Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
Reprod Toxicol ; 129: 108683, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39121978

RESUMO

The present study investigated the effect of adding allopathic doxorubicin (DOX 0.3 µg/mL), the vehicle of ultradiluted/dynamized doxorubicin (0.2 % ethanol), different dynamizations of ultradiluted/dynamized doxorubicin (DOX 6CH, DOX 12CH and DOX 30CH), both in the absence or presence of chemical stress induced by doxorubicin at 0.3 µg/mL on follicular survival and activation, antioxidant capacity of the medium, Catalase activity (CAT), production of reactive protein thiol, maintenance of type I and III collagen fibers and accumulation of lipofuscin in porcine ovarian tissue cultured in vitro for 48 hours. To do this, part of the ovarian tissue fragments was fixed for the uncultured control and the rest were cultured in: MEM (cultured control), DOX 0.3 µg/mL, Ethanol, DOX 6CH, DOX 12CH, DOX 30CH, DOX (0.3 µg/mL) + DOX 6CH, DOX (0.3 µg/mL) + DOX 12CH, DOX (0.3 µg/mL) + DOX 30CH treatments. The results showed that, in general, ultradiluted/dynamized doxorubicin (DOX 6CH, DOX 12CH and DOX 30CH) mitigated the toxic effect of allopathic doxorubicin (0.3 µg/mL) on the morphology of preantral follicles, the content of type I and III collagen fibers, and the production of lipofuscin in the tissue. However, only DOX (0.3 µg/mL) + DOX 6CH attenuated the oxidative stress induced by DOX (0.3 µg/mL), maintaining adequate CAT activity that was similar to the uncultured control. Additionally, when the three isolated ultradiluted/dynamized doxorubicin were considered, only DOX 12CH increased the reduced thiol levels compared to the uncultured control and MEM. In conclusion, supplementing the culture medium with ultradiluted/dynamized DOX (DOX 6CH, DOX 12CH and DOX 30CH) attenuated the toxicity induced by allopathic doxorubicin during the in vitro culture of pig preantral follicles enclosed in ovarian tissue.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Folículo Ovariano , Animais , Doxorrubicina/toxicidade , Feminino , Suínos , Antibióticos Antineoplásicos/toxicidade , Folículo Ovariano/efeitos dos fármacos , Catalase/metabolismo , Técnicas de Cultura de Tecidos , Lipofuscina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Colágeno Tipo I/metabolismo , Ovário/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Colágeno Tipo III/metabolismo
2.
J Dent Res ; 103(8): 800-808, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38877743

RESUMO

Most of the elderly population is afflicted by periodontal diseases, creating a health burden worldwide. Cellular senescence is one of the hallmarks of aging and associated with several chronic comorbidities. Senescent cells produce a variety of deleterious secretions, collectively termed the senescence-associated secretory phenotype (SASP). This disrupts neighboring cells, leading to further senescence propagation and inciting chronic inflammation, known as "inflammaging." Detrimental repercussions within the tissue microenvironment can trigger senescence at a younger age, accelerate biological aging, and drive the initiation or progression of diseases. Here, we investigated the biological signatures of senescence in healthy and diseased gingival tissues by assessing the levels of key senescence markers (p16, lipofuscin, and ß-galactosidase) and inflammatory mediators (interleukin [IL]-1ß, IL-6, IL-8, matrix metalloproteinase [MMP]-1, MMP-3, and tumor necrosis factor-α). Our results showed significantly increased senescence features including p16, lipofuscin, and ß-galactosidase in both epithelial and connective tissues of periodontitis patients compared with healthy sites in all age groups, indicating that an inflammatory microenvironment can trigger senescence-like alterations in younger diseased gingival tissues as well. Subsequent analyses using double staining with specific cell markers noted the enrichment of ß-galactosidase in fibroblasts and macrophages. Concurrently, inflammatory mediators consistent with SASP were increased in the gingival biopsies obtained from periodontitis lesions. Together, our findings provide the first clinical report revealing susceptibility to elevated senescence and inflammatory milieu consistent with senescence secretome in gingival tissues, thus introducing senescence as one of the drivers of pathological events in the oral mucosa and a novel strategy for targeted interventions.


Assuntos
Senescência Celular , Gengiva , Lipofuscina , Periodontite , beta-Galactosidase , Humanos , Senescência Celular/fisiologia , beta-Galactosidase/metabolismo , beta-Galactosidase/análise , Pessoa de Meia-Idade , Adulto , Periodontite/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Lipofuscina/metabolismo , Lipofuscina/análise , Masculino , Idoso , Feminino , Metaloproteinase 3 da Matriz/análise , Fenótipo Secretor Associado à Senescência , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/análise , Metaloproteinase 1 da Matriz/análise , Metaloproteinase 1 da Matriz/metabolismo , Interleucina-1beta/análise , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/análise , Mediadores da Inflamação/metabolismo , Biomarcadores/análise , Interleucina-8/análise , Interleucina-8/metabolismo , Adulto Jovem
3.
Biomolecules ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927133

RESUMO

Lipid peroxidation plays an important role in various pathologies and aging, at least partially mediated by ferroptosis. The role of mitochondrial lipid peroxidation during ferroptosis remains poorly understood. We show that supplementation of exogenous iron in the form of ferric ammonium citrate at submillimolar doses induces production of reactive oxygen species (ROS) and lipid peroxidation in mitochondria that precede ferroptosis in H9c2 cardiomyocytes. The mitochondria-targeted antioxidant SkQ1 and the redox mediator methylene blue, which inhibits the production of ROS in complex I of the mitochondrial electron transport chain, prevent both mitochondrial lipid peroxidation and ferroptosis. SkQ1 and methylene blue also prevented accumulation of lipofuscin observed after 24 h incubation of cardiomyocytes with ferric ammonium citrate. Using isolated cardiac mitochondria as an in vitro ferroptosis model, it was shown that rotenone (complex I inhibitor) in the presence of ferrous iron stimulates lipid peroxidation and lipofuscin accumulation. Our data indicate that ROS generated in complex I stimulate mitochondrial lipid peroxidation, lipofuscin accumulation, and ferroptosis induced by exogenous iron.


Assuntos
Ferroptose , Ferro , Peroxidação de Lipídeos , Lipofuscina , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Peroxidação de Lipídeos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Lipofuscina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Linhagem Celular , Compostos de Amônio Quaternário/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Azul de Metileno/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Compostos Férricos , Plastoquinona/análogos & derivados
4.
Chemosphere ; 361: 142560, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851504

RESUMO

Microplastics (MPs) are ubiquitous environmental contaminants that exert multiple toxicological effects. Current studies have mainly focused on modeled or unaged MPs, which lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging polystyrene (PS) have not been well studied, and the role of EPFRs on the toxic effects of photoaged PS is easily ignored. Photoaging primarily produces EPFRs, followed by an increase in reactive oxygen species (ROS) content and oxidative potential, which alter the physicochemical properties of photoaged PS. The mean lifespan and lipofuscin content were significantly altered after acute exposure to photoaged PS for 45 d (PS-45) and 60 d (PS-60) in Caenorhabditis elegans. Intestinal ROS and gst-4::GFP expression were enhanced, concomitant with the upregulation of associated genes. Treatment with N-acetyl-l-cysteine by radical quenching test significantly decreased EPFRs levels on the aged PS and inhibited the acceleration of the aging and oxidative stress response in nematodes. Pearson's correlation analysis also indicated that the EPFRs levels were significantly associated with these factors. Thus, the EPFRs generated on photoaged PS contribute to the acceleration of aging by oxidative stress. This study provides new insights into the potential toxicity and highlights the need to consider the role of EPFRs in the toxicity assessment of photoaged PS.


Assuntos
Caenorhabditis elegans , Longevidade , Microplásticos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Animais , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Radicais Livres/metabolismo , Poliestirenos/toxicidade , Lipofuscina/metabolismo , Poluentes Ambientais/toxicidade
5.
Free Radic Biol Med ; 221: 273-282, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38740102

RESUMO

Defective mitochondria and autophagy, as well as accumulation of lipid and iron in WDR45 mutant fibroblasts, is related to beta-propeller protein-associated neurodegeneration (BPAN). In this study, we found that enlarged lysosomes in cells derived from patients with BPAN had low enzyme activity, and most of the enlarged lysosomes had an accumulation of iron and oxidized lipid. Cryo-electron tomography revealed elongated lipid accumulation, and spectrometry-based elemental analysis showed that lysosomal iron and oxygen accumulation superimposed with lipid aggregates. Lysosomal lipid aggregates superimposed with autofluorescence as free radical generator, lipofuscin. To eliminate free radical stress by iron accumulation in cells derived from patients with BPAN, we investigated the effects of the iron chelator, 2,2'-bipyridine (bipyridyl, BIP). To study whether the defects in patient-derived cells can be rescued by an iron chelator BIP, we tested whether the level of iron and reactive oxygen species (ROS) in the cells and genes related to oxidative stress were rescued BIP treatment. Although BIP treatment decreased some iron accumulation in the cytoplasm and mitochondria, the accumulation of iron in the lysosomes and levels of cellular ROS were unaffected. In addition, the change of specific RNA levels related to free radical stress in patient fibroblasts was not rescued by BIP. To alleviate free radical stress, we investigated whether l-serine can regulate abnormal structures in cells derived from patients with BPAN through the regulation of free radical stress. l-serine treatment alleviated increase of enlarged lysosomes and iron accumulation and rescued impaired lysosomal activity by reducing oxidized lipid accumulation in the lysosomes of the cells. Lamellated lipids in the lysosomes of the cells were identified as lipofuscin through correlative light and electron microscopy, and l-serine treatment reduced the increase of lipofuscin. These data suggest that l-serine reduces oxidative stress-mediated lysosomal lipid oxidation and iron accumulation by rescuing lysosomal activity.


Assuntos
Fibroblastos , Ferro , Lipofuscina , Lisossomos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Serina , Humanos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Lipofuscina/metabolismo , Ferro/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/tratamento farmacológico , Distrofias Neuroaxonais/genética , 2,2'-Dipiridil/farmacologia , 2,2'-Dipiridil/análogos & derivados , Quelantes de Ferro/farmacologia
6.
Exp Brain Res ; 242(4): 971-986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430248

RESUMO

The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Idoso , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo , Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Doenças Neurodegenerativas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Autofagia
7.
Food Funct ; 15(7): 3353-3364, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38481358

RESUMO

Cyclocodon lancifolius fruit is a promising commercial fruit with antioxidant activity and is rich in polyphenolic compounds. In this study, the anti-aging activity of C. lancifolius fruit extract (CF) on Caenorhabditis elegans (C. elegans) was evaluated by observing the longevity, stress response, reproduction, oscillation, lipofuscin, and antioxidant enzymes of worms. Moreover, the effects and potential mechanisms of CF on delaying C. elegans senescence at the mRNA and metabolite levels were investigated. The results showed that CF treatment significantly increased the lifespan and stress resistance, decreased the levels of lipofuscin and reactive oxygen species (ROS), and improved the antioxidant system of C. elegans. The extension of the lifespan of C. elegans was remarkably correlated with the upregulation of mtl-1 and Hsp-16.2, along with the downregulation of age-1, daf-2, and akt-1. Metabolomics analysis revealed that purine metabolism is a key regulatory pathway for CF to exert anti-aging effects. The present study suggests that C. lancifolius fruit has potential for use as a functional food to enhance antioxidant capacity and delay aging.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Longevidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Frutas/metabolismo , Lipofuscina/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Purinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo
8.
Aging (Albany NY) ; 15(21): 11764-11781, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37950722

RESUMO

Aging is a continuous degenerative process caused by a progressive decline of cell and tissue functions in an organism. It is induced by the accumulation of damage that affects normal cellular processes, ultimately leading to cell death. It has been speculated for many years that mitochondria play a key role in the aging process. In the aim of characterizing the implications of mitochondria in aging, here we used Caenorhabditis elegans (C. elegans) as an organismal model treated a panel of mitochondrial inhibitors and assessed for survival. In our study, we assessed survival by evaluating worm lifespan, and we assessed aging markers by evaluating the pharyngeal muscle contraction, the accumulation of lipofuscin pigment and ATP levels. Our results show that treatment of worms with either doxycycline, azithromycin (inhibitors of the small and the large mitochondrial ribosomes, respectively), or a combination of both, significantly extended median lifespan of C. elegans, enhanced their pharyngeal pumping rate, reduced their lipofuscin content and their energy consumption (ATP levels), as compared to control untreated worms, suggesting an aging-abrogating effect for these drugs. Similarly, DPI, an inhibitor of mitochondrial complex I and II, was capable of prolonging the median lifespan of treated worms. On the other hand, subjecting worms to vitamin C, a pro-oxidant, failed to extend C. elegans lifespan and upregulated its energy consumption, revealing an increase in ATP level. Therefore, our longevity study reveals that mitochondrial inhibitors (i.e., mitochondria-targeting antibiotics) could abrogate aging and extend lifespan in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Antibacterianos/farmacologia , Lipofuscina/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Nat Commun ; 14(1): 7060, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923732

RESUMO

Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.


Assuntos
Lipofuscina , Microglia , Camundongos , Humanos , Animais , Microglia/metabolismo , Lipofuscina/metabolismo , Sistema Nervoso Central/metabolismo , Macrófagos/metabolismo , Microscopia Confocal
10.
Environ Pollut ; 332: 121954, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271365

RESUMO

Although polystyrene (PS)-induced toxicity in organisms has been documented, adverse effects on lifespan and molecular mechanisms underlying microbial colonization of PS remain elusive. Herein, physicochemical properties of biofilm-developed PS (B-PS) incubated in wastewater were altered compared with virgin PS (V-PS). Bacterial community adherence to the B-PS surface were also impacted. Acute exposure to V-PS (100 µg/L) and B-PS (10 µg/L) significantly altered the mean lifespan and lipofuscin accumulation of Caenorhabditis elegans, suggesting that B-PS exposure at environmentally relevant concentrations could more severely accelerate the aging process than V-PS. Generation of ROS, gst-4::GFP expression, and oxidative stress-related gene expression were significantly altered following B-PS exposure. Moreover, B-PS exposure increased the nucleus-cytoplasm translocation of DAF-16 and altered the expression of genes encoding the insulin/IGF1 signaling (IIS) pathway. Compared with wild-type nematodes, the daf-16 mutation markedly enhanced lipofuscin accumulation and reduced mean lifespan, whereas daf-2, age-1, pdk-1, and akt-1 mutants could recover lipofuscin accumulation and mean lifespan. Accordingly, B-PS exposure accelerated the aging process associated with oxidative stress and the IIS pathway, and the DAF-2-AGE-1-PDK-1-AKT-1-DAF-16 signaling cascade may play a critical role in regulating the lifespan of C. elegans. This study provides new insights into the potential risks associated with microbial colonization of microplastics.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Águas Residuárias , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipofuscina/metabolismo , Estresse Oxidativo , Longevidade , Transdução de Sinais , Poliestirenos/metabolismo , Envelhecimento
11.
Phytomedicine ; 117: 154916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327643

RESUMO

BACKGROUND: With population aging, the incidence of aging-related Alzheimer's disease (AD) is increasing, accompanied by decreased autophagy activity. At present, Caenorhabditis elegans (C. elegans) is widely employed to evaluate autophagy and in research on aging and aging-related diseases in vivo. To discover autophagy activators from natural medicines and investigate their therapeutic potential in antiaging and anti-AD effects, multiple C. elegans models related to autophagy, aging, and AD were used. METHOD: In this study, we employed the DA2123 and BC12921 strains to discover potential autophagy inducers using a self-established natural medicine library. The antiaging effect was evaluated by determining the lifespan, motor ability, pumping rate, lipofuscin accumulation of worms, and resistance ability of worms under various stresses. In addition, the anti-AD effect was examined by detecting the paralysis rate, food-sensing behavior, and amyloid-ß and Tau pathology in C. elegans. Moreover, RNAi technology was used to knock down the genes related to autophagy induction. RESULTS: We discovered that Piper wallichii extract (PE) and the petroleum ether fraction (PPF) activated autophagy in C. elegans, as evidenced by increased GFP-tagged LGG-1 foci and decreased GFP-p62 expression. In addition, PPF extended the lifespan and enhanced the healthspan of worms by increasing body bends and pumping rates, decreasing lipofuscin accumulation, and increasing resistance to oxidative, heat, and pathogenic stress. Moreover, PPF exhibited an anti-AD effect by decreasing the paralysis rate, improving the pumping rate and slowing rate, and alleviating Aß and Tau pathology in AD worms. However, the feeding of RNAi bacteria targeting unc-51, bec-1, lgg-1, and vps-34 abolished the antiaging and anti-AD effects of PPF. CONCLUSION: Piper wallichii may be a promising drug for antiaging and anti-AD. More future studies are also needed to identify autophagy inducers in Piper wallichii and clarify their molecular mechanisms.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Longevidade , Peptídeos beta-Amiloides/metabolismo , Paralisia , Autofagia , Estresse Oxidativo
13.
J Food Sci ; 88(4): 1566-1579, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36798018

RESUMO

To evaluate infrared radiation (IR) blanching in comparison to conventional hot water (HW) blanching in inhibiting the browning and extending the shelf life of pecan kernels, the technology of IR blanching at 500-700 W for 90-45 s or HW blanching at 90°C for 60 s, and subsequently drying with hot air at 60, 70, and 80°C, respectively, was used, and then the activities of lipoxidase (LOX) and polyphenol oxidase (PPO), antioxidant capacities, color change, microscopic structure, and the shelf life of kernels were analyzed. Results showed that IR blanching not only significantly decreased the subsequent drying time but also effectively inactivated the activities of LOX and PPO, showing a lower residual activity of 15.74%-40.41% and 16.75%-56.25%, respectively. A higher retention of total phenolics was observed in kernels subjected to IR blanching, from 25.03 ± 0.04 to 29.50 ± 0.96 mg GAE/g compared with HW blanching (14.43 ± 0.07 mg GAE/g). Meanwhile, IR-blanched samples showed lower peroxide values, p-anisidine values, total color difference values, browning index, quinones contents, and lipofuscin-like pigments levels but had higher 2,2-diphenyl-1-picrylhydrazyl inhibition rate and better storage stabilities than HW-blanched samples. The technology of IR blanching at 600 W for 60 s followed by drying with hot air at 70°C for 40 min is suitable for producing pecan kernels with better qualities and a longer shelf life, through inactivating the endogenous enzymatic reactions and inhibiting the formation of lipofuscin-like pigments. PRACTICAL APPLICATION: Blanching is an essential pretreatment of food processing. Conventional blanching is achieved by hot water, which has some disadvantages of low-intensity enzyme inactivation, loss of water-soluble substances, etc. In this study, the potential of using infrared blanching, prior to drying, was studied to find solutions to improve the nutritional value, and the shelf life of pecan kernels. The results showed that infrared blanching at 600 W for 60 s followed by drying with hot air at 70°C for 40 min could inhibit the color degradation, improve the oxidation resistance, and prolong the shelf life of kernels.


Assuntos
Carya , Lipofuscina , Cor , Antioxidantes/química , Água/química , Catecol Oxidase
14.
Fish Shellfish Immunol ; 132: 108480, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36513323

RESUMO

Melanomacrophagic centers (MMCs) were studied in the hepatocytes of zebrafish using transmission electron microscope (TEM). The MMCs with irregular or amoeboid nucleus were located in the hepatocytes adjacent to the bile canaliculi. Several engulfed structures were present in the cytoplasm of MMCs. The most frequent observation was the presence of mitochondria, ranging in size from small to giant, with distorted shape and inconspicuous cristae. Occasionally the fragments of erythrocytes were found. The rough endoplasmic reticulum (rER) showed whirling around the mitochondria and lipid droplets, forming membrane-like structures. The damaged mitochondria were invaded by the lysosomes, and this was covered by a membrane led to the formation of lipofuscin. Four different types of lipofuscins were observed; namely, (1) granular with/without vacuoles of high electron-density, (2) homogenous surrounded by indistinct limiting membrane, (3) lamellated structures similar to inner matrix and cristae of mitochondria, and, (4) compound structure made by the combinations of first 3 types, (granular and homogenous, granular and lamellated, homogenous and lamellated). The present evidence suggests that MMCs in the hepatocytes of zebrafish perform continuous functions of removal of the damaged cellular organelles. The lipofuscin formation work in coordination with the cellular players of immune system and remove pathogens and maintain the internal homeostasis of cells.


Assuntos
Lipofuscina , Peixe-Zebra , Animais , Hepatócitos/ultraestrutura , Lisossomos , Retículo Endoplasmático/ultraestrutura
15.
Autophagy ; 19(1): 204-223, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35506243

RESUMO

Mutations in DNAJC5/CSPα are associated with adult neuronal ceroid lipofuscinosis (ANCL), a dominant-inherited neurodegenerative disease featuring lysosome-derived autofluorescent storage materials (AFSMs) termed lipofuscin. Functionally, DNAJC5 has been implicated in chaperoning synaptic proteins and in misfolding-associated protein secretion (MAPS), but how DNAJC5 dysfunction causes lipofuscinosis and neurodegeneration is unclear. Here we report two functionally distinct but coupled chaperoning activities of DNAJC5, which jointly regulate lysosomal homeostasis: While endolysosome-associated DNAJC5 promotes ESCRT-dependent microautophagy, a fraction of perinuclear and non-lysosomal DNAJC5 mediates MAPS. Functional proteomics identifies a previously unknown DNAJC5 interactor SLC3A2/CD98hc that is essential for the perinuclear DNAJC5 localization and MAPS but dispensable for microautophagy. Importantly, uncoupling these two processes, as seen in cells lacking SLC3A2 or expressing ANCL-associated DNAJC5 mutants, generates DNAJC5-containing AFSMs resembling NCL patient-derived lipofuscin and induces neurodegeneration in a Drosophila ANCL model. These findings suggest that MAPS safeguards microautophagy to avoid DNAJC5-associated lipofuscinosis and neurodegeneration.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AFSM: autofluorescent storage materials; ANCL: adult neuronal ceroid lipofuscinosis; Baf. A1: bafilomycin A1; CLN: ceroid lipofuscinosis neuronal; CLU: clusterin; CS: cysteine string domain of DNAJC5/CSPα; CUPS: compartment for unconventional protein secretion; DN: dominant negative; DNAJC5/CSPα: DnaJ heat shock protein family (Hsp40) member C5; eMI: endosomal microautophagy; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; INCL: infant neuronal ceroid lipofuscinosis; JNCL: juvenile neuronal ceroid lipofuscinosis; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAPTM4B: lysosomal protein transmembrane 4 beta; LN: linker domain of DNAJC5/CSPα; MAPS: misfolding-associated protein secretion; mCh/Ch: mCherry; mCi/Ci: mCitrine; MTOR: mechanistic target of rapamycin kinase; NCL: neuronal ceroid lipofuscinosis; PPT1: palmitoyl-protein thioesterase 1; PQC: protein quality control; SBP: streptavidin binding protein; SGT: small glutamine-rich tetratricopeptide repeat; shRNA: short hairpin RNA; SLC3A2/CD98hc: solute carrier family 3 member 2; SNCA/α-synuclein: synuclein alpha; TMED10: transmembrane p24 trafficking protein 10; UV: ultraviolet; VPS4: vacuolar protein sorting 4 homolog; WT: wild type.


Assuntos
Proteínas de Choque Térmico HSP40 , Proteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Humanos , Autofagia/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Lipofuscina , Proteínas de Membrana/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Proteínas de Choque Térmico HSP40/genética
16.
FEBS J ; 290(5): 1314-1325, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35527516

RESUMO

A new method for senescent cell detection is described, which is based on lipofuscin labeling with a fluorescent reporter through a biorthogonal strain-promoted azide-alkyne cycloaddition. The sensing protocol involves a first step where the interaction of lipofuscin with a Sudan Black B derivative containing an azide moiety (SBB-N3 ) is carried out. In the final step, the azide moiety reacts with a fluorophore containing a cyclooctene ring (BODIPY). The efficacy of this two-step protocol is assessed in senescent melanoma SK-MEL-103 cells, senescent triple-negative breast cancer MDA-MB-231 cells and senescent WI-38 fibroblasts. In all cases, a clear fluorescence pattern was observed in senescent cells, compared to proliferative cells, only when the SBB-N3 -BODIPY probe was formed. Our results provide an alternative tool for the detection of senescent cells, based on an in situ bio-orthogonal reaction for lipofuscin labeling.


Assuntos
Azidas , Lipofuscina , Alcinos , Reação de Cicloadição , Corantes Fluorescentes , Senescência Celular
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122002, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36274538

RESUMO

A fast calculation method was used to obtain the spectral optical properties of human normal and pathological (chromophobe renal cell carcinoma) kidney tissues. Using total transmittance, total reflectance and collimated transmittance spectra acquired from ex vivo kidney samples, the spectral optical properties of both tissues, namely the absorption, the scattering and the reduced scattering coefficients, as well as the scattering anisotropy, dispersion and light penetration depth, were calculated between 200 and 1000 nm. Analysis of the mean absorption coefficient spectra of the kidney tissues showed that both contain melanin and lipofuscin, and that 83 % of the melanin in the normal kidney converts into lipofuscin in the pathological kidney.


Assuntos
Lipofuscina , Melaninas , Humanos , Espalhamento de Radiação , Anisotropia , Rim
18.
Redox Biol ; 59: 102578, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566738

RESUMO

Conventional techniques for in vitro cancer drug screening require labor-intensive formalin fixation, paraffin embedding, and dye staining of tumor tissues at fixed endpoints. This way of assessment discards the valuable pharmacodynamic information in live cells over time. Here, we found endogenous lipofuscin-like autofluorescence acutely accumulated in the cell death process. Its unique red autofluorescence could report the apoptosis without labeling and continuously monitor the treatment responses in 3D tumor-culture models. Lifetime imaging of lipofuscin-like red autofluorescence could further distinguish necrosis from apoptosis of cells. Moreover, this endogenous fluorescent marker could visualize the apoptosis in live zebrafish embryos during development. Overall, this study validates that lipofuscin-like autofluorophore is a generic cell death marker. Its characteristic autofluorescence could label-free predict the efficacy of anti-cancer drugs in organoids or animal models.


Assuntos
Lipofuscina , Neoplasias , Animais , Lipofuscina/metabolismo , Peixe-Zebra/metabolismo , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Coloração e Rotulagem
19.
Ter Arkh ; 94(4): 473-478, 2022 May 26.
Artigo em Russo | MEDLINE | ID: mdl-36286795

RESUMO

AIM: To compare efficiency and specific features of transthyretin amyloid staining by different histological dyes and thus to assess their suitability for diagnostic purposes. MATERIALS AND METHODS: Samples of left and right heart ventricles were taken from patients over 70 years-old of both genders (n=10) with immunohistochemically verified transthyretin amyloidosis (ATTR). All samples were stained with Congo red, Alcian blue, toluidine blue and methylene violet. RESULTS: Specificity and sensitivity of Congo red staining was comparable to those of immunohistochemical staining. For verification of amyloid presence after Congo red staining one could use fluorescent microscopy instead of polarization microscopy. It allows a more accurate diagnosis of amyloidosis. Confocal microscopy with spectral unmixing improves detection sensitivity of amyloid by elimination of background fluorescence of muscle tissue and autofluorescence of lipofuscin. Alcian blue staining gives the same result as Congo red. In addition, its less labor-intensive and free of false-positive and false-negative results caused by final processing of slide preparation. Toluidine blue and methylene violet develop metachromatic staining upon binding to transthyretin fibrils, likely due to specific biochemical features of these fibrils. CONCLUSION: The most reliable method for histochemical diagnosis of ATTR is the Congo red staining with subsequent analysis using fluorescence or confocal microscopy. For diagnostic screening, the use of Sodium sulphate-Alcian blue staining method is highly promising. Metachromatic stains are less effective for ATTR diagnosis.


Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatias , Humanos , Feminino , Masculino , Idoso , Vermelho Congo , Cloreto de Tolônio , Pré-Albumina , Azul Alciano , Lipofuscina , Amiloide/análise , Amiloide/metabolismo , Neuropatias Amiloides Familiares/diagnóstico , Corantes , Cardiomiopatias/diagnóstico
20.
Stem Cell Reports ; 17(11): 2381-2391, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36270284

RESUMO

Immunodeficient mice are widely used in human stem cell transplantation research. Recombination activating gene 1 (Rag1) deletion results in immunodeficiency and leads to accelerated aging in zebrafish with increased cytosolic accumulation of lipofuscin (LF). Unlike zebrafish, mammals have two homologs, Rag1 and Rag2, that regulate adaptive immunity. Currently, little is known if and how Rag1-/- and Rag2-/- may impact aging and LF accumulation in immunodeficient mouse brains and how this may confound results in human neural cell transplantation studies. Here, we demonstrate that in Rag2-/- mouse brains, LF appears early, spreads broadly, emits strong autofluorescence, and accumulates with age. LF is found in various types of glial cells, including xenografted human microglia. Surprisingly, in Rag1-/- mouse brains, LF autofluorescence is seen at much older ages compared with Rag2-/- brains. This study provides direct evidence that Rag2-/- expedites LF occurrence and sets a context for studies using aged immunodeficient mice.


Assuntos
Lipofuscina , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA