Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
PLoS One ; 19(6): e0303191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924032

RESUMO

BACKGROUND: Gallbladder disease in people is frequently associated with disorders of lipid metabolism and metabolic syndrome. A recently emergent gallbladder disease of dogs, referred to as mucocele formation, is characterized by secretion of abnormal mucus by the gallbladder epithelium and is similarly associated with hyperlipidemia, endocrinopathy, and metabolic dysfunction. The cause of gallbladder mucocele formation in dogs is unknown. METHODS: A prospective case-controlled study was conducted to gain insight into disease pathogenesis by characterization of plasma lipid abnormalities in 18 dogs with gallbladder mucocele formation and 18 age and breed matched control dogs using direct infusion mass spectrometry for complex plasma lipid analysis. This analysis was complemented by histochemical and ultrastructural examination of gallbladder mucosa from dogs with gallbladder mucocele formation and control dogs for evidence of altered lipid homeostasis of the gallbladder epithelium. RESULTS: Gallbladder mucocele formation in dogs carried a unique lipidomic signature of increased lipogenesis impacting 50% of lipid classes, 36% of esterified fatty acid species, and 11% of complex lipid species. Broad enrichment of complex lipids with palmitoleic acid (16:1) and decreased abundance within complex lipids of presumptive omega-3 fatty acids eicosapentaenoic (20:5) and docosahexaenoic (22:6) was significant. Severe lipidosis of gallbladder epithelium pinpoints the gallbladder as involved causally or consequently in abnormal lipid metabolism. CONCLUSION: Our study supports a primary increase in lipogenesis in dogs with mucocele formation and abnormal gallbladder lipid metabolism in disease pathogenesis.


Assuntos
Doenças do Cão , Doenças da Vesícula Biliar , Vesícula Biliar , Lipogênese , Mucocele , Animais , Cães , Mucocele/metabolismo , Mucocele/patologia , Vesícula Biliar/metabolismo , Vesícula Biliar/patologia , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Doenças da Vesícula Biliar/metabolismo , Doenças da Vesícula Biliar/patologia , Doenças da Vesícula Biliar/veterinária , Feminino , Estudos de Casos e Controles , Masculino , Lipidoses/metabolismo , Lipidoses/patologia , Estudos Prospectivos , Epitélio/metabolismo , Epitélio/patologia , Metabolismo dos Lipídeos
2.
Sci Rep ; 11(1): 16314, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381105

RESUMO

Metabolic disorders, including hepatic lipidosis and ketosis, severely affect animal health status and welfare with a large economic burden in dairy herds. The gold standard for diagnosing hepatic lipidosis is the liver biopsy, which is impractical and invasive for the screening at farm level. Ultrasound (US) imaging is a promising technique for identifying liver dysfunction, but standardized specifications in physiological conditions are needed. Herein, we described the features of four US measurements, namely the liver predicted triacylglycerol (pTAG) content, liver depth (LD), and portal vein area (PVA) and depth (PVD) and we investigated their associations with a set of hematochemical (HC) indicators in 342 clinically healthy Holstein Friesian dairy cows. Liver pTAG content was negatively associated with hematocrit and positively with globulin, whereas PVA was negatively associated with thiol group levels, and LD positively with ceruloplasmin. We found significant interactions between some HC parameters and parity: in particular, creatinine, thiol groups and globulin for PVA, and aspartate aminotransferase, paraoxonase and ceruloplasmin for PVD. This study offers new insights on variations in liver function occurring after calving and pave the way for the potential use of minimally invasive techniques for prompt detection of metabolic disorders in dairy herds.


Assuntos
Fígado/metabolismo , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Lipidoses/metabolismo , Doenças Metabólicas/metabolismo , Triglicerídeos/metabolismo , Ultrassonografia/métodos
3.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340283

RESUMO

Drug-induced phospholipidosis (PL) is a storage disorder caused by the formation of phospholipid-drug complexes in lysosomes. Because of the diversity of PL between species, human cell-based assays have been used to predict drug-induced PL in humans. We established three-dimensional (3D) human liver organoids as described previously and investigated their liver characteristics through multiple analyses. Drug-induced PL was initiated in these organoids and in monolayer HepG2 cultures, and cellular changes were systemically examined. Organoids that underwent differentiation showed characteristics of hepatocytes rather than HepG2 cells. The organoids also survived under PL-inducing drug conditions for 48 h and maintained a more stable albumin secretion level than the HepG2 cells. More cytoplasmic vacuoles were observed in organoids and HepG2 cells treated with more potent PL-induced drugs, but to a greater extent in organoids than in HepG2 cells. Lysosome-associated membrane protein 2, a marker of lysosome membranes, showed a stronger immunohistochemical signal in the organoids. PL-distinctive lamellar bodies were observed only in amiodarone-treated organoids by transmission electron microscopy. Human liver organoids are thus more sensitive to drug-induced PL and less affected by cytotoxicity than HepG2 cells. Since PL is a chronic condition, these results indicate that organoids better reflect metabolite-mediated hepatotoxicity in vivo and could be a valuable system for evaluating the phospholipidogenic effects of different compounds during drug development.


Assuntos
Lipidoses/etiologia , Lipidoses/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fosfolipídeos/metabolismo , Albuminas/biossíntese , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Suscetibilidade a Doenças , Expressão Gênica , Glicogênio/metabolismo , Células Hep G2 , Humanos , Imuno-Histoquímica , Lipidoses/patologia , Fígado/patologia , Fígado/ultraestrutura , Organoides , Técnicas de Cultura de Tecidos
4.
J Feline Med Surg ; 22(6): 500-505, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31322470

RESUMO

OBJECTIVES: The aim of this study was to evaluate if de novo hepatic lipid synthesis contributes to fatty acid overload in the liver of cats with feline hepatic lipidosis (FHL). METHODS: Lipogenic gene expression of peroxisome proliferator-activated receptor-alpha (PPAR-α), peroxisome proliferator-activated receptor-gamma (PPAR-γ), fatty acid synthase (FASN) and sterol regulatory element-binding factor (SREBF1) were evaluated using quantitative RT-PCR in liver tissue of six cats with FHL and compared with the liver tissue of eight healthy cats. RESULTS: In liver tissue, PPAR-α, PPAR-γ and FASN mRNA expression levels were not significantly different (P >0.12, P >0.89 and P >0.5, respectively) in the FHL group compared with the control group. SREBF1 gene expression was downregulated around 10-fold in the FHL group vs the control group (P = 0.039). CONCLUSIONS AND RELEVANCE: The downregulation of SREBF1 in the liver tissue of cats with FHL does not support the hypothesis that de novo lipogenesis in the liver is an important pathway of fatty acid accumulation in FHL.


Assuntos
Doenças do Gato/genética , Expressão Gênica , Lipidoses/veterinária , Lipogênese/genética , Animais , Doenças do Gato/metabolismo , Gatos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Lipidoses/genética , Lipidoses/metabolismo , Lipídeos/biossíntese , Fígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
5.
J Vet Intern Med ; 34(1): 132-138, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31830357

RESUMO

BACKGROUND: Hepatic lipidosis is increasing in incidence in the Western world, with cats being particularly sensitive. When cats stop eating and start utilizing their fat reserves, free fatty acids (FFAs) increase in blood, causing an accumulation of triacylglycerol (TAG) in the liver. OBJECTIVE: Identifying potential new drugs that can be used to treat hepatic lipidosis in cats using a feline hepatic organoid system. ANIMALS: Liver organoids obtained from 6 cats. METHODS: Eight different drugs were tested, and the 2 most promising were further studied using a quantitative TAG assay, lipid droplet staining, and qPCR. RESULTS: Both T863 (a diacylglycerol O-acyltransferase 1 [DGAT1] inhibitor) and 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR; an adenosine monophosphate kinase activator) decreased TAG accumulation by 55% (P < .0001) and 46% (P = .0003), respectively. Gene expression of perilipin 2 (PLIN2) increased upon the addition of FFAs to the medium and decreased upon treatment with AICAR but not significantly after treatment with T863. CONCLUSIONS AND CLINICAL IMPORTANCE: Two potential drugs useful in the treatment of hepatic lipidosis in cats were identified. The drug T863 inhibits DGAT1, indicating that DGAT1 is the primary enzyme responsible for TAG synthesis from external fatty acids in cat organoids. The drug AICAR may act as a lipid-lowering compound via decreasing PLIN2 mRNA. Liver organoids can be used as an in vitro tool for drug testing in a species-specific system and provide the basis for further clinical testing of drugs to treat steatosis.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Doenças do Gato/tratamento farmacológico , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Fígado Gorduroso/veterinária , Lipidoses/veterinária , Organoides/metabolismo , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Doenças do Gato/metabolismo , Gatos , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Lipidoses/tratamento farmacológico , Lipidoses/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia
6.
J Feline Med Surg ; 21(4): 363-372, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29860906

RESUMO

OBJECTIVES: The aim of this study was to assess serum lipoprotein profiles using rapid single-spin continuous lipoprotein density profiling (CLPDP) in healthy control cats and cats with hepatic lipidosis (HL). METHODS: Analysis of serum lipoprotein profiles using the CLPDP was performed in 23 cats with HL and 20 healthy control cats. The area under the curve for each lipoprotein fraction, triglyceride (TG)-rich lipoproteins (TRLs), low-density lipoproteins (LDLs) and high-density lipoproteins (HDLs), was calculated. Serum cholesterol and TG concentrations were measured using a clinical chemistry analyzer. RESULTS: Serum cholesterol and TG concentrations were not significantly different between healthy control cats and cats with HL ( P = 0.5075 and P = 0.2541, respectively). LDL content was significantly higher in cats with HL than in healthy control cats ( P = 0.0001), while HDL content was significantly lower in cats with HL than in healthy control cats ( P = 0.0032). TRL content was not significantly different between the two groups ( P = 0.0699). The specific fraction (1.037-1.043 g/ml) within nominal LDL in serum distinguished healthy control cats from cats with HL with a sensitivity of 87% and a specificity of 90%. CONCLUSIONS AND RELEVANCE: Serum lipoprotein profiles were altered in cats with HL, even though serum cholesterol and TG concentrations were not significantly different compared with healthy control cats. The CLPDP might be a useful tool for assessing lipid metabolism in cats with HL.


Assuntos
Fígado Gorduroso , Lipidoses , Lipoproteínas/sangue , Triglicerídeos/sangue , Animais , Gatos , Fígado Gorduroso/sangue , Fígado Gorduroso/metabolismo , Humanos , Lipidoses/sangue , Lipidoses/metabolismo
7.
J Toxicol Sci ; 42(5): 641-650, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904299

RESUMO

The utility of HepaRG cells as an in vitro cell-based assay system for predicting drug-induced phospholipidosis (PLD) was investigated. In experiment 1, 10 PLD-positive compounds and 11 PLD-negative compounds were selected. HepaRG cells were treated with each compound for 48 hr. In experiment 2, loratadine and desloratadine, a major metabolite of loratadine, were used to assess metabolic activation for PLD. HepaRG cells were treated with loratadine and desloratadine in the presence or absence of 500 µM 1-aminobenzotriazole (ABT), a broad CYP inhibitor, for 48 hr. After treatment with compounds in experiments 1 and 2, the relative fluorescence intensity (RFI) was measured using LYSO-ID Red dye to assess the PLD induction. In experiment 1, our cell-based assay system using HepaRG cells exhibited 100% sensitivity and 100% specificity for predicting drug-induced PLD. In experiment 2, loratadine increased the RFI in the PLD assay. However, the increase in the RFI was not observed in co-treatment with loratadine and ABT. In addition, desloratadine increased the RFI in the presence and absence of ABT. These results suggested that metabolic activation of loratadine may contribute to PLD in HepaRG cells. We newly demonstrated that HepaRG cells have a high ability for predicting drug-induced PLD. In addition, we newly showed that HepaRG cells may predict drug-induced PLD mediated by metabolic activation of loratadine. Thus, a cell-based assay system using HepaRG cells is a useful model for predicting drug-induced PLD.


Assuntos
Bioensaio/métodos , Lipidoses/induzido quimicamente , Lipidoses/metabolismo , Fosfolipídeos/metabolismo , Amicacina/toxicidade , Amiodarona/toxicidade , Amitriptilina/toxicidade , Clorpromazina/toxicidade , Feminino , Células Hep G2 , Humanos , Imipramina/efeitos adversos , Loratadina/análogos & derivados , Loratadina/toxicidade , Valor Preditivo dos Testes , Triazóis/toxicidade
8.
Lipids Health Dis ; 16(1): 98, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558775

RESUMO

BACKGROUND: The so-called "hepatic lipidosis" in turkeys is an acute progressive disease associated with a high mortality rate in a very short time. Dead animals show a massive fatty degeneration of the liver. The cause is still unclear. Previous findings suggest that there may be parallels to human non-alcoholic fatty liver disease. The object of the study was to examine the changes in the fat contents, the fatty acid composition and the iron content in livers of animals, which have died from hepatic lipidosis. METHODS: The conspicuous livers (n = 85) were collected from 20 flocks where the phenomenon of massive increased animal losses accompanied by marked macroscopically visible pathological liver steatosis suddenly occurred. For comparison and as a reference, livers (n = 16) of two healthy flocks were taken. Healthy and diseased flocks were fed identical diets concerning official nutrient recommendations and were operating under standardized, comparable conventional conditions. RESULTS: Compared to livers of healthy animals, in the livers of turkeys died from hepatic lipidosis there were found massively increased fat levels (130 ± 33.2 vs. 324 ± 101 g/kg dry matter-DM). In all fatty livers, different fatty acids concentrations were present in significantly increased concentrations compared to controls (palmitic acid: 104 g/kg DM, +345%; palmitoleic acid: 18.0 g/kg DM, + 570%; oleic acid: 115 g/kg DM, +437%). Fatty acids concentrations relevant for liver metabolism and inflammation were significantly reduced (arachidonic acid: 2.92 g/kg DM, -66.6%; eicosapentaenoic acid: 0.141 g/kg DM, -78.3%; docosahexaenoic acid: 0.227 g/kg DM, -90.4%). The ratio of certain fatty acids to one another between control and case livers changed analogously to liver diseases in humans (e.g.: C18:0/C16:0 - 0.913 against 0.311; C16:1n7/C16:0 - 0.090 against 0.165; C18:1/C18:0 - 0.938 against 4.03). The iron content in the liver tissue also increased massively (271 ± 51.5 vs 712 ± 214 mg/kg DM). CONCLUSION: The hepatic lipidosis has a massive impact on the lipid content, the lipid composition and the iron content in the liver. The character of the metabolic disorder includes parallels to the non-alcoholic steatohepatitis in humans.


Assuntos
Ácidos Graxos/metabolismo , Lipidoses/metabolismo , Fígado/metabolismo , Fígado/patologia , Animais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Ferro/metabolismo , Lipidoses/patologia , Masculino , Perus
9.
Electrophoresis ; 38(18): 2331-2340, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28512733

RESUMO

Phospholipidosis and steatosis are two toxic effects, which course with overaccumulation of different classes of lipids in the liver. MS-based lipidomics has become a powerful tool for the comprehensive determination of lipids. LC-MS lipid profiling of HepG2 cells is proposed as an in vitro assay to study and anticipate phospholipidosis and steatosis. Cells with and without preincubation with a mixture of free fatty acids (FFA; i.e. oleic and palmitic) were exposed to a set of well-known steatogenic and phospholipidogenic compounds. The use of FFA preloading accelerated the accumulation of phospholipids, thus leading to a better discrimination of phospholipidosis, and magnified the lipidomic alterations induced by steatogenic drugs. Phospholipidosis was characterized by increased levels of phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines, and phosphatidylinositols, while steatosis induced alterations in FA oxidation and triacylglyceride (TG) synthesis pathways (with changes in the levels of FFA, acylcarnitines, monoacylglycerides, diacylglycerides, and TG). Interestingly, palmitic and oleic acids incorporation into lipids differed. A characteristic pattern was observed in the fold of change of particular TG species in the case of steatosis (TG(54:3) > TG(52:2) > TG(50:1) > TG(48:0)). Based on the levels of those lipids containing only palmitic and/or oleic acid moieties a partial least squares-discriminant analysis model was built, which showed good discrimination among nontoxic, phospholipidogenic and steatogenic compounds. In conclusion, it has been shown that the use of FFA preincubation together with intracellular LC-MS based lipid profiling could be a useful approach to identify the potential of drug candidates to induce phospholipidosis and/or steatosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado Gorduroso/metabolismo , Lipidoses/metabolismo , Fosfolipídeos/análise , Cromatografia Líquida , Biologia Computacional , Células Hep G2 , Humanos , Análise dos Mínimos Quadrados , Espectrometria de Massas , Modelos Biológicos , Fosfolipídeos/metabolismo
10.
J Appl Toxicol ; 37(8): 943-953, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28138993

RESUMO

Lipid profiling has emerged as an effective approach to not only screen disease and drug toxicity biomarkers but also understand their underlying mechanisms of action. Tamoxifen, a widely used antiestrogenic agent for adjuvant therapy against estrogen-positive breast cancer, possesses side effects such as hepatic steatosis and phospholipidosis (PLD). In the present study, we administered tamoxifen to Sprague-Dawley rats and used lipidomics to reveal tamoxifen-induced alteration of the hepatic lipid profile and its association with the plasma lipid profile. Treatment with tamoxifen for 28 days caused hepatic PLD in rats. We compared the plasma and liver lipid profiles in treated vs. untreated rats using a multivariate analysis to determine differences between the two groups. In total, 25 plasma and 45 liver lipids were identified and altered in the tamoxifen-treated group. Of these lipids, arachidonic acid (AA)-containing phosphatidylcholines (PCs), such as PC (17:0/20:4) and PC (18:1/20:4), were commonly reduced in both plasma and liver. Conversely, tamoxifen increased other phosphoglycerolipids in the liver, such as phosphatidylethanolamine (18:1/18:1) and phosphatidylinositol (18:0/18:2). We also examined alteration of AA-containing PCs and some phosphoglycerolipids in the pre-PLD stage and found that these lipid alterations were initiated before pathological alteration in the liver. In addition, changes in plasma and liver levels of AA-containing PCs were linearly associated. Moreover, levels of free AA and mRNA levels of AA-synthesizing enzymes, such as fatty acid desaturase 1 and 2, were decreased by tamoxifen treatment. Therefore, our study demonstrated that AA-containing PCs might have potential utility as novel and predictive biomarkers for tamoxifen-induced PLD. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Ácido Araquidônico/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Lipidoses/metabolismo , Fígado/metabolismo , Fosfatidilcolinas/sangue , Tamoxifeno/toxicidade , Animais , Ácido Araquidônico/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidoses/induzido quimicamente , Fígado/efeitos dos fármacos , Masculino , Fosfatidilcolinas/metabolismo , Ratos Sprague-Dawley
11.
Toxicol Sci ; 156(1): 39-53, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013220

RESUMO

Cationic amphiphilic drugs (CADs) are small molecules that can induce phospholipidosis (PLD), causing the intracellular accumulation of phospholipid in the lamellar bodies. Nanotechnology based drug delivery systems have been used widely, while it is unknown if drug-induced PLD (DIP) can be potentiated through drug retention by indigestible nanocarriers. Due to the high drug loading capacity of graphene, we investigated if PEGylated graphene oxide (PEG-GO) loaded with CAD could potentiate DIP. Tamoxifen induced the accumulation of NBD-PE, a fluorescence labeled phospholipid in human hepatoma HepG2 cells, while PEG-GO loaded with tamoxifen (PEG-GO/tamoxifen) further potentiated PLD. PEG-GO/tamoxifen induced more gene expression of PLD marker than tamoxifen alone. PEG-GO enhanced DIP was also observed for other CAD, indicating that nanocarrier potentiated DIP could be universal. More lamellar bodies were observed in PEG-GO/tamoxifen treated cells than tamoxifen alone by transmission electron microscopy. When compared with tamoxifen alone, PEG-GO/tamoxifen showed a delayed but potent PLD. In addition, the retarded PLD recovery by PEG-GO/tamoxifen indicated that the reversibility of DIP was interfered. Confocal microscopy revealed the increased number of lysosomes, greater expression of lysosomal associated membrane protein 2 (LAMP2) (a PLD marker), and an increase in the co-localization between lysosome/LAMP2 and NBD-PE by PEG-GO/tamoxifen rather than tamoxifen alone. Finally, we found that PEG-GO or/and tamoxifen-induced PLD seemed to have no correlation with autophagy. This research suggests pharmaceutical companies and regulatory agencies that if nanoparticles are used as the vectors for drug delivery, the adverse drug effects may be further potentiated probably through the long-term accumulation of nanocarriers.


Assuntos
Portadores de Fármacos/administração & dosagem , Grafite/efeitos adversos , Lipidoses/induzido quimicamente , Lisossomos/efeitos dos fármacos , Nanoestruturas/efeitos adversos , Fosfolipídeos/metabolismo , Polietilenoglicóis/efeitos adversos , Absorção Fisiológica , Animais , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacologia , Antagonistas de Estrogênios/administração & dosagem , Antagonistas de Estrogênios/metabolismo , Antagonistas de Estrogênios/farmacologia , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Grafite/química , Grafite/metabolismo , Células Hep G2 , Humanos , Lipidoses/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfatidiletanolaminas/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Células RAW 264.7 , Propriedades de Superfície , Tamoxifeno/administração & dosagem , Tamoxifeno/metabolismo , Tamoxifeno/farmacologia , Testes de Toxicidade Aguda
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 210-220, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27793708

RESUMO

RATIONALE: Cholesteryl hemiesters are oxidation products of polyunsaturated fatty acid esters of cholesterol. Their oxo-ester precursors have been identified as important components of the "core aldehydes" of human atheromata and in oxidized lipoproteins (Ox-LDL). We had previously shown, for the first time, that a single compound of this family, cholesteryl hemisuccinate (ChS), is sufficient to cause irreversible lysosomal lipid accumulation (lipidosis), and is toxic to macrophages. These features, coupled to others such as inflammation, are typically seen in atherosclerosis. OBJECTIVE: To obtain insights into the mechanism of cholesteryl hemiester-induced pathological changes in lysosome function and induction of inflammation in vitro and assess their impact in vivo. METHODS AND RESULTS: We have examined the effects of ChS on macrophages (murine cell lines and primary cultures) in detail. Specifically, lysosomal morphology, pH, and proteolytic capacity were examined. Exposure of macrophages to sub-toxic ChS concentrations caused enlargement of the lysosomes, changes in their luminal pH, and accumulation of cargo in them. In primary mouse bone marrow-derived macrophages (BMDM), ChS-exposure increased the secretion of IL-1ß, TNF-α and IL-6. In zebrafish larvae (wild-type AB and PU.1:EGFP), fed with a ChS-enriched diet, we observed lipid accumulation, myeloid cell-infiltration in their vasculature and decrease in larval survival. Under the same conditions the effects of ChS were more profound than the effects of free cholesterol (FC). CONCLUSIONS: Our data strongly suggest that cholesteryl hemiesters are pro-atherogenic lipids able to mimic features of Ox-LDL both in vitro and in vivo.


Assuntos
Colesterol/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Aterosclerose/metabolismo , Linhagem Celular , Ésteres do Colesterol/metabolismo , Ésteres/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Larva/metabolismo , Lipidoses/metabolismo , Camundongos , Células RAW 264.7 , Peixe-Zebra
13.
Toxicol In Vitro ; 35: 139-48, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27221059

RESUMO

Drug-induced phospholipidosis (DIPLD), characterized by the accumulation of phospholipids within lysosomes, is suspected to impair lysosomal function and considered an adverse side effect of the administered medication. The increasing use of polypharmacy and the resultant elevated risks of adverse drug reactions raise the need to explore the effects of drug combinations with respect to their influence on side effects, such as DIPLD. In this study, we utilized an in vitro assay to investigate DIPLD that was caused by 24 commonly used drugs applied alone and in binary combinations with each other. Moreover, we attempted to predict the extent of DIPLD resulting from the combinations using a simple additive approach based on the increase in phospholipid levels caused by the single drugs. The results suggest that DIPLD, which was caused by combinations of drugs, occurs in an additive manner, depending on total drug concentration. Furthermore, we show that the extent of DIPLD can be predicted from the DIPLD caused by the single drugs. Thus, the simultaneous use of multiple drugs with PLD-inducing properties increases the event risk, as well as the severity of drug-induced phospholipidosis. The findings underline the importance of considering the DIPLD-inducing properties of drugs, especially in the context of polypharmacy.


Assuntos
Combinação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Lipidoses/induzido quimicamente , Fosfolipídeos/metabolismo , Linhagem Celular Tumoral , Interações Medicamentosas , Humanos , Lipidoses/metabolismo
14.
Mol Med Rep ; 12(2): 2589-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25975841

RESUMO

Apolipoprotein E deficiency (ApoE(-/-)) combined with a high-fat Western-type diet (WD) is known to activate the toll-like receptor (TLR4) pathway and promote atherosclerosis. However, to date, the pathogenic effects of these conditions on the lung have not been extensively studied. Therefore, the present study examined the effects of ApoE(-/-) and a WD on lung injury and investigated the underlying mechanisms. ApoE(-/-) and wild-type mice were fed a WD or normal chow diet for 4, 12 and 24 weeks. Lung inflammation, lung cholesterol content and cytokines profiles in broncho-alveolar lavage fluid (BALF) were determined. TLR4 and its main downstream molecules were analyzed with western blot analysis. In addition, the role of the TLR4 pathway was further validated using TLR4-targeted gene silencing. The results showed that ApoE(-/-) mice developed lung lipidosis following 12 weeks of receiving a WD, as evidenced by an increased lung cholesterol content. Moreover, dependent on the time period of receiving the diet, those mice exhibited pulmonary inflammation, which was manifested by initial leukocyte recruitment (at 4 weeks), by increased alveolar septal thickness and mean linear intercept as well as elevated production of inflammation mediators (at 12 weeks), and by granuloma formation (at 24 weeks). The expression levels of TLR4, myeloid differentiation primary response 88 (MyD88) and nuclear factor kappa B were markedly upregulated in ApoE(-/-) WD mice at week 12. However, these effects were ameliorated by shRNA-mediated knockdown of TLR4. By contrast, ApoE(-/-) ND or wild-type WD mice exhibited low-grade or no inflammation and mild lipidosis. The levels of TLR4 and MyD88 in those mice showed only minor changes. In conclusion, ApoE deficiency acts synergistically with a WD to trigger lung lipidosis and inflammation at least in part via TLR4 signaling.


Assuntos
Apolipoproteínas E/deficiência , Dieta Hiperlipídica/efeitos adversos , Granuloma/genética , Lipidoses/genética , Pneumonia/genética , Receptor 4 Toll-Like/metabolismo , Animais , Apolipoproteínas E/genética , Líquido da Lavagem Broncoalveolar/química , Colesterol/metabolismo , Citocinas/biossíntese , Citocinas/metabolismo , Regulação da Expressão Gênica , Granuloma/etiologia , Granuloma/metabolismo , Granuloma/patologia , Lipidoses/etiologia , Lipidoses/metabolismo , Lipidoses/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética
15.
Arch Pathol Lab Med ; 138(5): 689-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24786128

RESUMO

Kidney biopsies often show accumulation of lipids or lipidlike material. Evidence has been provided that lipids can directly initiate and contribute to the progression of glomerular and tubulointerstitial lesions. In this study we describe a renal lipidosis occurring in patients with a positive history of narcotic abuse who were enrolled in a methadone substitution program. All 3 patients presented with proteinuria (2.5-20 g/d) and impaired renal function. Renal biopsy revealed a pronounced extracellular and intracellular deposition of lipidlike material in the glomerular, interstitial, and tubular compartments. Known causes of lipid storage could be excluded clinically and morphologically. We consider this to be a distinct renal lipidosis associated with narcotic abuse, methadone intake, or intravenous abuse thereof.


Assuntos
Nefropatias/diagnóstico , Lipidoses/diagnóstico , Metadona/efeitos adversos , Tratamento de Substituição de Opiáceos/efeitos adversos , Adulto , Biópsia , Progressão da Doença , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Metabolismo dos Lipídeos , Lipidoses/metabolismo , Masculino , Metadona/uso terapêutico , Pessoa de Meia-Idade , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
16.
J Biomol Screen ; 19(1): 66-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24003057

RESUMO

Drug-induced phospholipidosis is characterized by the accumulation of intracellular phospholipids in cells exposed to cationic amphiphilic drugs. The appearance of unicentric or multicentric multilamellar bodies viewed under an electron microscope (EM) is the morphological hallmark of phospholipidosis. Although the EM method is the gold standard for detecting cellular phospholipidosis, this method has its drawbacks, including low throughput, high cost, and unsuitability for screening a large chemical library. In this study, a cell-based phospholipidosis assay has been developed using the LipidTOX Red reagent in HepG2 cells and miniaturized into a 1536-well plate format. To validate this assay for high-throughput screening (HTS), the LOPAC library of 1280 compounds was screened using a quantitative HTS platform. A group of known phospholipidosis inducers, such as amiodarone, propranolol, chlorpromazine, desipramine, promazine, clomipramine, and amitriptyline, was identified by the screen, consistent with previous reports. Several novel phospholipidosis inducers, including NAN-190, ebastine, GR127935, and cis-(Z)-flupentixol, were identified in this study and confirmed using the EM method. These results demonstrate that this assay can be used to evaluate and profile large numbers of chemicals for drug-induced phospholipidosis.


Assuntos
Ensaios de Triagem em Larga Escala , Lipidoses/diagnóstico , Lipidoses/metabolismo , Fosfolipídeos/metabolismo , Células Hep G2 , Humanos , Espaço Intracelular/metabolismo , Lipidoses/induzido quimicamente , Microscopia Eletrônica de Transmissão , Reprodutibilidade dos Testes
17.
Postepy Hig Med Dosw (Online) ; 66: 549-53, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22922155

RESUMO

Manganese (Mn) is an essential trace element, necessary for development and growth of the organism. The adequate content of this element in the body determines proper metabolism of amino acids, cholesterol and carbohydrates. This mineral influences activity of several enzymes involved in metabolic and redox processes. Mn absorption and retention disturbances may participate in etiopathogenesis of some diseases and disorders. This article is a review of knowledge about the role of Mn in etiopathogenesis and prevention of selected diseases: brain disorders, diabetes, lipid disturbances and cancers.


Assuntos
Encefalopatias/metabolismo , Diabetes Mellitus/metabolismo , Lipidoses/metabolismo , Manganês/metabolismo , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Aminoácidos/metabolismo , Animais , Encefalopatias/prevenção & controle , Colesterol/metabolismo , Diabetes Mellitus/prevenção & controle , Humanos , Metabolismo dos Lipídeos , Lipidoses/prevenção & controle , Manganês/farmacocinética , Neoplasias/prevenção & controle , Doenças do Sistema Nervoso/prevenção & controle , Oxirredução , Oligoelementos/metabolismo
18.
J Toxicol Sci ; 37(2): 261-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22467016

RESUMO

Intracellular accumulation of phospholipids with lamellar bodies is a hallmark of drug-induced phospholipidosis (PLD) which is caused by impaired phospholipid metabolism of the lysosome. Although it remains uncertain whether PLD is associated with the adverse effects, sponsors generally terminate the development of a candidate drug when PLD is observed in an organ. For drugs that are used without serious adverse events, there should be labels indicating that the drug can induce PLD. We conducted LipidTox and NBD-PE assays for detecting PLD to compare and validate the methods. In the case of contrary results in both assays, electron microscopy was performed to confirm the data. We selected 12 chemicals and divided them into 4 categories: P+S+, PLD and steatosis positive; P+/S-, PLD positive and steatosis negative; P-S+, PLD negative and steatosis positive; P-/S-, PLD and steatosis negative. In general, results showed very good agreement with the known information with some minor discrepancies. LipidTox assay is proven to be a very sensitive method. Considering the contrary results of acetaminophen and menadione in LipidTox and the NBD-PE assay, the combination of two methods using different phospholipids is advantageous to reduce false positives. The finding that acetaminophen was positive in LipidTos assay and increased the frequency of lamellar body implies that acetaminophen is a weak inducer of PLD.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatócitos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Testes de Toxicidade/métodos , Sobrevivência Celular/efeitos dos fármacos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Lipidoses/induzido quimicamente , Lipidoses/metabolismo , Microscopia Eletrônica de Transmissão
19.
Toxicol Pathol ; 40(4): 561-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22328411

RESUMO

To investigate the toxicity and carcinogenic potential of indole-3-carbinol (I3C), the National Toxicology Program has conducted 13-week subchronic studies in Fisher 344 rats and B6C3F1 mice, and chronic 2-year bioassays in Sprague-Dawley rats and B6C3F1 mice. While the chronic study results are not yet available, subchronic study results and short-term special evaluations of interim sacrifices in the 2-year rat bioassay are presented. F344 rats were orally gavaged ≤300 mg I3C/kg body weight 5 days a week for 13 weeks. Rats treated with ≥150 mg/kg demonstrated a dose-related dilation of lymphatics (lymphangiectasis) of the duodenum, jejunum, and mesenteric lymph nodes. Material within dilated lacteals stained positively for Oil Red O and Sudan Black, consistent with lipid. Electron microscopic evaluation confirmed extracellular lipid accumulation within the villar lamina propria, lacteals, and within villar macrophages. Analyses of hepatic and pulmonary CYP1A enzymes demonstrated dose-dependent I3C induction of CYP1A1 and 1A2. B6C3F1 mice orally gavaged ≤250 mg I3C/kg body weight did not demonstrate histopathological changes; however, hepatic CYP induction was similar to that in rats. The histopathologic changes of intestinal lymphangiectasis and lipidosis in this study share similarities with intestinal lymphangiectasia as observed in humans and dogs. However, the resultant clinical spectrum of protein-losing enteropathy was not present.


Assuntos
Indóis/toxicidade , Lipidoses/induzido quimicamente , Linfangiectasia Intestinal/induzido quimicamente , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Feminino , Histocitoquímica , Indóis/administração & dosagem , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Lipidoses/metabolismo , Lipidoses/patologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfonodos/patologia , Linfangiectasia Intestinal/metabolismo , Linfangiectasia Intestinal/patologia , Masculino , Camundongos , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Testes de Toxicidade Crônica , Testes de Toxicidade Subcrônica
20.
Toxicol In Vitro ; 25(8): 1934-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21767630

RESUMO

Phospholipidosis (PLD) in preclinical species can lead to regulatory delays thereby creating incentives to screen for PLD during drug discovery. The objective of this work was to compare, optimize, and validate in vitro PLD assays in primary mouse macrophages and hepatocyte- (HepG2, HuH7) or macrophage-derived cells lines (I.13.35, RAW264.7) and to evaluate whether primary cells were better at predicting PLD. Assay precision, determined by a measure of signal to noise window (Z'), within assay variability, and day-to-day variability, using amiodarone, was generally acceptable for all cell types; however, precision limits for HepG2 and HuH7 were slightly below assay acceptance criteria. Up to 66 known PLD inducers and non-inducers were subsequently tested to validate the assays. The concordance for predicting PLD in primary macrophages, I-13.35, RAW264.7, HuH7, and HepG2 cells was 91%, 74%, 73%, 62%, and 62% respectively using a decision limit of EC50≤125 µM as a positive finding. Increasing the number of negative controls tested in RAW264.7 cells and changing the decision limit to ≥4-fold increase in PLD, improved the specificity and overall concordance to 88%. RAW264.7 cells were selected as the primary screen for predicting PLD, and together with the primary macrophages, were integrated into an overall testing paradigm proposed for use in PLD risk identification.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatócitos/efeitos dos fármacos , Lipidoses/induzido quimicamente , Macrófagos Peritoneais/efeitos dos fármacos , Fosfolipídeos/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lipidoses/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Fosfatidiletanolaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA