cancer therapy combined with novel herbal medicine extract limonin targeting lung cancer cells. The hydrogel was prepared with P(NIPAM195-co-AH54) cross-linking and the hydrazone bond cross-linked hydrogel showed good mechanical property and self-healing behavior. With pectin composition, the hydrogel was still biodegradable catalyzed by enzyme and in vivo. The hydrogel formed fast fit for injectable application and the hydrogel itself showed moderate lung cancer inhibition activity. With limonin loading, the hydrogel showed synergistic lung cancer therapy with the tumor growth greatly inhibited. The covalent coupling of DOX and loaded limonin in the hydrogel decreased in vivo toxicity and the hydrogel degraded on time. With biodegradability and improved lung cancer therapy efficiency, this DOX grafted self-healing hydrogel could find great potential application in cancer therapy in near future.


Assuntos
Limoninas , Neoplasias Pulmonares , Humanos , Pectinas , Hidrogéis/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias Pulmonares/tratamento farmacológico
12.
Chem Biodivers ; 21(2): e202301703, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38055204

RESUMO

Three undescribed limonoids (1-3), named aglaians G-I, and one new natural product azedaralide (4), together with nine known analogues (5-13) were isolated from the branches and leaves of Aglaia lawii by RP C18 column, silica gel column, Sephadex LH-20 column chromatography and preparative HPLC. The structures of the new compounds were elucidated by IR, HRESIMS, 1D, 2D NMR, electronic circular dichroism (ECD) calculations and X-ray crystallography diffraction analysis. The results of bioassay showed that the compound 12 exhibited potential inhibitory activity against six human tumor cell lines (MDA-MB-231, MCF-7, Ln-cap, A549, HeLa and HepG-2) with IC50 values as 8.0-18.6 µM.


Assuntos
Aglaia , Antineoplásicos , Limoninas , Humanos , Aglaia/química , Limoninas/farmacologia , Limoninas/química , Estrutura Molecular , Linhagem Celular Tumoral
13.
Nat Prod Res ; 38(1): 152-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-35921334

RESUMO

Glioma is a common malignant tumor with a high incidence rate but a low cure rate. In this paper, one previously undescribed limonoid (1), along with two known cipadesin-type limonoids 2 and 3, were isolated from Cipadessa baccifera. Their structures were established based on a comprehensive analysis of NMR and MS spectra. Compound 1 exhibited moderate cytotoxicity against U251 and BT-325 cells with IC50 values of 7.32 ± 0.21 and 13.25 ± 0.35 µM, suggesting that 1 might be a promising leading compound for the treatment of glioma.


Assuntos
Glioma , Limoninas , Meliaceae , Humanos , Limoninas/farmacologia , Limoninas/química , Estrutura Molecular , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , Glioma/tratamento farmacológico , Meliaceae/química
14.
An Acad Bras Cienc ; 95(suppl 2): e20230322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088731

RESUMO

Citrus fruit industrial processing generates tons of waste composed of peels, seeds and pulp. Incorrect disposal of these residues may harm the environment. The extraction of oil and bioactive compounds from citrus fruit seeds may be considered a sustainable alternative to the disposal of waste by the citrus agroindustry. In order to provide safe disposal of citrus waste an evaluation of its composition is necessary. Here we report the results of the application of a methodology to evaluate the composition the seeds of Citrus limettioides. In the first step, extraction with supercritical carbon dioxide was used. This work allowed the isolation and identification of four aglycone-type limonoids by High Performance Liquid Chromatography and Nuclear Magnetic Resonance, identified as limonin, nomilin, deacetylnomilin, and obacunone. In addition, six other polar limonoids and two glycosyl flavonoids were identified by HPLC-ESI/MS/MS.


Assuntos
Citrus , Limoninas , Limoninas/análise , Limoninas/química , Citrus/química , Espectrometria de Massas em Tandem , Polifenóis/análise , Sementes/química
15.
Molecules ; 28(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005325

RESUMO

Swietenia macrophylla King is a plant commonly known as Brazilian mahogany. The wood from its stem is highly prized for its exceptional quality, while its leaves are valued for their high content of phragmalin-type limonoids, a subclass of compounds known for their significant biological activities, including antimalarial, antitumor, antiviral, and anti-inflammatory properties. In this context, twelve isolated limonoids from S. macrophylla leaves were employed as standards in mass spectrometry-based molecular networking to unveil new potential mass spectrometry signatures for phragmalin-type limonoids. Consequently, ultra-performance liquid chromatography coupled with high-resolution mass spectrometry was utilized for data acquisition. Subsequently, the obtained data were analyzed using the Global Natural Products Social Molecular Networking platform based on spectral similarity. In summary, this study identified 24 new putative phragmalin-type limonoids for the first time in S. macrophylla. These compounds may prove valuable in guiding future drug development efforts, leveraging the already established biological activities associated with limonoids.


Assuntos
Limoninas , Meliaceae , Limoninas/química , Meliaceae/química , Espectrometria de Massas , Brasil , Estrutura Molecular
16.
Fitoterapia ; 171: 105708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866424

RESUMO

Five undescribed triterpenoids and steroids (1-5), as well as ten known compounds, were purified from the branches and leaves of Cipadessa baccifera. Notably, 1 and 2 are rare cipadesin-type limonoids with an unusual 8,30-epoxide ring and 1,8-ether linkage, respectively. Compound 5 possessed pregnane steroid skeleton with an uncommon 5/6/6/6/5-fused ring system. Their structures were constructed by extensive spectroscopic analysis (NMR, IR, UV, and HRESIMS), and their absolute configurations were confirmed by ECD calculations and quantum chemical calculations. All the isolates were in vitro assayed for their antimicrobial potentials against 6 pathogenic microorganisms and antiproliferation activities against five human cancer cell lines. As a result, compounds 5, 12, 13, and 14 exhibited moderate antibacterial activities (MIC: 25-50 µg/mL). Moreover, 5 showed cytotoxicity against five cancer cell lines with IC50 values ranging from 8.0 to 19.9 µM.


Assuntos
Limoninas , Meliaceae , Triterpenos , Humanos , Estrutura Molecular , Esteroides , Linhagem Celular Tumoral , Meliaceae/química
17.
Phytochemistry ; 216: 113869, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739201

RESUMO

Twelve undescribed limonoids, meliazedarines J-U (1-12), along with a known one, were isolated from the roots of Melia azedarach. Their structures were elucidated by extensive spectroscopic investigations, X-ray diffraction analyses, and ECD calculations. Compounds 1-8 were identified as ring intact limonoids, while compounds 9-12 were established as ring C-seco ones. The anti-inflammatory potential of compounds 1-4, 6, 8, 9, and 11-13 was evaluated on macrophages. Compounds 1, 3, 4, 6, and 9 significantly suppressed nitric oxide production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, among them compound 3 showed the best inhibitory effect with an IC50 value of 7.07 ± 0.48 µΜ. Furthermore, compound 3 effectively reduced interleukin-1ß secretion in LPS plus nigericin-induced THP-1 macrophages by inhibiting NLRP3 inflammasome activation. The results strongly suggested that limonoids from the roots of M. azedarach might be candidates for treating inflammation-related diseases.


Assuntos
Limoninas , Melia azedarach , Melia azedarach/química , Limoninas/farmacologia , Limoninas/química , Lipopolissacarídeos/farmacologia , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
18.
Phytochemistry ; 214: 113818, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37558193

RESUMO

Six previously undescribed intact limonoids together with four known compounds were isolated from the seeds of Trichilia lepidota subsp. schumanniana (Harms) T.D.Penn. Their structures were characterized based on one- and two-dimensional nuclear magnetic resonance spectra, infrared, ultraviolet, mass spectroscopy results, and optical rotation. All compounds were evaluated for their ability to inhibit nitric oxide production in cultures of RAW 264.7 macrophages stimulated by lipopolysaccharide, cytotoxicity and growth of Mycobacterium tuberculosis strains H37Rv and M299. The compounds 7-deacetyl-11ß,12α-diacetoxy-14,15-epoxyazadirone (5) and walsurin E (9) were the most potent in inhibiting nitric oxide production, although the compounds 1-deshydroxy-12α-acetoxymunronin N (1) and 6α,12α-dihydroxyazadirone (6) also showed controlled potential of this mediator, in addition to being potent growth inhibitors of Mycobacterium tuberculosis H37RV and M299, without cytotoxicity interference. Ring intact limonoids isolated from Trichilia lepidota subsp. schumanniana seeds are a new source of bioactive substances that may be used in the future against diseases such as tuberculosis and other processes related to inflammation.


Assuntos
Limoninas , Meliaceae , Limoninas/química , Óxido Nítrico , Meliaceae/química , Espectroscopia de Ressonância Magnética , Macrófagos
19.
Biofactors ; 49(6): 1189-1204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37401768

RESUMO

Nonalcoholic steatohepatitis (NASH) and hepatic fibrosis are leading causes of cirrhosis with rising morbidity and mortality worldwide. Currently, there is no appropriate treatment for NASH and hepatic fibrosis. Many studies have shown that oxidative stress is a main factor inducing NASH. Nomilin (NML) and obacunone (OBA) are limonoid compounds naturally occurring in citrus fruits with various biological properties. However, whether OBA and NML have beneficial effects on NASH remains unclear. Here, we demonstrated that OBA and NML inhibited hepatic tissue necrosis, inflammatory infiltration and liver fibrosis progression in methionine and choline-deficient (MCD) diet, carbon tetrachloride (CCl4 )-treated and bile duct ligation (BDL) NASH and hepatic fibrosis mouse models. Mechanistic studies showed that NML and OBA enhanced anti-oxidative effects, including reduction of malondialdehyde (MDA) level, increase of catalase (CAT) activity and the gene expression of glutathione S-transferases (GSTs) and Nrf2-keap1 signaling. Additional, NML and OBA inhibited the expression of inflammatory gene interleukin 6 (Il-6), and regulated the bile acid metabolism genes Cyp3a11, Cyp7a1, multidrug resistance-associated protein 3 (Mrp3). Overall, these findings indicate that NML and OBA may alleviate NASH and liver fibrosis in mice via enhancing antioxidant and anti-inflammation capacity. Our study proposed that NML and OBA may be potential strategies for NASH treatment.


Assuntos
Limoninas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Antioxidantes/metabolismo , Limoninas/farmacologia , Limoninas/metabolismo , Limoninas/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Metionina , Dieta , Camundongos Endogâmicos C57BL , Fígado
20.
Fitoterapia ; 169: 105606, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442484

RESUMO

Fraxinifolines A-F (1-6), six new B-seco limonoids, together with four known A,D-di-seco ones, were isolated from the twigs with leaves of Tetradium fraxinifolium. Their structures with absolute configurations were elucidated on the basis of analysis of MS, NMR, single-crystal X-ray diffraction and biogenetic pathway. An anti-inflammatory bioassay in vitro showed limonoids 1-3 had significant immunosuppressive effect against the production of pro-inflammatory cytokines (IL-1ß and/or TNF-α) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Assuntos
Limoninas , Estrutura Molecular , Limoninas/farmacologia , Limoninas/química , Anti-Inflamatórios/farmacologia , Citocinas , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA