Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
FASEB J ; 35(4): e21217, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33715236

RESUMO

The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.


Assuntos
Adenilato Quinase/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia , Linfócitos T Reguladores/fisiologia , Adaptação Fisiológica , Adenilato Quinase/genética , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos , Colite/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Ativação Linfocitária , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Th1/fisiologia , Células Th17/fisiologia
2.
Mol Immunol ; 132: 184-191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33446394

RESUMO

Th9 cells are a defined CD4+ helper T cell subgroup found to promote or suppress oncogenesis in a context-dependent manner. How microRNAs (miRNAs) shape Th9 cell functionality, however, remains to be studied. Herein, we determined that miR-143/145 is downregulated during Th9 differentiation. When these miRNAs were upregulated, this inhibited Th9 differentiation, proliferation, and IL-9 production. Overexpressing miR-143/145 in Th9 cells further suppressed NFATc1 expression at the protein and mRNA level, whereas the opposite phenotype was observed when miR-143/145 was downregulated in these cells. NFATc1 silencing markedly inhibited Th9 cell differentiation, whereas overexpressing this transcription factor was sufficient to reverse miR-143/145-associated phenotypes in these cells. These findings thus indicate that the ability of miR-143/145 to inhibit Th9 cell differentiation is attributable to their ability to target and suppress NFATc1 expression. Overall, our results highlight a novel mode of action whereby miR-143/145 controls Th9 differentiation, suggesting that this pathway may be amenable to therapeutic targeting in the context of anti-cancer treatment in the future.


Assuntos
Diferenciação Celular/genética , MicroRNAs/imunologia , Fatores de Transcrição NFATC/genética , Animais , Linfócitos T CD4-Positivos/fisiologia , Células Cultivadas , Regulação para Baixo/genética , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Linfócitos T Auxiliares-Indutores/fisiologia , Regulação para Cima/genética
3.
Elife ; 92020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32204792

RESUMO

Germinal centres (GCs) are T follicular helper cell (Tfh)-dependent structures that form in response to vaccination, producing long-lived antibody secreting plasma cells and memory B cells that protect against subsequent infection. With advancing age the GC and Tfh cell response declines, resulting in impaired humoral immunity. We sought to discover what underpins the poor Tfh cell response in ageing and whether it is possible to correct it. Here, we demonstrate that older people and aged mice have impaired Tfh cell differentiation upon vaccination. This deficit is preceded by poor activation of conventional dendritic cells type 2 (cDC2) due to reduced type 1 interferon signalling. Importantly, the Tfh and cDC2 cell response can be boosted in aged mice by treatment with a TLR7 agonist. This demonstrates that age-associated defects in the cDC2 and Tfh cell response are not irreversible and can be enhanced to improve vaccine responses in older individuals.


Assuntos
Centro Germinativo/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Células T Auxiliares Foliculares/fisiologia , Linfócitos T Auxiliares-Indutores/fisiologia , Adolescente , Transferência Adotiva , Adulto , Idoso , Envelhecimento , Animais , Linfócitos B , Células da Medula Óssea , Antígenos CD11/genética , Antígenos CD11/metabolismo , Quimera , Feminino , Humanos , Imunidade Humoral , Memória Imunológica , Vacinas contra Influenza/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Vacinação , Adulto Jovem
4.
Clin Exp Rheumatol ; 38(1): 11-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31025923

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is characterised by the overproduction of autoantibodies such as rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) antibody. T follicular helper (Tfh) cells are a specialised Th subset that provides signals to B cells, promoting the secretion of antibodies. Our previous studies showed that the frequency of circulating Tfh cells were markedly increased in RA patients and positively correlated with disease activity and the levels of anti-CCP autoantibody. Adiponectin (AD) is an adipokine secreted mainly by adipocytes. Our previous work has demonstrated that AD is highly expressed in the inflamed synovial joint tissue and correlates closely with progressive bone erosion in RA patients. However, it remains unknown whether AD aggravates the severity of RA via modulating Tfh cells. This study aims to investigate whether AD exerts effect on Tfh cells in RA. METHODS: CD4+ T cells were purified from peripheral blood mononuclear cells (PBMCs) of healthy controls (HC), and adiponectin receptor 1 (AdipoR1) expression on the surface of CD4+CXCR5+PD-1+ (Tfh) cells was detected by flow cytometry. Purified HC CD4+ T cells were cultured with different concentration fetal bovine serun (FBS) in the presence or absence of AD. The percentages of Tfh cells were analysed by flow cytometry. RA or osteoarthritis (OA) fibroblast-like synoviocytes (FLSs) were stimulated with AD for 72h and then co-cultured with HC CD4+ T cells through cell-to-cell contact or in a transwell system. The percentages of Tfh cells were analysed by flow cytometry and the levels of soluble factors such as interleukin-(IL)-6, IL-21, IL-12 and IFNγ in the supernatants were determined by Human Magnetic Bead Panel or Enzyme linked immunosorbent assay (ELISA). Then anti-IL-6 antibody and/or anti-IL-21 antibody was added to the co-culture system, and the percentages of Tfh cells were analysed by flow cytometry. The frequency of Tfh cells in the joint tissue of collagen-induced arthritis (CIA) mice was examined by flow cytometry. The mRNA expression of Tfh cell transcription factors and functional molecules such as B-cell lymphoma 6 (Bcl-6), B lymphocyte maturation protein 1 (Blimp-1), IL-6, IL-21, IL-12 and IFNγ in the joints of CIA mice were detected by real time PCR (RT-PCR). RESULTS: Adiponectin receptor 1 (AdipoR1) expression was detected on the surface of Tfh cells. However, in the present study, we did not find that AD has a direct effect on Tfh cell generation in vitro. Nonetheless, AD-stimulated RA FLSs could promote Tfh cell generation, predominantly via IL-6 production. And this upregulated effect was partially abolished upon neutralising IL-6. Finally, intraarticular injection of AD aggravated synovial inflammation with increased frequency of Tfh cells in the joints of AD-treated CIA mice. CONCLUSIONS: Our study demonstrated that AD-stimulated RA FLSs promote Tfh cell generation, which is mainly mediated by the secretion of soluble factor IL-6. This finding reveals a novel mechanism for AD in RA pathogenesis.


Assuntos
Adiponectina , Artrite Reumatoide , Interleucina-6 , Sinoviócitos , Linfócitos T Auxiliares-Indutores , Adiponectina/fisiologia , Animais , Artrite Reumatoide/metabolismo , Bovinos , Fibroblastos , Humanos , Interleucina-6/metabolismo , Leucócitos Mononucleares , Camundongos , Linfócitos T Auxiliares-Indutores/fisiologia
6.
Exp Dermatol ; 28(11): 1244-1251, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31407820

RESUMO

Card9 is a signalling adaptor protein in the downstream of many innate pattern recognition receptors (PRRs) and exerts a significant role in antifungal immunity. To date, Card9 deficiency has been reported to be related to increased susceptibility to many fungal infections. In this study, we established mucormycosis murine model of Rhizopus arrhizus (R. arrhizus) using wild-type (WT) mice and Card9 knockout (Card9-/- ) mice to investigate the antifungal effect of Card9 against R. arrhizus infection. Card9-/- mice were more susceptible to R. arrhizus infection than WT mice, which could be related to the impaired NF-κB pathway activation, local cytokine production and Th cell responses in Card9-/- mice.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Mucormicose/imunologia , Rhizopus/fisiologia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Citocinas/sangue , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucormicose/microbiologia , Fator de Transcrição RelA/metabolismo
7.
J Transl Med ; 17(1): 207, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221178

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) originates from squamous epithelium of the upper aerodigestive tract and is the most common malignancy in the head and neck region. Among HNSCCs, oropharynx squamous cell carcinoma (OSCC) has a unique profile and is associated with human papillomavirus infection. Recently, anti-programmed cell death-1 monoclonal antibody has yielded good clinical responses in recurrent and/or metastatic HNSCC patients. Therefore, programmed death-ligand 1 (PD-L1) may be a favorable target molecule for cancer immunotherapy. Although PD-L1-expressing malignant cells could be targeted by PD-L1-specific CD8+ cytotoxic T lymphocytes, it remains unclear whether CD4+ helper T lymphocytes (HTLs) recognize and kill tumor cells in a PD-L1-specific manner. METHODS: The expression levels of PD-L1 and HLA-DR were evaluated using immunohistochemical analyses. MHC class II-binding peptides for PD-L1 were designed based on computer algorithm analyses and added into in vitro culture of HTLs with antigen-presenting cells to evaluate their stimulatory activity. RESULTS: We found that seven of 24 cases of OSCC showed positive for both PD-L1 and HLA-DR and that PD-L1241-265 peptide efficiently activates HTLs, which showed not only cytokine production but also cytotoxicity against tumor cells in a PD-L1-dependent manner. Also, an adoptive transfer of the PD-L1-specific HTLs significantly inhibited growth of PD-L1-expressing human tumor cell lines in an immunodeficient mouse model. Importantly, T cell responses specific for the PD-L1241-265 peptide were detected in the HNSCC patients. CONCLUSIONS: The cancer immunotherapy targeting PD-L1 as a helper T-cell antigen would be a rational strategy for HNSCC patients.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Células Cultivadas , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/uso terapêutico , Feminino , Técnicas de Silenciamento de Genes , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunoterapia/tendências , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
8.
J Exp Med ; 216(7): 1664-1681, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123085

RESUMO

Follicular helper T (Tfh) cells are essential for germinal center formation and effective humoral immunity, which undergo different stages of development to become fully polarized. However, the detailed mechanisms of their regulation remain unsolved. Here we found that the E3 ubiquitin ligase VHL was required for Tfh cell development and function upon acute virus infection or antigen immunization. VHL acted through the hypoxia-inducible factor 1α (HIF-1α)-dependent glycolysis pathway to positively regulate early Tfh cell initiation. The enhanced glycolytic activity due to VHL deficiency was involved in the epigenetic regulation of ICOS expression, a critical molecule for Tfh development. By using an RNA interference screen, we identified the glycolytic enzyme GAPDH as the key target for the reduced ICOS expression via m6A modification. Our results thus demonstrated that the VHL-HIF-1α axis played an important role during the initiation of Tfh cell development through glycolytic-epigenetic reprogramming.


Assuntos
Epigênese Genética , Ativação Linfocitária , Linfócitos T Auxiliares-Indutores , Ubiquitina-Proteína Ligases/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Polaridade Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Auxiliares-Indutores/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
9.
Immunobiology ; 224(4): 539-550, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023489

RESUMO

Autoimmune regulator (Aire), primarily expressed in medullary thymic epithelial cells (mTECs), maintains central immune tolerance through the clearance of self-reactive T cells. Aire can also be expressed in dendritic cells (DCs), and DCs can mediate T follicular helper (TFH) cell differentiation and self-reactive B cell activation through inducible costimulator molecule ligand (ICOSL) and interleukin 6 (IL-6), which can cause autoimmune diseases. To confirm whether Aire in DCs affects TFH cell differentiation and to determine the role of Aire in the maintenance of peripheral immune tolerance, this study observed the effects of Aire deficiency on TFH cells using Aire knockout mice. The results showed that Aire deficiency caused increased number of TFH cells, both in vivo and in vitro. Further studies showed that Aire deficiency promoted TFH differentiation through the upregulation of ICOSL and IL-6 in DCs. Thus Aire could suppress the expression of ICOSL and IL-6 to inhibit TFH cell differentiation.


Assuntos
Diferenciação Celular/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/fisiologia , Fatores de Transcrição/genética , Animais , Biomarcadores , Diferenciação Celular/imunologia , Técnicas de Cocultura , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Vírus da Influenza A Subtipo H1N1/imunologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Proteína AIRE
10.
Nat Commun ; 10(1): 823, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778076

RESUMO

Follicular helper T cells (Tfh) play critical roles instructing, and initiating T-cell dependent antibody responses. The underlying mechanisms that enhance their function is therefore critical for vaccine development. Here we apply gene array analysis identifying adenosine deaminase (ADA) as a key molecule that delineates a human Tfh helper program in proliferating circulating Tfh (cTfh) cells and Germinal Centers Tfh (GC-Tfh). ADA-1 expression and enzymatic activity are increased in efficient cTfh2-17/GC-Tfh cells. Exogenous ADA-1 enhances less efficient cTfh1 and pro-follicular Tfh PD-1+ CXCR5+ cells to provide B cell help, while pharmacological inhibition of ADA-1 activity impedes cTfh2-17/GC-Tfh function and diminished antibody response. Mechanistically, ADA-1 controls the Tfh program by influencing IL6/IL-2 production, controlling CD26 extracellular expression and could balance signals through adenosine receptors. Interestingly, dysfunctional Tfh from HIV infected-individual fail to regulate the ADA pathway. Thus, ADA-1 regulates human Tfh and represents a potential target for development of vaccine strategy.


Assuntos
Adenosina Desaminase/metabolismo , Infecções por HIV/patologia , Linfócitos T Auxiliares-Indutores/fisiologia , Adenosina Desaminase/genética , Adenilil Ciclases/metabolismo , Linfócitos B/citologia , Técnicas de Cocultura , Dipeptidil Peptidase 4/metabolismo , Centro Germinativo/metabolismo , Infecções por HIV/metabolismo , Humanos , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Linfócitos T Auxiliares-Indutores/virologia
11.
J Allergy Clin Immunol ; 143(3): 1108-1118.e4, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30030006

RESUMO

BACKGROUND: Patients with loss-of-function (LOF) signal transducer and activator of transcription 3 (STAT3) mutations have dermatitis, enhanced IgE production despite a relative lack of immediate hypersensitivity, recurrent infection, and an increased rate of lymphoma in addition to a number of skeletal and connective tissue abnormalities. Patients with STAT1 gain-of-function (GOF) mutations also have susceptibility to candidiasis and sinopulmonary infection, as well as autoimmunity and squamous cell carcinoma, in addition to even more broad phenotypes. OBJECTIVE: Because of the link between TH9 cells and allergic inflammation, autoimmunity, and antitumor surveillance and because evidence shows a role for either STAT3 or STAT1 in TH9 differentiation conflicts, we sought to determine the status on this lineage of STAT1 GOF and STAT3 LOF mutations in human subjects. METHODS: We detected IL-9 levels and TH9 differentiation in patients with STAT3 LOF and STAT1 GOF mutations, together with TH9 transcript factors, and partially rescued their deficiency in vitro by adding cytokines they lacked or transfecting key molecules. RESULTS: We found that PBMCs or sorted naive CD4+ T cells from patients with STAT3 LOF and STAT1 GOF mutations had impaired TH9 generation/differentiation. STAT3 inhibition in normal TH9 cultures diminished early IL-21 induction and late IL-9 production, whereas exogenous IL-21 enhanced TH9 differentiation, even with STAT3 inhibition, by restoring suppressor of cytokine signaling 3 expression and thus inhibiting excessive phosphorylated signal transducer and activator of transcription (p-STAT) 1 activation. Furthermore, exogenous expression of suppressor of cytokine signaling 3 or either T-bet or STAT1 RNA interference in STAT3 LOF cells partially rescued IL-9 differentiation. CONCLUSION: Collectively, these results suggest that human TH9 differentiation depends on normal p-STAT3 and IL-21 production to suppress p-STAT1 activation and T-bet transcription.


Assuntos
Interleucinas/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Diferenciação Celular , Humanos , Mutação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Linfócitos T Auxiliares-Indutores/fisiologia
12.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463978

RESUMO

T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.


Assuntos
Vírus da Imunodeficiência Símia/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Centro Germinativo/imunologia , Imunidade Humoral/imunologia , Imunização/métodos , Linfonodos/imunologia , Macaca mulatta/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinação/métodos , Viremia/imunologia
13.
Nat Commun ; 9(1): 5452, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575739

RESUMO

Ezh2 is an histone methyltransferase (HMT) that catalyzes H3K27me3 and functions in TH1, TH2, and Treg cells primarily via HMT activity. Here we show that Ezh2 ablation impairs T follicular helper (TFH) cell differentiation and activation of the TFH transcription program. In TFH cells, most Ezh2-occupied genomic sites, including the Bcl6 promoter, are associated with H3K27ac rather than H3K27me3. Mechanistically, Ezh2 is recruited by Tcf1 to directly activate Bcl6 transcription, with this function requiring Ezh2 phosphorylation at Ser21. Meanwhile, Ezh2 deploys H3K27me3 to repress Cdkn2a expression in TFH cells, where aberrantly upregulated p19Arf, a Cdkn2a protein product, triggers TFH cell apoptosis and antagonizes Bcl6 function via protein-protein interaction. Either forced expression of Bcl6 or genetic ablation of p19Arf in Ezh2-deficient cells improves TFH cell differentiation and helper function. Thus, Ezh2 orchestrates TFH-lineage specification and function maturation by integrating phosphorylation-dependent transcriptional activation and HMT-dependent gene repression.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Epigênese Genética , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Viroses/imunologia
14.
Nat Commun ; 9(1): 3593, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185787

RESUMO

An intronic silencer, S4, in the Cd4 gene has been shown to be responsible for the helper-lineage-specific expression of CD4; S4 requires Runx complex binding to exert its silencer function against the enhancer-mediated Cd4 activation by modulating the epigenetic state of the Cd4 gene. Here we identify a late-acting maturation enhancer. Bcl11b plays essential roles for activation of both the early-acting proximal enhancer and maturation enhancer of Cd4. Notably, Runx complexes suppress these enhancers by distinct mechanisms. Whereas repression of the proximal enhancer depends on the S4 silencer, the maturation enhancer is repressed by Runx in the absence of S4. Moreover, ThPOK, known to antagonize S4-mediated Cd4 repression, assists Runx complexes to restrain maturation enhancer activation. Distinct modes of S4 silencer action upon distinct enhancers thus unravel a pathway that restricts CD4 expression to helper-lineage cells by silencer-independent and Runx-dependent repression of maturation enhancer activity in cytotoxic-lineage cells.


Assuntos
Antígenos CD4/genética , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas Repressoras/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígenos CD4/metabolismo , Células Cultivadas , Quimera , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Íntrons/genética , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/genética , Elementos Silenciadores Transcricionais/fisiologia , Linfócitos T Citotóxicos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
15.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127432

RESUMO

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Assuntos
Linfócitos B/fisiologia , Microbioma Gastrointestinal/imunologia , Centro Germinativo/fisiologia , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Autoanticorpos/sangue , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Imunidade Humoral/genética , Switching de Imunoglobulina/genética , Síndromes de Imunodeficiência/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
16.
Nat Commun ; 9(1): 3151, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089795

RESUMO

γδ T cells have many known functions, including the regulation of antibody responses. However, how γδ T cells control humoral immunity remains elusive. Here we show that complete Freund's adjuvant (CFA), but not alum, immunization induces a subpopulation of CXCR5-expressing γδ T cells in the draining lymph nodes. TCRγδ+CXCR5+ cells present antigens to, and induce CXCR5 on, CD4 T cells by releasing Wnt ligands to initiate the T follicular helper (Tfh) cell program. Accordingly, TCRδ-/- mice have impaired germinal center formation, inefficient Tfh cell differentiation, and reduced serum levels of chicken ovalbumin (OVA)-specific antibodies after CFA/OVA immunization. In a mouse model of lupus, TCRδ-/- mice develop milder glomerulonephritis, consistent with decreased serum levels of lupus-related autoantibodies, when compared with wild type mice. Thus, modulation of the γδ T cell-dependent humoral immune response may provide a novel therapy approach for the treatment of antibody-mediated autoimmunity.


Assuntos
Diferenciação Celular , Imunidade Humoral/imunologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/fisiologia , Compostos de Alúmen , Animais , Formação de Anticorpos , Autoanticorpos/sangue , Galinhas , Feminino , Adjuvante de Freund/imunologia , Glomerulonefrite , Imunização , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Linfonodos/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes/imunologia , Modelos Animais , Modelos Imunológicos , Ovalbumina/sangue , Ovalbumina/imunologia , Receptores CXCR5/metabolismo
17.
Front Immunol ; 9: 1284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930555

RESUMO

Recent advances in our understanding of tumor cell mitochondrial metabolism suggest it may be an attractive therapeutic target. Mitochondria are central hubs of metabolism that provide energy during the differentiation and maintenance of immune cell phenotypes. Mitochondrial membranes harbor several enzyme complexes that are involved in the process of oxidative phosphorylation, which takes place during energy production. Data suggest that, among these enzyme complexes, deficiencies in electron transport complex I may differentially affect immune responses and may contribute to the pathophysiology of several immunological conditions. Once activated by T cell receptor signaling, along with co-stimulation through CD28, CD4 T cells utilize mitochondrial energy to differentiate into distinct T helper (Th) subsets. T cell signaling activates Notch1, which is cleaved from the plasma membrane to generate its intracellular form (N1ICD). In the presence of specific cytokines, Notch1 regulates gene transcription related to cell fate to modulate CD4 Th type 1, Th2, Th17, and induced regulatory T cell (iTreg) differentiation. The process of differentiating into any of these subsets requires metabolic energy, provided by the mitochondria. We hypothesized that the requirement for mitochondrial metabolism varies between different Th subsets and may intersect with Notch1 signaling. We used the organic pesticide rotenone, a well-described complex I inhibitor, to assess how compromised mitochondrial integrity impacts CD4 T cell differentiation into Th1, Th2, Th17, and iTreg cells. We also investigated how Notch1 localization and downstream transcriptional capabilities regulation may be altered in each subset following rotenone treatment. Our data suggest that mitochondrial integrity impacts each of these Th subsets differently, through its influence on Notch1 subcellular localization. Our work further supports the notion that altered immune responses can result from complex I inhibition. Therefore, understanding how mitochondrial inhibitors affect immune responses may help to inform therapeutic approaches to cancer treatment.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Complexo I de Transporte de Elétrons/metabolismo , Rotenona/farmacologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/fisiologia , Fatores de Transcrição/metabolismo , Animais , Biomarcadores , Regulação da Expressão Gênica/efeitos dos fármacos , Imunofenotipagem , Espaço Intracelular/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Transporte Proteico , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Fatores de Transcrição/genética
18.
PLoS Pathog ; 14(5): e1007053, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29734372

RESUMO

CD4 T cell-mediated help to CD8 T cells and B cells is a critical arm of the adaptive immune system required for control of pathogen infection. CD4 T cells express cytokines and co-stimulatory molecules that support a sustained CD8 T cell response and also enhance generation of protective antibody by germinal center B cells. However, the molecular components that modulate CD4 T cell functions in response to viral infection or vaccine are incompletely understood. Here we demonstrate that inactivation of the signaling adaptor CD2-associated protein (CD2AP) promotes CD4 T cell differentiation towards the follicular helper lineage, leading to enhanced control of viral infection by augmented germinal center response in chronic lymphocytic choriomeningitis virus (LCMV) infection. The enhanced follicular helper differentiation is associated with extended duration of TCR signaling and enhanced cytokine production of CD2AP-deficient CD4 T cells specifically under TH1 conditions, while neither prolonged TCR signaling nor enhanced follicular helper differentiation was observed under conditions that induce other helper effector subsets. Despite the structural similarity between CD2AP and the closely related adaptor protein CIN85, we observed defective antibody-mediated control of chronic LCMV infection in mice lacking CIN85 in T cells, suggesting non-overlapping and potentially antagonistic roles for CD2AP and CIN85. These results suggest that tuning of TCR signaling by targeting CD2AP improves protective antibody responses in viral infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Proteínas do Citoesqueleto/imunologia , Proteínas do Citoesqueleto/fisiologia , Centro Germinativo/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia
19.
Front Immunol ; 9: 611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643853

RESUMO

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease resulting from abnormal interactions between T and B cells. The acquisition of SLE is linked to genetic susceptibility, and diverse environmental agents can trigger disease onset in genetically susceptible individuals. However, the strongest risk factor for developing SLE is being female (9:1 female to male ratio). The female sex steroid, estradiol, working through its receptors, contributes to the gender bias in SLE although the mechanisms remain enigmatic. In a small clinical trial, monthly administration of the estrogen receptor (ERα) antagonist, ICI182,780 (fulvestrant), significantly reduced disease indicators in SLE patients. In order to identify changes that could account for improved disease status, the present study utilized fulvestrant (Faslodex) to block ERα action in cultured SLE T cells that were purified from blood samples collected from SLE patients (n = 18, median age 42 years) and healthy control females (n = 25, median age 46 years). The effects of ERα antagonism on estradiol-dependent gene expression and canonical signaling pathways were analyzed. Pathways that were significantly altered by addition of Faslodex included T helper (Th) cell differentiation, steroid receptor signaling [glucocorticoid receptor (GR), ESR1 (ERα)], ubiquitination, and sumoylation pathways. ERα protein expression was significantly lower (p < 0.018) in freshly isolated, resting SLE T cells suggesting ERα turnover is inherently faster in SLE T cells. In contrast, ERα/ERß mRNA and ERß protein levels were not significantly different between SLE and normal control T cell samples. Plasma estradiol levels did not differ (p > 0.05) between SLE patients and controls. A previously undetected interaction between GR and ERα signaling pathways suggests posttranslational modification of steroid receptors in SLE T cells may alter ERα/GR actions and contribute to the strong gender bias of this autoimmune disorder.


Assuntos
Estradiol/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Lúpus Eritematoso Sistêmico/imunologia , Fatores Sexuais , Linfócitos T Auxiliares-Indutores/fisiologia , Adulto , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Interação Gene-Ambiente , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Glucocorticoides/metabolismo , Fatores de Risco , Transdução de Sinais , Sumoilação , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Ubiquitinação , Adulto Jovem
20.
Sci Rep ; 8(1): 818, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339772

RESUMO

T helper 9 (Th9) cells are effector CD4+ T cells that are characterized by the production of interleukin-9 (IL-9) and have been associated with allergic responses. Here, we found that the expression of the transcription factor forkhead box O1 (Foxo1) was induced in Th9 and Foxo1 plays a crucial role in the differentiation of Th9 cells. Pharmacological inhibition of Foxo1 or genetic disruption of Foxo1 in CD4+ T cells caused a reduction in IL-9 expression while upregulating IL-17A and IFNγ production. Furthermore, chromatin immunoprecipitation (ChIP) followed by luciferase assays revealed direct binding of Foxo1 to both the Il9 and Irf4 promoters and induces their transactivation. Lastly, adoptive transfer of Th9 cells into lungs induced asthma-like symptoms that were ameliorated by Foxo1 inhibitor, AS1842856. Together, our findings demonstrate a novel regulator of Th9 cells with a direct implication in allergic inflammation.


Assuntos
Asma/patologia , Diferenciação Celular , Proteína Forkhead Box O1/metabolismo , Fatores Reguladores de Interferon/metabolismo , Interleucina-9/metabolismo , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA