Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.681
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730243

RESUMO

As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.


Assuntos
Interleucina-18 , Proteínas de Membrana , Receptores de Antígenos Quiméricos , Animais , Interleucina-18/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico
2.
Methods Cell Biol ; 186: 131-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705597

RESUMO

Hypomethylating therapies using decitabine or azacitidine are actively investigated to treat acute myeloid leukemia, myelodysplastic syndromes, as maintenance therapy after allogenic stem cell transplant and hemoglobinopathies. The therapeutic mechanism is to de-repress genes that have been turned off through oncogenesis or development via methylation. The therapy can be non-cytotoxic at low dosage, sparing healthy stem cells and operating on committed precursors. Because the methods of determining maximum tolerated dose are not well suited to this paradigm, and because the mechanism of action, which is depletion of DNA methylase 1 (DNMT1), is complex and dependent on passing through a cell cycle, a pharmacodynamic assay that measures DNMT1 can inform clinical trials aimed at establishing and improving therapy. Herein, we provide an assay that measures DNMT1 relative levels in circulating T cells of peripheral blood.


Assuntos
Azacitidina , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Decitabina , Azacitidina/farmacologia , Humanos , Decitabina/farmacologia , Metilação de DNA/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo
3.
PLoS One ; 19(5): e0300174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696390

RESUMO

Off-the-shelf immunotherapeutics that suppress tumor growth and provide durable protection against relapse could enhance cancer treatment. We report preclinical studies on a CD33 x CD3 bivalent bispecific diabody, AMV564, that not only suppresses tumor growth, but also facilitates memory responses in a mouse model of acute myelogenous leukemia (AML). Mechanistically, a single 5-day treatment with AMV564 seems to reduce tumor burden by redirection of T cells, providing a time window for allogeneic or other T cells that innately recognize tumor antigens to become activated and proliferate. When the concentration of bispecific becomes negligible, the effector: target ratio has also shifted, and these activated T cells mediate long-term tumor control. To test the efficacy of AMV564 in vivo, we generated a CD33+ MOLM13CG bioluminescent human cell line and optimized conditions needed to control these cells for 62 days in vivo in NSG mice. Of note, not only did MOLM13CG become undetectable by bioluminescence imaging in response to infusion of human T cells plus AMV564, but also NSG mice that had cleared the tumor also resisted rechallenge with MOLM13CG in spite of no additional AMV564 treatment. In these mice, we identified effector and effector memory human CD4+ and CD8+ T cells in the peripheral blood immediately prior to rechallenge that expanded significantly during the subsequent 18 days. In addition to the anti-tumor effects of AMV564 on the clearance of MOLM13CG cells in vivo, similar effects were seen when primary CD33+ human AML cells were engrafted in NSG mice even when the human T cells made up only 2% of the peripheral blood cells and AML cells made up 98%. These studies suggest that AMV564 is a novel and effective bispecific diabody for the targeting of CD33+ AML that may provide long-term survival advantages in the clinic.


Assuntos
Anticorpos Biespecíficos , Complexo CD3 , Memória Imunológica , Leucemia Mieloide Aguda , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Animais , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Camundongos , Complexo CD3/imunologia , Memória Imunológica/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos
5.
Nat Commun ; 15(1): 3664, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693123

RESUMO

The application of mammalian target of rapamycin inhibition (mTORi) as primary prophylactic therapy to optimize T cell effector function while preserving allograft tolerance remains challenging. Here, we present a comprehensive two-step therapeutic approach in a male patient with metastatic cutaneous squamous cell carcinoma and heart transplantation followed with concomitant longitudinal analysis of systemic immunologic changes. In the first step, calcineurin inhibitor/ mycophenolic acid is replaced by the mTORi everolimus to achieve an improved effector T cell status with increased cytotoxic activity (perforin, granzyme), enhanced proliferation (Ki67) and upregulated activation markers (CD38, CD69). In the second step, talimogene laherparepvec (T-VEC) injection further enhances effector function by switching CD4 and CD8 cells from central memory to effector memory profiles, enhancing Th1 responses, and boosting cytotoxic and proliferative activities. In addition, cytokine release (IL-6, IL-18, sCD25, CCL-2, CCL-4) is enhanced and the frequency of circulating regulatory T cells is increased. Notably, no histologic signs of allograft rejection are observed in consecutive end-myocardial biopsies. These findings provide valuable insights into the dynamics of T cell activation and differentiation and suggest that timely initiation of mTORi-based primary prophylaxis may provide a dual benefit of revitalizing T cell function while maintaining allograft tolerance.


Assuntos
Carcinoma de Células Escamosas , Rejeição de Enxerto , Transplante de Coração , Herpesvirus Humano 1 , Inibidores de MTOR , Transplante de Coração/efeitos adversos , Humanos , Masculino , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Pessoa de Meia-Idade , Everolimo/farmacologia , Everolimo/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores
6.
Lancet Oncol ; 25(5): e205-e216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697166

RESUMO

Multiple myeloma remains an incurable disease, despite the development of numerous drug classes and combinations that have contributed to improved overall survival. Immunotherapies directed against cancer cell-surface antigens, such as chimeric antigen receptor (CAR) T-cell therapy and T-cell-redirecting bispecific antibodies, have recently received regulatory approvals and shown unprecedented efficacy. However, these immunotherapies have unique mechanisms of action and toxicities that are different to previous treatments for myeloma, so experiences from clinical trials and early access programmes are essential for providing specific recommendations for management of patients, especially as these agents become available across many parts of the world. Here, we provide expert consensus clinical practice guidelines for the use of bispecific antibodies for the treatment of myeloma. The International Myeloma Working Group is also involved in the collection of prospective real-time data of patients treated with such immunotherapies, with the aim of learning continuously and adapting clinical practices to optimise the management of patients receiving immunotherapies.


Assuntos
Anticorpos Biespecíficos , Consenso , Mieloma Múltiplo , Linfócitos T , Humanos , Anticorpos Biespecíficos/uso terapêutico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Imunoterapia/métodos , Imunoterapia/normas , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos
7.
Nutrients ; 16(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732558

RESUMO

Polyunsaturated fatty acids (PUFAs) can alter adipose tissue function; however, the relative effects of plant and marine n3-PUFAs are less clear. Our objective was to directly compare the n3-PUFAs, plant-based α-linolenic acid (ALA) in flaxseed oil, and marine-based eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in high-purity oils versus n6-PUFA containing linoleic acid (LA) for their effects on the adipose tissue and oral glucose tolerance of obese rats. Male fa/fa Zucker rats were assigned to faALA, faEPA, faDHA, and faLA groups and compared to baseline fa/fa rats (faBASE) and lean Zucker rats (lnLA). After 8 weeks, faEPA and faDHA had 11-14% lower body weight than faLA. The oral glucose tolerance and total body fat were unchanged, but faEPA had less mesenteric fat. faEPA and faDHA had fewer large adipocytes compared to faLA and faALA. EPA reduced macrophages in the adipose tissue of fa/fa rats compared to ALA and DHA, while faLA had the greatest macrophage infiltration. DHA decreased (~10-fold) T-cell infiltration compared to faBASE and faEPA, whereas faALA and faLA had an ~40% increase. The n3-PUFA diets attenuated tumour necrosis factor-α in adipose tissue compared to faBASE, while it was increased by LA in both genotypes. In conclusion, EPA and DHA target different aspects of inflammation in adipose tissue.


Assuntos
Tecido Adiposo , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Macrófagos , Obesidade , Ratos Zucker , Animais , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Obesidade/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Ratos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ácido alfa-Linolênico/farmacologia , Mesentério
8.
Biochem Biophys Res Commun ; 715: 149995, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685185

RESUMO

Immune checkpoint inhibitors have significantly transformed the landscape of cancer therapy. Nevertheless, while these inhibitors are highly effective for certain patient groups, many do not benefit due to primary or acquired resistance. Specifically, these treatments often lack sufficient therapeutic efficacy against cancers with low antigenicity. Thus, the development of an effective strategy to overcome cancers with low antigenicity is imperative for advancing next-generation cancer immunotherapy. Here, we show that small molecule inhibitor of hematopoietic progenitor kinase 1 (HPK1) combined with programmed cell death ligand 1 (PD-L1) blockade can enhance T-cell response to tumor with low antigenicity. We found that treatment of OT-1 splenocytes with HPK1 inhibitor enhanced the activation of signaling molecules downstream of T-cell receptor provoked by low-affinity-antigen stimulation. Using an in vivo OT-1 T-cell transfer model, we demonstrated that combining the HPK1 inhibitor with the anti-PD-L1 antibody significantly suppressed the growth of tumors expressing low-affinity altered peptide ligand of chicken ovalbumin, while anti-PD-L1 antibody monotherapy was ineffective. Our findings offer crucial insights into the potential for overcoming tumors with low antigenicity by combining conventional immune checkpoint inhibitors with HPK1 inhibitor.


Assuntos
Antígeno B7-H1 , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Imunoterapia/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo
9.
Eur J Pharmacol ; 972: 176565, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38599309

RESUMO

Blockade of PD-1/PD-L1 immune checkpoint is wildly used for multiple types of cancer treatment, while the low response rate for patients is still completely unknown. As nuclear hormone receptor, PPARδ (peroxisome-proliferator-activated receptor) regulates cell proliferation, inflammation, and tumor progression, while the effect of PPARδ on tumor immune escape is still unclear. Here we found that PPARδ antagonist GSK0660 significantly reduced colon cancer cell PD-L1 protein and gene expression. Luciferase analysis showed that GSK0660 decreased PD-L1 gene transcription activity. Moreover, reduced PD-L1 expression in colon cancer cells led to increased T cell activity. Further analysis showed that GSK0660 decreased PD-L1 expression in a PPARδ dependent manner. Implanted tumor model analysis showed that GSK0660 inhibited tumor immune escape and the combined PD-1 antibody with GSK0660 effectively enhanced colorectal cancer immunotherapy. These findings suggest that GSK0660 treatment could be an effective strategy for cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Imunoterapia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Humanos , Animais , Imunoterapia/métodos , Camundongos , Linhagem Celular Tumoral , PPAR delta/genética , PPAR delta/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Neoplasias do Colo/genética , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Evasão Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C
10.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673976

RESUMO

Antagonist peptides (ANTs) of vasoactive intestinal polypeptide receptors (VIP-Rs) are shown to enhance T cell activation and proliferation in vitro, as well as improving T cell-dependent anti-tumor response in acute myeloid leukemia (AML) murine models. However, peptide therapeutics often suffer from poor metabolic stability and exhibit a short half-life/fast elimination in vivo. In this study, we describe efforts to enhance the drug properties of ANTs via chemical modifications. The lead antagonist (ANT308) is derivatized with the following modifications: N-terminus acetylation, peptide stapling, and PEGylation. Acetylated ANT308 exhibits diminished T cell activation in vitro, indicating that N-terminus conservation is critical for antagonist activity. The replacement of residues 13 and 17 with cysteine to accommodate a chemical staple results in diminished survival using the modified peptide to treat mice with AML. However, the incorporation of the constraint increases survival and reduces tumor burden relative to its unstapled counterpart. Notably, PEGylation has a significant positive effect, with fewer doses of PEGylated ANT308 needed to achieve comparable overall survival and tumor burden in leukemic mice dosed with the parenteral ANT308 peptide, suggesting that polyethylene glycol (PEG) incorporation enhances longevity, and thus the antagonist activity of ANT308.


Assuntos
Leucemia Mieloide Aguda , Receptores de Peptídeo Intestinal Vasoativo , Animais , Camundongos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Humanos , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linhagem Celular Tumoral
11.
Phytomedicine ; 128: 155497, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640855

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE: This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90ß-STAT3-PD-L1 axis activity. METHODS: We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90ß (HSP90ß) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS: We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90ß's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90ß-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION: Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.


Assuntos
Bufanolídeos , Neoplasias Colorretais , Proteínas de Choque Térmico HSP90 , Fator de Transcrição STAT3 , Ensaios Antitumorais Modelo de Xenoenxerto , Bufanolídeos/farmacologia , Animais , Neoplasias Colorretais/tratamento farmacológico , Humanos , Camundongos , Fator de Transcrição STAT3/metabolismo , Linfócitos T/efeitos dos fármacos , Linhagem Celular Tumoral , Antígeno B7-H1 , Camundongos Nus , Camundongos Endogâmicos BALB C , Venenos de Anfíbios/farmacologia , Feminino
12.
Biomed Pharmacother ; 174: 116565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603888

RESUMO

Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.


Assuntos
Anticorpos Biespecíficos , Molécula L1 de Adesão de Célula Nervosa , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/farmacologia , Complexo CD3/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Molécula L1 de Adesão de Célula Nervosa/imunologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Bioconjug Chem ; 35(5): 593-603, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592684

RESUMO

Ferritin is a multivalent, self-assembling protein scaffold found in most human cell types, in addition to being present in invertebrates, higher plants, fungi, and bacteria, that offers an attractive alternative to polymer-based drug delivery systems (DDS). In this study, the utility of the ferritin cage as a DDS was demonstrated within the context of T cell agonism for tumor killing. Members of the tumor necrosis factor receptor superfamily (TNFRSF) are attractive targets for the development of anticancer therapeutics. These receptors are endogenously activated by trimeric ligands that occur in transmembrane or soluble forms, and oligomerization and cell-surface anchoring have been shown to be essential aspects of the targeted agonism of this receptor class. Here, we demonstrated that the ferritin cage could be easily tailored for multivalent display of anti-OX40 antibody fragments on its surface and determined that these arrays are capable of pathway activation through cell-surface clustering. Together, these results confirm the utility, versatility, and developability of ferritin as a DDS.


Assuntos
Ferritinas , Humanos , Ferritinas/química , Ferritinas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sistemas de Liberação de Medicamentos
14.
Int Immunopharmacol ; 133: 112069, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38643710

RESUMO

Epigallocatechin-3-gallate (EGCG) is an important tea polyphenol with anti-tumor potential. Our previous studies revealed that EGCG was a promising immune checkpoint inhibitor (ICI) as it could downregulate expression of programmed cell death 1 ligand 1 (PD-L1) in tumor cells, thereby resulting tumor killing effect. In particular, EGCG can effectively avoid the inflammatory storm caused by anti-tumor therapy, which is a healthy green capacity absent from many ICIs. However, the relationship between EGCG and programmed cell death 1 (PD-1) of T cells remains unclear. In this work, we explored the effect of EGCG on T cells and found that EGCG suppressed PD-1 via inhibiting NF-κB phosphorylation and nuclear translocation. Furtherly, the capability of EGCG was confirmed in tumor-bearing mice to inhibit PD-1 expression in T cells and enhance apoptosis in tumor cells. These results implied that EGCG could inhibit the expression of PD-1 in T cells, thereby promoting anti-tumor effects of T cells. EGCG will be a promising candidate in anti-tumor therapy.


Assuntos
Catequina , NF-kappa B , Receptor de Morte Celular Programada 1 , Linfócitos T , Catequina/análogos & derivados , Catequina/farmacologia , Animais , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Feminino , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos
15.
Transpl Int ; 37: 12720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655204

RESUMO

Infectious complications, including widespread human cytomegalovirus (CMV) disease, frequently occur after hematopoietic stem cell and solid organ transplantation due to immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth analysis of the impact of immunosuppressants on antiviral T cells is needed. We analyzed the impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P) combinations on antiviral T-cell functionality. T-cell activation and effector molecule production upon antigenic stimulation was impaired in presence of T+P and triple combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited activation and cytokine production and PRE inhibited various aspects of T-cell functionality including cytotoxicity. This was reflected in an in vitro infection model, where elimination of CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE, which was also reflected with double (T+P) and triple combinations. EBV- and SARS-CoV-2-specific T cells were similarly affected. These results highlight the need to optimize immune monitoring to identify patients who may benefit from individually tailored immunosuppression.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Everolimo , Imunossupressores , Ácido Micofenólico , Sirolimo , Linfócitos T , Tacrolimo , Humanos , Infecções por Citomegalovirus/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Citomegalovirus/imunologia , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Prednisolona/uso terapêutico , Transplante de Órgãos , Proliferação de Células/efeitos dos fármacos
16.
Pharmacol Res ; 203: 107158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599467

RESUMO

Cancer treatment is one of the fundamental challenges in clinical setting, especially in relapsed/refractory malignancies. The novel immunotherapy-based treatments bring new hope in cancer therapy and achieve various treatment successes. One of the distinguished ways of cancer immunotherapy is adoptive cell therapy, which utilizes genetically modified immune cells against cancer cells. Between different methods in ACT, the chimeric antigen receptor T cells have more investigation and introduced a promising way to treat cancer patients. This technology progressed until it introduced six US Food and Drug Administration-approved CAR T cell-based drugs. These drugs act against hematological malignancies appropriately and achieve exciting results, so they have been utilized widely in cell therapy clinics. In this review, we introduce all CAR T cells-approved drugs based on their last data and investigate them from all aspects of pharmacology, side effects, and compressional. Also, the efficacy of drugs, pre- and post-treatment steps, and expected side effects are introduced, and the challenges and new solutions in CAR T cell therapy are in the last speech.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Animais , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/imunologia
17.
ACS Nano ; 18(17): 11165-11182, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626338

RESUMO

Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.


Assuntos
Aminopiridinas , Neoplasias Encefálicas , Glioblastoma , Microglia , Receptores de Antígenos Quiméricos , Glioblastoma/terapia , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/tratamento farmacológico , Animais , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Lipossomos/química , Pirróis/química , Pirróis/farmacologia , Imunoterapia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Imunoterapia Adotiva , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos
20.
Cell Rep ; 43(4): 114065, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578828

RESUMO

Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/ß-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.


Assuntos
Aminopiridinas , Inibidores de Histona Desacetilases , Via de Sinalização Wnt , Inibidores de Histona Desacetilases/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Humanos , Camundongos , Benzamidas/farmacologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Histona Desacetilase 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA