RESUMO
Investigating and identifying pathogenic molecules of non-alcoholic fatty liver disease (NAFLD) has become imperative, which would serve as effective targets in the future. We established high-fat diet (HFD)-induced NAFLD model in mice and palmitic acid (PA)-induced model in mouse AML12 cells. The level of miR-218-5p was examined by qRT-PCR, and Elovl5 was identified as the potential target gene of miR-218-5p. The binding relationship between miR-218-5p and Elovl5 was validated by double luciferase reporter gene assay, and inhibition/overexpression of miR-218-5p in vitro. The functional mechanisms of miR-218-5p/Elovl5 in regulating lipogenesis in NAFLD were investigated in vivo and in vitro through gain- and loss-of-function studies. MiR-218-5p was significantly increased, and Elovl5 was decreased in model group. According to the double luciferase reporter and gene interference experiments in AML12 cells, Elovl5 was a target gene of miR-218-5p and its expression was regulated by miR-218-5p. The SREBP1-mediated lipogenesis signaling pathway regulated by Elovl5 was upregulated in model group. Moreover, silencing of miR-218-5p significantly upregulated Elovl5 expression, and suppressed SREBP1 signaling pathway in PA-induced AML-12 cells. Correspondingly, the cell injury, elevated TC, TG contents and lipid droplet accumulation were ameliorated. Furthermore, the effect of miR-218-5p on lipogenesis in vitro and in vivo was obstructed by si-Elovl5, implicating that miR-218-5p promotes lipogenesis by targeting ELOVL5 in NAFLD. miR-218-5p could promote fatty acid synthesis by targeting Elovl5, thereby accelerating the development of NAFLD, which is one of the key pathogenic mechanisms of NAFLD and provides a new molecular target for the management of NAFLD.
Assuntos
Elongases de Ácidos Graxos , Lipogênese , Camundongos Endogâmicos C57BL , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Lipogênese/genética , Lipogênese/fisiologia , Camundongos , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Masculino , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Linhagem Celular , Acetiltransferases/genética , Acetiltransferases/metabolismoRESUMO
BACKGROUND: Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet ß cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS: db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS: In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS: PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.
Assuntos
Trifosfato de Adenosina , Conexinas , Gluconeogênese , Lipogênese , Fígado , Proteínas do Tecido Nervoso , Animais , Conexinas/metabolismo , Camundongos , Gluconeogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Trifosfato de Adenosina/metabolismo , Lipogênese/fisiologia , Fígado/metabolismo , Camundongos Knockout , Masculino , Humanos , Dieta Hiperlipídica/efeitos adversos , CitocinasRESUMO
BACKGROUND AND AIMS: Hepatic lipogenesis is elevated in nutrient abundant conditions to convert the excess carbohydrate into triacylglycerol (TAG). Fatty acyl moiety of TAG is eventually transported into adipose tissues by very low density lipoprotein, leading to the accumulation of TAG as a preferred storage form of excess energy. Disruption of the balance between TAG clearance and synthesis leads to the accumulation of lipids in the liver, leading to the progression of non-alcoholic fatty liver disease (NAFLD) including non-alcoholic steatohepatitis. Protein arginine methyltransferase (PRMT) 6 has been linked to the various metabolic processes including hepatic gluconeogenesis, muscle atrophy and lipodystrophy in mouse models. However, the role of PRMT6 in the control of hepatic lipogenesis has not been elucidated to date. METHODS: We assessed the interaction between PRMT6 and LXR alpha by using co-immunoprecipitation assay. The specific arginine residue of LXR alpha that is methylated by PRMT6 was assessed by LC-MS/MS assay and the functional consequences of LXR alpha methylation was explored by mSREBP-1c luciferase assay. The effect of PRMT6 on hepatic lipogenesis was assessed by adenovirus-mediated ectopic expression of PRMT6 or knockdown of PRMT6 via shRNA in hepatocytes. Finally, the role of PRMT6 in hepatic lipid metabolism in vivo was explored by either ectopic expression of LXR alpha mutant that is defective in PRMT6-mediated arginine methylation or knockdown of PRMT6 in liver. RESULTS: We found that promoter activity of sterol regulatory element binding protein (SREBP) 1c is robustly activated by PRMT6. Interestingly, we demonstrated that PRMT6 binds to LXR alpha, a transcription factor for SREBP-1c, via its LXXLL motif, leading to the asymmetric dimethylation of an arginine residue and activation of this protein. Indeed, ectopic expression of PRMT6 in hepatocytes led to the enhanced expression of LXR alpha target genes in the lipogenic pathway. Conversely, genetic or pharmacological inhibition of PRMT6 diminished expression of lipogenic genes and the lipid accumulation in primary hepatocytes. Mechanistically, we found that asymmetric dimethylation of LXR alpha led to the dissociation of small heterodimer partner (SHP), a transcriptional co-inhibitor of this factor, resulting in the activation of LXR alpha-mediated transcriptional process. Finally, we showed that disruption of asymmetric dimethylation of LXR alpha in the liver led to the diminished expression of genes in the lipogenesis, resulting in the reduced hepatic lipid accumulation in high fat diet-fed mice in vivo. CONCLUSIONS: We showed that PRMT6 modulates LXR alpha activity by conferring asymmetric dimethylation of arginine 253, thus blocking SHP-mediated inhibition and promoting hepatic lipid accumulation. These results suggest that PRMT6 is critical in the control of lipid homeostasis by regulation of LXR alpha-mediated lipogenesis in the liver.
Assuntos
Arginina , Lipogênese , Receptores X do Fígado , Fígado , Proteína-Arginina N-Metiltransferases , Lipogênese/genética , Lipogênese/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Animais , Camundongos , Metilação , Fígado/metabolismo , Arginina/metabolismo , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Masculino , Humanos , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Células Hep G2 , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genéticaRESUMO
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Assuntos
Fígado Gorduroso , Lipogênese , Humanos , Lipogênese/fisiologia , Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismoRESUMO
BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Aberrant lipid metabolism and accumulation of extracellular matrix proteins are hallmarks of the disease, but the underlying mechanisms are largely unknown. This study aims to elucidate the key role of sine oculis homeobox homologue 1 (SIX1) in the development of NAFLD. METHODS: Alb-Cre mice were administered the AAV9 vector for SIX1 liver-specific overexpression or knockdown. Metabolic disorders, hepatic steatosis, and inflammation were monitored in mice fed with HFHC or MCD diet. High throughput CUT&Tag analysis was employed to investigate the mechanism of SIX1 in diet-induced steatohepatitis. RESULTS: Here, we found increased SIX1 expression in the livers of NAFLD patients and animal models. Liver-specific overexpression of SIX1 using adeno-associated virus serotype 9 (AAV9) provoked more severe inflammation, metabolic disorders, and hepatic steatosis in the HFHC or MCD-induced mice model. Mechanistically, we demonstrated that SIX1 directly activated the expression of liver X receptor α (LXRα) and liver X receptor ß (LXRß), thus inducing de novo lipogenesis (DNL). In addition, our results also illustrated a critical role of SIX1 in regulating the TGF-ß pathway by increasing the levels of type I and II TGF-ß receptor (TGFßRI/TGFßRII) in hepatic stellate cells (HSCs). Finally, we found that liver-specific SIX1 deficiency could ameliorate diet-induced NAFLD pathogenesis. CONCLUSION: Our findings suggest a detrimental function of SIX1 in the progression of NAFLD. The direct regulation of LXRα/ß and TGF-ß signalling by SIX1 provides a new regulatory mechanism in hepatic steatosis and fibrosis.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Lipogênese/fisiologia , Fígado/patologia , Fibrose , Inflamação/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Dieta HiperlipídicaRESUMO
De novo lipogenesis (DNL) is a critical metabolic process that provides the majority of lipids for adipocyte and liver tissue. In cancer, obesity, type II diabetes, and nonalcoholic fatty liver disease DNL becomes dysregulated. A deeper understanding of the rates and of subcellular organization of DNL is necessary for identifying how this dysregulation occurs and varies across individuals and diseases. However, DNL is difficult to study inside the cell because labeling lipids and their precursors is not trivial. Existing techniques either can only measure parts of DNL, like glucose uptake, or do not provide spatiotemporal resolution. Here, we track DNL in space and time as isotopically labeled glucose is converted to lipids in adipocytes using optical photothermal infrared microscopy (OPTIR). OPTIR provides submicron resolution infrared imaging of the glucose metabolism in both living and fixed cells while also reporting on the identity of lipids and other biomolecules. We show significant incorporation of the labeled carbons into triglycerides in lipid droplets over the course of 72 h. Live cells had better preservation of lipid droplet morphology, but both showed similar DNL rates. Rates of DNL, as measured by the ratio of 13C-labeled lipid to 12C-labeled lipid, were heterogeneous, with differences within and between lipid droplets and from cell to cell. The high rates of DNL measured in adipocyte cells match upregulated rates of DNL previously reported in PANC1 pancreatic cancer cells. Taken together, our findings support a model where DNL is locally regulated to meet energy needs within cells.
Assuntos
Diabetes Mellitus Tipo 2 , Lipogênese , Humanos , Adipócitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipogênese/fisiologia , Fígado/metabolismo , Triglicerídeos , Análise de Célula Única , Sobrevivência CelularRESUMO
Basic processes of the fatty acid metabolism have an important impact on the function of intestinal epithelial cells (IEC). However, while the role of cellular fatty acid oxidation is well appreciated, it is not clear how de novo fatty acid synthesis (FAS) influences the biology of IECs. We report here that interfering with de novo FAS by deletion of the enzyme Acetyl-CoA-Carboxylase (ACC)1 in IECs results in the loss of epithelial crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells (ISC). Mechanistically, ACC1-mediated de novo FAS supports the formation of intestinal organoids and the differentiation of complex crypt structures by sustaining the nuclear accumulation of PPARδ/ß-catenin in ISCs. The dependency of ISCs on cellular de novo FAS is tuned by the availability of environmental lipids, as an excess delivery of external fatty acids is sufficient to rescue the defect in crypt formation. Finally, inhibition of ACC1 reduces the formation of tumors in colitis-associated colon cancer, together highlighting the importance of cellular lipogenesis for sustaining ISC function and providing a potential perspective to colon cancer therapy.
Assuntos
Acetil-CoA Carboxilase , Lipogênese , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Lipogênese/fisiologia , Células-Tronco/metabolismoRESUMO
Somatostatin and its analogues, known as somatostatin receptor ligands (SRLs), have been reported to attenuate weight gain in some clinical settings. However, their direct effects on preadipocytes are barely investigated. Therefore, this study aimed to evaluate the influence of SRLs on preadipocytes and to further explore the potential mechanisms. Cell Counting Kit-8 assay, Oil Red O staining, triglyceride contents measurements, quantitative polymerase chain reaction (qPCR) and western blot were used to investigate the effects of SRLs on preadipocytes. We found that three SRLs (octreotide, TT232 and pasireotide) inhibited cell viability after 8-48 h but not 4 h. Further western blot results showed that they significantly suppressed activation of PI3K/Akt pathway. Besides, lipid accumulation was also significantly inhibited by these SRLs. Moreover, mRNA levels of some critical adipogenic markers, including Pparg, Cebpa, Fasn, Fabp4, Acaca and Lpl, were downregulated by the treatments of all these SRLs. Consistently, the protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα) and fatty acid synthase (FAS) was also suppressed by SRLs. SRLs inhibit the proliferation and lipogenesis in preadipocytes. Their inhibitory effects on cell proliferation may be mediated by the downregulated PI3K/Akt pathway, and the suppressive actions on lipogenesis may be related to the decreased PPARγ and C/EBPα expression.
Assuntos
Ligantes , Lipogênese , Receptores de Somatostatina , Somatostatina , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Proliferação de Células , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados , Somatostatina/farmacologiaRESUMO
AIMS: The endothelial dysfunction blocker CU06-1004 exhibits anti-inflammatory effects in chronic diseases. Obesity is a major cause of chronic inflammation, and the effect of CU06-1004 on obesity has not been studied yet. Therefore, in this study, we investigated the anti-obesity properties of CU06-1004 in 3T3-L1 adipocytes and high-fat diet-induced obese mice. METHODS: Differentiated 3T3-L1 adipocytes were treated with various concentrations of CU06-1004 (0-20 µg/mL) and subjected to Oil Red O staining to determine the levels of lipid droplet and intracellular triglyceride accumulation. Additionally, high-fat diet-induced obese C57BL/6J mice were administered with a low (10 mg/kg/day) or high (20 mg/kg/day) oral dose of CU06-1004. Finally, the expressions of genes and proteins involved in the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway were assessed by real-time polymerase chain reaction and Western blot, respectively. KEY FINDINGS: The CU06-1004 administration reduced lipid accumulation in the 3T3-L1 adipocytes by inhibiting the expressions of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, fatty acid binding protein 4, and fatty acid synthase in a dose-dependent manner. Additionally, it significantly increased the phosphorylation of AMPKα and acetyl-CoA carboxylase in the 3T3-L1 adipocytes. An oral administration of high dose of CU06-1004 in the obese mice significantly decreased their body weight and the mesenteric white adipose tissue weight. Furthermore, CU06-1004 improved hepatic steatosis by reducing lipogenesis, besides improving insulin resistance and exerting systemic anti-inflammatory effects. SIGNIFICANCE: CU06-1004 may have therapeutic potential in the prevention of obesity and obesity-related disorders.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipogênese/efeitos dos fármacos , Saponinas/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Diferenciação Celular/efeitos dos fármacos , Teste de Tolerância a Glucose , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND AND AIMS: NASH is associated with high levels of cholesterol and triglyceride (TG) in the liver; however, there is still no approved pharmacological therapy. Synthesis of cholesterol and TG is controlled by sterol regulatory element-binding protein (SREBP), which is found to be abnormally activated in NASH patients. We aim to discover small molecules for treating NASH by inhibiting the SREBP pathway. APPROACH AND RESULTS: Here, we identify a potent SREBP inhibitor, 25-hydroxylanosterol (25-HL). 25-HL binds to insulin-induced gene (INSIG) proteins, stimulates the interaction between INSIG and SCAP, and retains them in the endoplasmic reticulum, thereby suppressing SREBP activation and inhibiting lipogenesis. In NASH mouse models, 25-HL lowers levels of cholesterol and TG in serum and the liver, enhances energy expenditure to prevent obesity, and improves insulin sensitivity. 25-HL dramatically ameliorates hepatic steatosis, inflammation, ballooning, and fibrosis through down-regulating the expression of lipogenic genes. Furthermore, 25-HL exhibits both prophylactic and therapeutic efficacies of alleviating NASH and atherosclerosis in amylin liver NASH model diet-treated Ldlr-/- mice, and reduces the formation of cholesterol crystals and associated crown-like structures of Kupffer cells. Notably, 25-HL lowers lipid contents in serum and the liver to a greater extent than lovastatin or obeticholic acid. 25-HL shows a good safety and pharmacokinetics profile. CONCLUSIONS: This study provides the proof of concept that inhibiting SREBP activation by targeting INSIG to lower lipids could be a promising strategy for treating NASH. It suggests the translational potential of 25-HL in human NASH and demonstrates the critical role of SREBP-controlled lipogenesis in the progression of NASH by pharmacological inhibition.
Assuntos
Insulinas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipogênese/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Lovastatina/metabolismo , Insulinas/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Cannabidiol (CBD) is a non-psychoactive phytocannabinoid found in the Cannabis sativa plant. Human exposure to CBD can be through recreational marijuana use, commercially available CBD-containing products, and medical treatments. Previous studies found that cannabidiol may activate the master regulator of adipogenesis, peroxisome proliferator activated receptor gamma (PPARγ). Here we investigated the effects of CBD on adipogenesis in human and mouse multipotent mesenchymal stromal stem cells (MSCs). We tested the effects of CBD on nuclear receptor activation and adipogenic potential to demonstrate the mechanism of CBD effects and employed the in vitro MSC differentiation models to assess adipogenic effects of CBD.Using transient transfection assays, we demonstrated that CBD activated mouse and human PPARγ, but not its heterodimeric partner, the retinoid 'X' receptor, RXR. Our results showed that CBD increased lipid accumulation and the expression of adipogenic genes in mouse and human MSCs in vitro. Adipogenic differentiation induced by CBD was significantly decreased by the PPARγ antagonist T0070907, supporting the hypothesis that CBD promoted differentiation via PPARγ. Taken together, our results indicate that in humans and in mice, CBD induced adipogenic differentiation in MSCs through a PPARγ-dependent mechanism.
Assuntos
Adipogenia/efeitos dos fármacos , Canabidiol/farmacologia , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , PPAR gama/agonistas , Adipogenia/fisiologia , Animais , Benzamidas/farmacologia , Linhagem Celular Transformada , Humanos , Lipogênese/fisiologia , Lipólise/fisiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Piridinas/farmacologiaRESUMO
Obesity is a lipid metabolism disorder caused by genetic, medicinal, nutritional, and other environmental factors. It is characterized by a complex condition of excess lipid accumulation in adipocytes. Adipogenesis is a differentiation process that converts preadipocytes into mature adipocytes and contributes to excessive fat deposition. Saikosaponin A (SSA) and saikosaponin D (SSD) are triterpenoid saponins separated from the root of the Bupleurum chinensis, which has long been used to treat inflammation, fever, and liver diseases. However, the effects of these constituents on lipid accumulation and obesity are poorly understood. We investigated the anti-obesity effects of SSA and SSD in mouse 3T3-L1 adipocytes. The MTT assay was performed to measure cell viability, and Oil Red O staining was conducted to determine lipid accumulation. Various adipogenic transcription factors were evaluated at the protein and mRNA levels by Western blot assay and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Here, we showed that SSA and SSD significantly inhibited lipid accumulation without affecting cell viability within the range of the tested concentrations (0.938-15 µM). SSA and SSD also dose-dependently suppressed the expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c (SREBP-1c), and adiponectin. Furthermore, the decrease of these transcriptional factors resulted in the repressed expression of several lipogenic genes including fatty acid binding protein (FABP4), fatty acid synthase (FAS), and lipoprotein lipase (LPL). In addition, SSA and SSD enhanced the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase (ACC), and inhibited the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) and p38, but not c-Jun-N-terminal kinase (JNK). These results suggest that SSA and SSD inhibit adipogenesis through the AMPK or mitogen-activated protein kinase (MAPK) pathways in the early stages of adipocyte differentiation. This is the first study on the anti-adipogenic effects of SSA and SSD, and further research in animals and humans is necessary to confirm the potential of saikosaponins as therapeutic agents for obesity.
Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilato Quinase/efeitos dos fármacos , Adenilato Quinase/metabolismo , Adipogenia/genética , Adiponectina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Fármacos Antiobesidade/farmacologia , Bupleurum , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Lipogênese/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/tratamento farmacológico , Ácido Oleanólico/farmacologia , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismoRESUMO
Increasing evidence has demonstrated that long noncoding RNAs serve pivotal roles in tumor development, progression, metastasis and metabolism. However, to the best of our knowledge, the roles and molecular mechanisms of long intergenic nonproteincoding RNA 00514 (LINC00514) in esophageal squamous cell carcinoma (ESCC) remain unknown. The present study found that LINC00514 and sphingosine kinase 1 (SPHK1) were both upregulated in ESCC tissues and cells, and their high expression levels were closely associated with TumorNodeMetastasis stage, lymph node metastasis and poor prognosis of patients with ESCC. Functionally, knockdown of LINC00514 inhibited cell proliferation and invasion, and led to the downregulation of lipogenesisrelated proteins, including SPHK1, fatty acid synthase, acetylcoenzyme (Co)A carboxylase α and stearoylCoA desaturase 1, whereas LINC00514 overexpression promoted cell proliferation and invasion in ESCC KYSE150 and KYSE30 cells, and upregulated expression of lipogenesisrelated proteins. Mechanistically, LINC00514 functioned as a competing endogenous RNA by sponging microRNA (miR)378a5p, resulting in the upregulation of SPHK1, which was accompanied by the activation of lipogenesisrelated pathways, to promote ESCC cell proliferation and invasion. Taken together, these findings suggest that LINC00514 may participate in ESCC lipogenesis, and targeting the LINC00514/miR378a5p/SPHK1 signaling axis may be a novel and promising therapeutic strategy for management of patients with ESCC.
Assuntos
Neoplasias Esofágicas/etiologia , Carcinoma de Células Escamosas do Esôfago/etiologia , Lipogênese/fisiologia , MicroRNAs/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , RNA Longo não Codificante/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosfotransferases (Aceptor do Grupo Álcool)/genéticaRESUMO
In human neurodegenerative diseases, neurons can transfer toxic protein aggregates to surrounding cells, promoting pathology via poorly understood mechanisms. In Caenorhabditis elegans, proteostressed neurons can expel neurotoxic proteins in large, membrane-bound vesicles called exophers. We investigated how specific stresses impact neuronal trash expulsion to show that neuronal exopher production can be markedly elevated by oxidative and osmotic stress. Unexpectedly, we also found that fasting dramatically increases exophergenesis. Mechanistic dissection focused on identifying nonautonomous factors that sense and activate the fasting-induced exopher response revealed that DAF16/FOXO-dependent and -independent processes are engaged. Fasting-induced exopher elevation requires the intestinal peptide transporter PEPT-1, lipid synthesis transcription factors Mediator complex MDT-15 and SBP-1/SREPB1, and fatty acid synthase FASN-1, implicating remotely initiated lipid signaling in neuronal trash elimination. A conserved fibroblast growth factor (FGF)/RAS/MAPK signaling pathway that acts downstream of, or in parallel to, lipid signaling also promotes fasting-induced neuronal exopher elevation. A germline-based epidermal growth factor (EGF) signal that acts through neurons is also required for exopher production. Our data define a nonautonomous network that links food availability changes to remote, and extreme, neuronal homeostasis responses relevant to aggregate transfer biology.
Assuntos
Lipogênese/fisiologia , Estresse Fisiológico/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Genes ras/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Oxirredução , Transdução de SinaisRESUMO
Mitochondrial function is integrated with cellular status through the regulation of opposing mitochondrial fusion and division events. Here we uncover a link between mitochondrial dynamics and lipid metabolism by examining the cellular role of mitochondrial carrier homologue 2 (MTCH2). MTCH2 is a modified outer mitochondrial membrane carrier protein implicated in intrinsic cell death and in the in vivo regulation of fatty acid metabolism. Our data indicate that MTCH2 is a selective effector of starvation-induced mitochondrial hyperfusion, a cytoprotective response to nutrient deprivation. We find that MTCH2 stimulates mitochondrial fusion in a manner dependent on the bioactive lipogenesis intermediate lysophosphatidic acid. We propose that MTCH2 monitors flux through the lipogenesis pathway and transmits this information to the mitochondrial fusion machinery to promote mitochondrial elongation, enhanced energy production, and cellular survival under homeostatic and starvation conditions. These findings will help resolve the roles of MTCH2 and mitochondria in tissue-specific lipid metabolism in animals.
Assuntos
Proteínas de Transporte/metabolismo , Lipogênese/fisiologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Apoptose/fisiologia , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HCT116 , Humanos , Metabolismo dos Lipídeos/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Lagerstroemia speciosa (L.) Pers., commonly known as banaba and locally known as bungur, is widely used in Indonesia and other countries as a folk remedy for various chronic diseases such as diabetes mellitus and hypertension. L. speciosa (L.) Pers. has been used and evaluated on conditions associated to liver diseases by altering cholesterol absorption, lipid metabolism, as well as the related gene expressions. AIM OF THE STUDY: The aim of this study is to evaluate the effect of DLBS3733, a standardized bioactive fraction of Lagerstroemia speciosa (L.) Pers. leaves, on ameliorating hepatic steatosis induced by oleic acid, and elucidate its mechanism of action to ameliorate lipid accumulation in HepG2 cells. MATERIALS AND METHODS: Effects of DLBS3733 on expression of genes and proteins associated with lipid metabolism were evaluated in HepG2 cells in this study. Genes associated with lipid metabolism were evaluated using PCR, while the protein levels were revealed using western blot and ELISA. Cellular lipid accumulations and triglyceride (TG) synthesis were measured using ELISA, and antioxidant assay was conducted using DPPH assay. RESULTS: DLBS3733 significantly reduced lipid accumulation and TG synthesis by 51% and 32% (p < 0.01), respectively, through the significant increment of adiponectin expression by 58% (p < 0.01). Subsequently, adiponectin enhanced PPARα expression and AMPK phosphorylation which further regulate the downstream signaling pathway of lipogenesis and lipolysis. Moreover, 2.5 µg/mL DLBS3733 was found to significantly downregulate the expression of HMGCR, ACC and SREBP by 66%, 61% and 36%, respectively (p < 0.01), as well as significantly upregulate CPT-1 by 300% at the protein level (P < 0.05). DLBS3733 was also found to possess high antioxidant activity, where the highest concentration exhibited DPPH inhibition activity by up to 93% (P < 0.01). CONCLUSIONS: We propose that DLBS3733 may provide a prevention on hepatic steatosis through its activity as anti-lipogenesis, anti-cholesterologenesis and pro-lipolysis in HepG2 cells. This is the first report that revealed the molecular mechanism of L. speciosa (L.) Pers. as a potential treatment of hepatic steatosis-related diseases.
Assuntos
Lagerstroemia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêuticoRESUMO
The atherosclerosis "iron hypothesis" generates a fair amount of debate since it has been proposed. Here, we revisited the "iron hypothesis" by examining whether dietary iron overload would intensify iron deposition in plaques and thus lead to further exacerbation of atherosclerosis in apolipoprotein E knockout (ApoE KO) mice. ApoE KO mice were fed either a normal chow diet (ND) or a high fat diet (HFD) supplemented with or without 2% carbonyl iron (Fe) for 16 weeks. However, contrary to our assumption, dietary iron overloading did not intensify, but rather diminished the atherosclerotic lesion area by 65.3%, which was accompanied by significantly decreased serum total cholesterol, triglyceride and low-density lipoprotein cholesterol contents, together with hepatic lipid accumulation decline, despite the evident existence of aortic iron accumulation and the typical signs of iron overload in ApoE KO mice. Using isobaric tag for absolute quantification (iTRAQ) proteomics approach, hepatic CD36 and fatty acid binding proteins-mediated fatty acid (FA) uptake and trafficking impairment were identified as the key potential pathomechanisms by which iron overload diminishes atherosclerotic lesions. Furthermore, downstream hepatic FA de novo biosynthesis was enhanced and FA oxidation was inhibited to compensate for the FA deficiency triggered by iron overload-impaired fatty acid uptake and trafficking. Our findings suggested that dietary iron overload is not atherogenic in ApoE KO mice, and more research efforts are warranted to revisit the "iron hypothesis" of atherosclerosis.
Assuntos
Aterosclerose/dietoterapia , Dieta Hiperlipídica/efeitos adversos , Compostos de Ferro/administração & dosagem , Sobrecarga de Ferro/induzido quimicamente , Administração Oral , Animais , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/metabolismo , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Humanos , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/metabolismo , Metabolismo dos Lipídeos , Lipogênese/fisiologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Triglicerídeos/sangue , Triglicerídeos/metabolismoRESUMO
MYCN activation is a hallmark of advanced neuroblastoma (NB) and a known master regulator of metabolic reprogramming, favoring NB adaptation to its microenvironment. We found that the expression of the main regulators of the molecular clock loops is profoundly disrupted in MYCN-amplified NB patients, and this disruption independently predicts poor clinical outcome. MYCN induces the expression of clock repressors and downregulates the one of clock activators by directly binding to their promoters. Ultimately, MYCN attenuates the molecular clock by suppressing BMAL1 expression and oscillation, thereby promoting cell survival. Reestablishment of the activity of the clock activator RORα via its genetic overexpression and its stimulation through the agonist SR1078, restores BMAL1 expression and oscillation, effectively blocks MYCN-mediated tumor growth and de novo lipogenesis, and sensitizes NB tumors to conventional chemotherapy. In conclusion, reactivation of RORα could serve as a therapeutic strategy for MYCN-amplified NBs by blocking the dysregulation of molecular clock and cell metabolism mediated by MYCN.
Assuntos
Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Antineoplásicos/uso terapêutico , Benzamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Lipogênese/fisiologia , Camundongos , Regiões Promotoras Genéticas/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Wnt signaling is an ancient and evolutionarily conserved pathway with fundamental roles in the development of adipose tissues. Roles of this pathway in mesenchymal stem cell fate determination and differentiation have been extensively studied. Indeed, canonical Wnt signaling is a significant endogenous inhibitor of adipogenesis and promoter of other cell fates, including osteogenesis, chondrogenesis, and myogenesis. However, emerging genetic evidence in both humans and mice suggests central roles for Wnt signaling in body fat distribution, obesity, and metabolic dysfunction. Herein, we highlight recent studies that have begun to unravel the contributions of various Wnt pathway members to critical adipocyte functions, including carbohydrate and lipid metabolism. We further explore compelling evidence of complex and coordinated interactions between adipocytes and other cell types within adipose tissues, including stromal, immune, and endothelial cells. Given the evolutionary conservation and ubiquitous cellular distribution of this pathway, uncovering the contributions of Wnt signaling to cell metabolism has exciting implications for therapeutic intervention in widespread pathologic states, including obesity, diabetes, and cancers.
Assuntos
Adipócitos/fisiologia , Lipogênese/fisiologia , Células-Tronco Mesenquimais/fisiologia , Via de Sinalização Wnt/fisiologia , Adipogenia/fisiologia , Animais , Humanos , Doenças Metabólicas/etiologia , Camundongos , Osteoblastos/fisiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , beta Catenina/fisiologiaRESUMO
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.