Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685657

RESUMO

Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.


Assuntos
Linho/crescimento & desenvolvimento , Linho/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mucilagem Vegetal/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcrição Gênica , Parede Celular/metabolismo , Endosperma/metabolismo , Ácidos Graxos/metabolismo , Linho/ultraestrutura , Giberelinas/metabolismo , Glucose/metabolismo , Endogamia , Cinética , Metabolômica , Fenótipo , Mucilagem Vegetal/ultraestrutura , Óleos de Plantas/metabolismo , Análise de Componente Principal , Recombinação Genética/genética , Sementes/ultraestrutura , Amido/metabolismo , Sacarose/metabolismo , Transcriptoma/genética
2.
J Appl Microbiol ; 126(6): 1708-1721, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30882965

RESUMO

AIMS: The current study was aimed to evaluate the beneficial effects and bioremediation potential of a Cd-tolerant bacterial strain, Serratia sp. CP-13, on the physiological and biochemical functions of Linum usitatissimum L., under Cd stress. METHODS AND RESULTS: The bacterial strain was isolated from the wastewater collection point of Chakera, Faisalabad, Pakistan, as this place contains industrial wastewater of the Faisalabad region. The Serratia sp. CP-13, identified through 16S rRNA gene sequence analysis, exhibited a significant phyto-beneficial potential in terms of in vitro inorganic phosphate solubilization, indole-3-acetic acid production and 1-aminocyclopropane-1-carboxylic acid deaminase activity. Effects of Serratia sp. CP-13 inoculation on L. usitatissimum were evaluated by growing the plants in CdCl2 (0, 5 or 10 mg kg-1 dry soil)-spiked soil. Without inoculation of Serratia sp. CP-13, Cd stress significantly reduced the plant biomass as well as the quantity of proteins and photosynthetic pigments due to enhanced H2 O2 , malondialdehyde (MDA) contents and impaired nutrient homeostasis. Subsequently, Serratia sp. CP-13 increased the plant fresh and dry biomass, plant antioxidation capacity, whereas it decreased the lipid peroxidation under Cd stress. In parallel, Serratia sp. inoculation assisted the Cd-stressed plants to maintain an optimum level of nutrients (K, Ca, P, Mg, Fe and Mn). CONCLUSIONS: The isolated bacterial strain (Serratia sp. CP-13) when applied to Cd-stressed L. usitatissimum inhibited the Cd uptake, reduced Cd-induced lipid peroxidation, maintained the optimum level of nutrients and thereby, enhanced L. usitatissimum growth. The analysis of bio-concentration and translocation factor revealed that L. usitatissimum with Serratia sp. CP-13 inoculation sequestered Cd in plant rhizospheric zone. SIGNIFICANCE AND IMPACT OF THE STUDY: Serratia sp. CP-13 inoculation is a potential candidate for the development of low Cd-accumulating linseed and could be used for phytostabilization of Cd-contaminated rhizosphere/soil colloids.


Assuntos
Cádmio/metabolismo , Linho/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/fisiologia , Serratia/fisiologia , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Biomassa , Cádmio/toxicidade , Linho/efeitos dos fármacos , Linho/metabolismo , Nutrientes/metabolismo , Poluentes do Solo/toxicidade , Águas Residuárias/microbiologia
3.
Molecules ; 23(10)2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30322184

RESUMO

Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds.


Assuntos
Antioxidantes/análise , Linho/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/análise , Sementes/crescimento & desenvolvimento , Antioxidantes/química , Antioxidantes/farmacologia , Linho/química , Linho/classificação , Linho/genética , Alimento Funcional , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Humanos , Lignanas/análise , Lignanas/química , Lignanas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estrutura Molecular , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Sementes/química , Sementes/classificação , Sementes/genética , Leveduras/efeitos dos fármacos , Leveduras/metabolismo
4.
Mol Biol (Mosk) ; 52(4): 595-600, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30113025

RESUMO

Understanding the molecular mechanisms of plant response to unfavorable conditions is necessary for the effective selection of tolerant genotypes. Earlier, using high-throughput transcriptome sequencing of flax plants after exposure to aluminum ions (Al^(3+)) and high soil acidity, we detected stress-induced alteration in the expression of several genes, including CAX3, which encodes Ca^(2+)/H^(+)-exchanger involved in calcium ion transport. Here we describe CAX3 mRNA levels in flax cultivars either tolerant (Hermes and TMP1919) or sensitive (Lira and Orshanskiy) to Al^(3+). Stress-induced increased expression of CAX3 was detected only in aluminum-tolerant flax cultivars. The product of CAX3 gene may participate in flax response to high soil acidity and high Al^(3+) concentration through Ca^(2+)-mediated intracellular regulation.


Assuntos
Antiporters/genética , Linho/genética , Proteínas de Plantas/genética , Solo/química , Ácidos/toxicidade , Alumínio/toxicidade , Linho/efeitos dos fármacos , Linho/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , Estresse Fisiológico
5.
J Photochem Photobiol B ; 187: 141-150, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30145465

RESUMO

The multipurpose plant species Linum usitatissimum famous for producing linen fibre and containing valuable pharmacologically active polyphenols, has rarely been tested for it's in vitro biosynthesis potential of lignans and neolignans. The current study aims at the synergistic effects of mineral nutrients variation and different photoperiod treatments on growth kinetics and biomass accumulation in in vitro cultures of Linum usitatissimum. Both nutrient quality and quantity affected growth patterns, as cultures established on Gamborg B5 medium had comparatively long exponential phase compared to Murashige and Skoog medium, while growth was slow but steady until last phases of the culture on Schenk and Hildebrandt medium. Similarly, we observed that boron deficiency and nitrogen limitation in culture medium (Gamborg B5 medium) enhanced callus biomass (fresh weight 413 g/l and dry weight 20.7 g/l), phenolics production (667.60 mg/l), and lignan content (secoisolariciresinol diglucoside 6.33 and lariciresinol diglucoside 5.22 mg/g dry weight respectively) at 16/8 h light and dark-week 4, while that of neolignans (dehydrodiconiferyl alcohol glucoside 44.42 and guaiacylglycerol-ß-coniferyl alcohol ether glucoside 9.26 mg/g dry weight, respectively) in continuous dark after 4th week of culture. Conversely, maximum flavonoids production occurred at both Murashige and Skoog, Schenk and Hildebrandt media (both media types contain comparatively higher boron and nitrogen content) in the presence of continuous light. Generally, continuous dark had no significant role in any growth associated parameter. This study opens new dimension for optimizing growing conditions and evaluating underlying mechanisms in biosynthesis of lignans and neolignans in in vitro cultures of Linum usitatissimum.


Assuntos
Boro/metabolismo , Linho/metabolismo , Lignanas/biossíntese , Nitrogênio/metabolismo , Biomassa , Boro/química , Butileno Glicóis/análise , Butileno Glicóis/química , Butileno Glicóis/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Linho/crescimento & desenvolvimento , Sequestradores de Radicais Livres/química , Glucosídeos/análise , Glucosídeos/química , Glucosídeos/metabolismo , Cinética , Luz , Nitrogênio/química , Fenóis/metabolismo
6.
Genes Genomics ; 40(11): 1237-1248, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30032481

RESUMO

INTRODUCTION: Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages. OBJECTIVE: To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development. METHODS: The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. 'Nike') seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with 10-4 and 10-3 M 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4-6-day-old flax seedlings. RESULTS: ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC. CONCLUSION: Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.


Assuntos
Aminoácidos Cíclicos/farmacologia , Etilenos/metabolismo , Linho/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Linho/efeitos dos fármacos , Linho/crescimento & desenvolvimento , Linho/metabolismo , Glucosiltransferases/classificação , Glucosiltransferases/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regiões Promotoras Genéticas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
7.
Int J Mol Sci ; 19(4)2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29587452

RESUMO

Linum flavum hairy root lines were established from hypocotyl pieces using Agrobacterium rhizogenes strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines. The influence of culture medium and various treatments (hormone, elicitation and precursor feeding) were evaluated. The highest accumulation was obtained in Gamborg B5 medium. Treatment with methyl jasmonate, and feeding using ferulic acid increased the accumulation of aryltetralin lignans. These results point to the use of hairy root culture lines of Linum flavum as potential sources for these valuable metabolites as an alternative, or as a complement to Podophyllum collected from wild stands.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Linho/citologia , Lignanas/metabolismo , Acetatos/farmacologia , Antineoplásicos Fitogênicos/análise , Ácidos Cumáricos/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Ciclopentanos/farmacologia , Linho/efeitos dos fármacos , Linho/crescimento & desenvolvimento , Linho/metabolismo , Lignanas/análise , Estrutura Molecular , Oxilipinas/farmacologia , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos
8.
J Sci Food Agric ; 98(4): 1584-1590, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28833158

RESUMO

BACKGROUND: In order to study the influence of plant growth-promoting bacteria (PGPB) belonging to Streptomyces sp., Paenibacillus sp., and Hymenobacter sp. on fixed oil content of flaxseed and black cumin, 2-year field experiments were conducted. PGPB was applied during seedtime of plants. The extraction of oil from seeds was performed using supercritical CO2 . RESULTS: The addition of PGPB significantly increases the content of C18:1 (from 16.06 ± 0.03% to 16.97 ± 0.03%) and C18:3 (from 42.97 ± 0.2% to 45.42 ± 0.5%) in flaxseed oil and C18:2 (from 52.68 ± 0.50% to 57.11 ± 0.40%) and C20:2 (from 4.34 ± 0.02% to 4.54 ± 0.03%) in black cumin seed oil. The contents of total polyphenols, flavonoids, and carotenoids, as well as antioxidant activity measured by ferric-reducing ability of plasma assay, were found to be greater in the oil from the seeds of plants treated with the PGPB, compared with the respective non-treated samples. CONCLUSION: The use of PGPB enhances plant nutritive properties; these represent a great source for obtaining valuable functional food ingredients. © 2017 Society of Chemical Industry.


Assuntos
Bacteroidetes/fisiologia , Linho/química , Linho/microbiologia , Nigella sativa/química , Nigella sativa/microbiologia , Paenibacillus/fisiologia , Óleos de Plantas/química , Streptomyces/fisiologia , Inoculantes Agrícolas/fisiologia , Linho/crescimento & desenvolvimento , Nigella sativa/crescimento & desenvolvimento , Valor Nutritivo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
9.
Acta Pol Pharm ; 74(2): 642-652, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29624270

RESUMO

Previously it was documented that transgenic flax plants, which contained an increased level of polyphenolic compounds, significantly improved healing of skin wounds lesions. In order to recognize mechanisms of beneficial action of transgenic flax fabrics on wound healing, in the present study the impact of flax fabric pieces/cuts from three types of transgenic flax on normal human dermal fibroblasts primary culture (NHDF) was investigated. NHDF cell cultures were exposed for 48 h to specific area of flax fabric cuts, made from M50, B 14 and M50+B14 (intertwined fibers of M and B), or parallely, extracts from fibers of the tested flax materials to cell culture medium. Cultures were inspected for cell viability, proliferation, cell cycle changes and for their resistance to oxidative stress (consecutive addition of H2,O2, to harvested cell cultures). None of the tested flax fabrics were cytotoxic to fibroblast cultures and also did not increase significantly a frequency of apoptotic cells in cultures. In the comet assay, the tested flax fabrics revealed significant protective effect on DNA damage ciused by addition of H202 to the cultures at the end of incubation time. Fabrics from transgenic flax significantly enhanced fibroblasts proliferation in vitro estimated with the SRB test. Flow cytometric analysis revealed higher frequency of cells in the S phase, in the presence of transgenic flax fabrics. Fabrics from B14 and M50+B14 flax are the most potent activators of NHDF cells in applied in vityo tests, hence they could be recommended for elaboration of new type bandage, able to improve skin wound healing.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Linho/genética , Preparações de Plantas/farmacologia , Plantas Geneticamente Modificadas/genética , Têxteis , Cicatrização/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Linho/enzimologia , Linho/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Peróxido de Hidrogênio/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas/toxicidade , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Fase S/efeitos dos fármacos , Fatores de Tempo
10.
Meat Sci ; 106: 31-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25866933

RESUMO

The aim of this study was to determine the effect of dietary supplementation with flax and alfalfa sprouts on fatty acid, tocopherol and phytochemical contents of rabbit meat. Ninety weaned New Zealand White rabbits were assigned to three dietary groups: standard diet (S); standard diet+20g/d of alfalfa sprouts (A); and standard diet+20g/d of flax sprouts (F). In the F rabbits the Longissimus dorsi muscle showed a higher thio-barbituric acid-reactive value and at the same time significantly higher values of alpha-linolenic acid, total polyunsaturated and n-3 fatty acids. Additionally n-3/n-6 ratio and thrombogenic indices were improved. The meat of A rabbits showed intermediate values of the previously reported examined parameters. Dietary supplementation with sprouts produced meat with a higher total phytoestrogen content. The addition of fresh alfalfa and flax sprouts to commercial feed modified the fat content, fatty acid and phytochemical profile of the meat, but the flax ones worsened the oxidative status of meat.


Assuntos
Antioxidantes/análise , Dieta/veterinária , Gorduras Insaturadas na Dieta/análise , Linho/química , Carne/análise , Medicago sativa/química , Plântula/química , Animais , Ácidos Graxos Ômega-3/análise , Feminino , Linho/crescimento & desenvolvimento , Humanos , Itália , Peroxidação de Lipídeos , Masculino , Medicago sativa/crescimento & desenvolvimento , Valor Nutritivo , Fitoestrógenos/análise , Coelhos , Plântula/crescimento & desenvolvimento , Tocoferóis/análise , Desmame , Ácido alfa-Linolênico/análise
11.
Int J Phytoremediation ; 17(10): 981-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763643

RESUMO

Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L. usitatissimum (flax) in the presence of Glomus intraradices. Flax seedlings of both inoculated with G. intraradices and non-inoculated were exposed to different concentrations i.e., 250, 350 and 500 ppm of Ni at different time intervals. Analysis of physiological parameters revealed that Ni depressed the growth and photosynthetic activity of plants. However, the inoculation of plants with arbuscular mycorrhizae (G. intraradices) partially helped in the alleviation of Ni toxicity as indicated by improved plant growth under Ni stress. Ni uptake of non- mycorrhizal flax plants was increased by 98% as compared to control conditions whereas inoculated plants showed 19% more uptake when compared with the non-inoculated plants. Mycorrhizal plants exhibited increasing capacity to remediate contaminated soils along with improved growth. Thus, AM assisted phytoremediation helps in the accumulation of Ni in plants to reclaim Ni toxic soils. Based on our findings, it can be concluded that the role of flax plants and mycorrhizal fungi is extremely important in phytoremediation.


Assuntos
Linho/metabolismo , Linho/microbiologia , Glomeromycota/fisiologia , Micorrizas/fisiologia , Níquel/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Linho/efeitos dos fármacos , Linho/crescimento & desenvolvimento
12.
Phytochemistry ; 115: 70-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25698360

RESUMO

Due to their pronounced cytotoxic activity, a number of aryltetralin lignans (ATLs), such as podophyllotoxin (PTOX), are used as antitumor compounds. The production of such molecules from entire plants or plant cell-tissue-organ cultures is thus of interest to the pharmaceutical industry. Hairy root cultures constitute a good tool not only for phytochemical production but also for investigating plant secondary metabolism. This work reports on the growth and ATL biosynthesis in two hairy root cultures of Linum album Kotschy ex Boiss. and Linum flavum. The kinetics of accumulation of the intermediates of MPTOX biosynthesis and of their glucosylated forms are described over a 21-day period of growth. An accumulation of non-glucosylated forms of the ATLs during the exponential phase of the cultures is followed by an accumulation of the glucosylated forms during the stationary phase. Our results show a strong coordination of the biosynthetic paths derived from deoxypodophyllotoxin via deoxypodophyllotoxin 6-hydroxylase and deoxypodophyllotoxin 7-hydroxylase, and a coordinated glucosylation of podophyllotoxin, methoxypodophyllotoxin, and 5'-demethoxymethoxypodophyllotoxin. Furthermore, our results suggest an important role of ß-peltatin-6-glucoside formation in the control of ATL accumulation in Linum hairy root cultures.


Assuntos
Linho/química , Lignanas , Medicamentos de Ervas Chinesas , Linho/enzimologia , Linho/genética , Linho/crescimento & desenvolvimento , Glicosilação , Cinética , Lignanas/química , Lignanas/isolamento & purificação , Lignanas/metabolismo , Lignanas/farmacologia , Estrutura Molecular , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Podofilotoxina/isolamento & purificação , Podofilotoxina/farmacologia , Podofilotoxina/toxicidade
13.
J Sci Food Agric ; 95(12): 2528-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25371353

RESUMO

BACKGROUND: The soil environment can affect not only the quantity of crops produced but also their nutritional quality. We examined the combined effects of below-ground cadmium (0, 5, and 15 ppm) and mycorrhizal fungi (presence and absence) on the concentration of five major fatty acids within flax seeds (Linum usitatissimum). RESULTS: Plants grown with mycorrhizal fungi produced seeds that contained higher concentrations of unsaturated (18:1, 18:2 and 18:3), but not saturated (16:0 and 18:0) fatty acids. The effects of mycorrhizal fungi on the concentration of unsaturated fatty acids in seeds were most pronounced when plant roots were exposed to 15 ppm Cd (i.e. the concentrations of 18:1, 18:2 and 18:3 increased by 169%, 370% and 150%, respectively). CONCLUSIONS: The pronounced effects of mycorrhizal fungi on the concentration of unsaturated fatty acids at 15 ppm Cd may have been due to the presence of elevated levels of Cd within seeds. Our results suggest that, once the concentration of cadmium within seeds reaches a certain threshold, this heavy metal may improve the efficiency of enzymes that convert saturated fatty acids to unsaturated fatty acids.


Assuntos
Cádmio/farmacologia , Ácidos Graxos Insaturados/metabolismo , Linho/crescimento & desenvolvimento , Fungos/fisiologia , Micorrizas/efeitos dos fármacos , Sementes/efeitos dos fármacos , Solo/química , Agricultura , Cádmio/metabolismo , Humanos , Sementes/metabolismo
14.
J Sci Food Agric ; 93(5): 1016-25, 2013 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22903702

RESUMO

BACKGROUND: Current scenarios of global climate change predict a significant increase in ultraviolet B (UV-B) and tropospheric ozone (O3) in the near future. Both UV-B and O3 can have detrimental effects on the productivity and yield quality of important agricultural crops. The present study was conducted to investigate the individual and interactive effects of supplemental UV-B (sUV-B) (ambient + 7.2 kJ m⁻² day⁻¹) and O3 (ambient + 10 ppb) on the yield and oil quality of two cultivars of linseed (Linum usitatissimum L.). RESULTS: The mean monthly ambient O3 concentration varied from 27.7 to 59.0 ppb during the experimental period. O3 affected fruit formation, while sUV-B was mainly responsible for ovule abortion. Seed sugar and protein contents showed maximum reduction in O3-treated plants, while mineral nutrient levels were most affected by sUV-B + O3 treatment. Rancid oil of low nutritional quality and containing long-chain fatty acids was favoured along with a decrease in oil content. CONCLUSION: sUV-B and O3 individually as well as in combination caused deterioration of the yield and quality of oil and seeds of linseed. However, the individual effect of O3 was more damaging than the effect of sUV-B or sUV-B + O3, and cultivar T-397 performed better than Padmini.


Assuntos
Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Linho/crescimento & desenvolvimento , Óleo de Semente do Linho/química , Ozônio/efeitos adversos , Sementes/crescimento & desenvolvimento , Raios Ultravioleta/efeitos adversos , Ar/análise , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos da radiação , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/efeitos da radiação , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Linho/efeitos dos fármacos , Linho/metabolismo , Linho/efeitos da radiação , Qualidade dos Alimentos , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/efeitos da radiação , Gametogênese Vegetal/efeitos dos fármacos , Gametogênese Vegetal/efeitos da radiação , Índia , Minerais/metabolismo , Oxidantes Fotoquímicos/efeitos adversos , Oxidantes Fotoquímicos/análise , Ozônio/análise , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos da radiação , Proteínas de Armazenamento de Sementes/biossíntese , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/efeitos da radiação , Especificidade da Espécie
15.
J Proteome Res ; 11(12): 6264-76, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23153172

RESUMO

Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.


Assuntos
Linho/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/análise , Proteômica/métodos , Sementes/metabolismo , Cromatografia Líquida/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Etiquetas de Sequências Expressas , Ácidos Graxos/metabolismo , Linho/enzimologia , Linho/genética , Linho/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Espectrometria de Massas/métodos , Metabolômica/métodos , Anotação de Sequência Molecular , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribulose-Bifosfato Carboxilase/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Especificidade da Espécie , Fatores de Tempo , Transcrição Gênica , Transcriptoma
16.
Am J Bot ; 99(9): 1445-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22912369

RESUMO

PREMISE OF THE STUDY: Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. METHODS: Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. KEY RESULTS: Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. CONCLUSIONS: The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Linho/crescimento & desenvolvimento , Linho/microbiologia , Micorrizas/efeitos dos fármacos , Análise de Variância , Biomassa , Contagem de Colônia Microbiana , Linho/anatomia & histologia , Linho/efeitos dos fármacos , Frutas/efeitos dos fármacos , Frutas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Solo/química
17.
J Hazard Mater ; 235-236: 101-7, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22858130

RESUMO

The potential of mature flax plants (cv. Hermes) to tolerate and accumulate cadmium (Cd) was studied to determine which part of the plant would be the key organ for phytoremediation purposes. After 4 month-growth on sand substrate containing 0.1mM Cd in a greenhouse, the roots and stems were separated and the stems were divided into three parts. The effects of Cd were studied on growth parameters, histology and mineral nutrition. No visible toxic symptoms were observed. Tolerance-index values calculated from growth parameters and nutrients remained relatively high, allowing the development of the plant until maturity and formation of seeds. The roots and bottom stem accumulated the highest quantity of Cd (750 and 360 mg/kg dry matter), values which largely exceeded the threshold defined for hyperaccumulators. On the other hand, basal stem had a high bioconcentration factor (BCF=32) and translocation factor TF' (2.5) but a low TF (0.5), indicating that this basal part would play a major role in phytoremediation (phytostabilization rather than phytorextraction). Therefore, the high tolerance to Cd and accumulation capacity make possible to grow Hermes flax on Cd-polluted soils.


Assuntos
Cádmio/metabolismo , Linho/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Poluentes do Solo/metabolismo , Adaptação Fisiológica , Biodegradação Ambiental , Cádmio/toxicidade , Linho/efeitos dos fármacos , Linho/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Poluentes do Solo/toxicidade
18.
Plant Physiol Biochem ; 54: 1-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22361130

RESUMO

The aim of the present research is to investigate the effect of harvest date on the composition of flaxseed. Samples were collected at regular intervals from 7 to 56 days after flowering (DAF) and analyzed for phospholipid composition, storage protein content and chemical properties. Phospholipid (PL) percentage of the total lipid decreased from 32.72% on the 7th DAF to 2.55% on the 56th DAF. The most phospholipids present in flaxseed were phosphatidylinositol (PI), phosphatidylethanolamine (PE) and lysophosphatidylcholine (LPC) which were highly unsaturated and rich in linolenic and linoleic acids, comprising together 60% of the total fatty acids. Chemical investigation of flaxseed oil showed overall a decrease in UV absorbance (K(232) and K(270)), acid value, free fatty acid content and an increase in peroxide value and storage protein content with development. At full maturity, flaxseed contained 29% proteins on a dry weight basis (DW %).


Assuntos
Agricultura/métodos , Ácidos Graxos/metabolismo , Linho/metabolismo , Óleo de Semente do Linho/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Linho/crescimento & desenvolvimento , Óleo de Semente do Linho/química , Peróxidos/metabolismo , Fosfolipídeos/química , Sementes/crescimento & desenvolvimento , Raios Ultravioleta
19.
Plant Physiol Biochem ; 49(12): 1377-83, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22078374

RESUMO

Aluminum toxicity is the most important limiting factor for plant growth and development in acidic soils (pH < 5.5). Inhibition of root growth has been considered as a sensitive marker of aluminum toxicity and the best indicator of boron deficiency as well. On the other hand cell wall phenolics (lignin and phenolic acids) have important roles in the reduction of extensibility of cell wall under stress conditions. Therefore, the interaction between boron and aluminum on phenolic compounds and the activity of the enzymes involved in their biosynthesis were investigated in flax seedlings. The seedlings were grown in Hoagland's solution and were treated with 3 B levels (4.5, 45 and 450 µM of H3BO3 at deficient, normal, and excess conditions, respectively) and 3 Al levels (0, 50 and 100 µM of AlCl3.6H2O). The results showed that Al treatment did not affect B content of roots (B content of Al-treated and non-treated plants were identical), while B treatment, particularly in higher concentrations, decreased Al content of roots compared with the control plants. In addition, the highest B concentration prevented the inhibitory effect of Al on the root length of plants. High concentrations of B also resulted in the decrease of enzyme activities involved in phenolic compounds (i.e., phenylalanine ammonia-lyase, polyphenol oxidase and peroxidase), decrease of lignin content and wall-bound phenols under Al stress, thereby ameliorating Al toxicity. The results suggest that the requirement of flax plants for B under Al stress conditions is higher than that required for growth in normal conditions without Al.


Assuntos
Alumínio/farmacologia , Boro/metabolismo , Linho/metabolismo , Lignina/metabolismo , Fenóis/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico , Alumínio/metabolismo , Boro/deficiência , Boro/farmacologia , Parede Celular/metabolismo , Linho/enzimologia , Linho/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Raízes de Plantas/crescimento & desenvolvimento , Plântula , Solo
20.
Ying Yong Sheng Tai Xue Bao ; 22(10): 2635-42, 2011 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-22263469

RESUMO

By using the site-specific observation data of oil flax growth and related meteorological records in semi-arid region of Loess Plateau, this paper studied the effects of climate change on the oil flax growth, and analyzed the relationships between the oil flax water use efficiency and meteorological condition. In this region, the annual precipitation displayed a decreasing trend, and its climatic trend rate was -15.80 mm (10 a)(-1), with an annual periodic change of 3 a and 6 a, whereas the annual air temperature had an increasing trend, and its climatic trend rate was 0.36 degrees C (10 a)(-1). In crop growth period, the aridity index displayed a marked increasing trend, its climatic trend rate was 0.12 (10 a)(-1), and the aridity tendency was more obvious from the beginning of 1990s to the year 2009. From sowing to maturation, oil flax needed 120-150 d, 1700-2100 degrees C d of > or = 0 degrees C accumulated temperature, 200-250 mm precipitation, and 1000-1300 h sunshine hours. The main meteorological factors affecting the oil flax growth in the region were air temperature and precipitation. The increase of air temperature shortened the prophase vegetative growth stage, whereas the increase of air temperature and the decrease of precipitation extended the reproductive growth stage, causing the extension of the whole growth period of the oil flax. The air temperature in the oil flax whole growth period except at seeding stage and maturing stage had negative effect on the yield formation, being more obvious at squaring stage, whereas the precipitation in the whole growth period except at blooming stage had positive effect on the yield formation, being more obvious at seeding stage. The water use efficiency of the oil flax was significantly positively correlated with the air temperature and sunshine hours at seeding stage as well as the aridity index from squaring stage to maturing stage, and negatively correlated with the precipitation from squaring stage to maturing stage. In the study region, the aridity index from May to July was the key factor affecting the water use efficiency of oil flax.


Assuntos
Secas , Linho/crescimento & desenvolvimento , Aquecimento Global , Água/metabolismo , Altitude , China , Linho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA