Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.710
Filtrar
1.
Exp Physiol ; 109(5): 689-710, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466166

RESUMO

Endotoxin administration is commonly used to study the inflammatory response, and though traditionally given as a bolus injection, it can be administered as a continuous infusion over multiple hours. Several studies hypothesize that the latter better represents the prolonged and pronounced inflammation observed in conditions like sepsis. Yet very few experimental studies have administered endotoxin using both strategies, leaving significant gaps in determining the underlying mechanisms responsible for their differing immune responses. We used mathematical modelling to analyse cytokine data from two studies administering a 2 ng kg-1 dose of endotoxin, one as a bolus and the other as a continuous infusion over 4 h. Using our model, we simulated the dynamics of mean and subject-specific cytokine responses as well as the response to long-term endotoxin administration. Cytokine measurements revealed that the bolus injection led to significantly higher peaks for interleukin (IL)-8, while IL-10 reaches higher peaks during continuous administration. Moreover, the peak timing of all measured cytokines occurred later with continuous infusion. We identified three model parameters that significantly differed between the two administration methods. Monocyte activation of IL-10 was greater during the continuous infusion, while tumour necrosis factor α $ {\alpha} $ and IL-8 recovery rates were faster for the bolus injection. This suggests that a continuous infusion elicits a stronger, longer-lasting systemic reaction through increased stimulation of monocyte anti-inflammatory mediator production and decreased recovery of pro-inflammatory catalysts. Furthermore, the continuous infusion model exhibited prolonged inflammation with recurrent peaks resolving within 2 days during long-term (20-32 h) endotoxin administration.


Assuntos
Citocinas , Endotoxinas , Humanos , Endotoxinas/administração & dosagem , Endotoxinas/imunologia , Citocinas/metabolismo , Masculino , Inflamação/imunologia , Interleucina-10/metabolismo , Modelos Teóricos , Infusões Intravenosas , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Feminino , Lipopolissacarídeos/administração & dosagem
2.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902049

RESUMO

Lipopolysaccharide (LPS), an endotoxin, induces systemic inflammation by injection and is thought to be a causative agent of chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). However, our previous studies found that oral LPS administration does not exacerbate T2DM conditions in KK/Ay mice, which is the opposite of the response from LPS injection. Therefore, this study aims to confirm that oral LPS administration does not aggravate T2DM and to investigate the possible mechanisms. In this study, KK/Ay mice with T2DM were orally administered LPS (1 mg/kg BW/day) for 8 weeks, and blood glucose parameters before and after oral administration were compared. Abnormal glucose tolerance, insulin resistance progression, and progression of T2DM symptoms were suppressed by oral LPS administration. Furthermore, the expressions of factors involved in insulin signaling, such as insulin receptor, insulin receptor substrate 1, thymoma viral proto-oncogene, and glucose transporter type 4, were upregulated in the adipose tissues of KK/Ay mice, where this effect was observed. For the first time, oral LPS administration induces the expression of adiponectin in adipose tissues, which is involved in the increased expression of these molecules. Briefly, oral LPS administration may prevent T2DM by inducing an increase in the expressions of insulin signaling-related factors based on adiponectin production in adipose tissues.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Lipopolissacarídeos , Animais , Camundongos , Adiponectina/metabolismo , Administração Oral , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia
3.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628136

RESUMO

LPS induces inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, and causes an inflammatory response. The development of small molecules that have suppressive effect on those inflammatory cytokines is a desirable strategy for the treatment of inflammatory diseases. We synthesized 12 novel compounds with 4-amino-N-(4-(benzo[d]oxazol-2-ylamino)phenyl)butanamide moiety and evaluated their biological activities. Among them, 4 compounds (compound 5d, 5c, 5f, 5m and synthetic intermediate 4d) showed potent inhibition activities on IL-1ß and IL-6 mRNA expression in vitro. Further, in vivo activity was evaluated with two compounds (5f and 4d) and mRNA levels of IL-1ß, IL-6, and TNF-α were significantly decreased without hepatotoxicity. From the in vivo and in vitro test results, we confirmed that our synthesized compounds are effective for suppression of representative inflammatory cytokines.


Assuntos
Benzoxazóis , Inflamação , Interleucina-6 , RNA Mensageiro , Fator de Necrose Tumoral alfa , Benzoxazóis/farmacologia , Citocinas/genética , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628259

RESUMO

BAM15 (a mitochondrial uncoupling agent) was tested on cecal ligation and puncture (CLP) sepsis mice with in vitro experiments. BAM15 attenuated sepsis as indicated by survival, organ histology (kidneys and livers), spleen apoptosis (activated caspase 3), brain injury (SHIRPA score, serum s100ß, serum miR370-3p, brain miR370-3p, brain TNF-α, and apoptosis), systemic inflammation (cytokines, cell-free DNA, endotoxemia, and bacteremia), and blood-brain barrier (BBB) damage (Evan's blue dye and the presence of green fluorescent E. coli in brain after an oral administration). In parallel, brain miR arrays demonstrated miR370-3p at 24 h but not 120 h post-CLP, which was correlated with metabolic pathways. Either lipopolysaccharide (LPS) or TNF-α upregulated miR370-3p in PC12 (neuron cells). An activation by sepsis factors (LPS, TNF-α, or miR370-3p transfection) damaged mitochondria (fluorescent color staining) and reduced cell ATP, possibly through profound mitochondrial activity (extracellular flux analysis) that was attenuated by BAM15. In bone-marrow-derived macrophages, LPS caused mitochondrial injury, decreased cell ATP, enhanced glycolysis activity (extracellular flux analysis), and induced pro-inflammatory macrophages (iNOS and IL-1ß) which were neutralized by BAM15. In conclusion, BAM15 attenuated sepsis through decreased mitochondrial damage, reduced neuronal miR370-3p upregulation, and induced anti-inflammatory macrophages. BAM15 is proposed to be used as an adjuvant therapy against sepsis hyperinflammation.


Assuntos
Encefalopatias , MicroRNAs , Sepse , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Encefalopatias/genética , Encefalopatias/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Punções , Sepse/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Aging (Albany NY) ; 14(1): 410-429, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996049

RESUMO

Injury and dysfunction of endothelial cells (ECs) are closely related to the pathogenesis of steroid-induced osteonecrosis of the femoral head (ONFH), while MicroRNAs (miRNAs) play an essential role in the processes. Extracorporeal shockwave treatment (ESWT) has been used in the non-invasive treatment of various diseases including musculoskeletal and vascular disorders. In particular, ESWT with low energy levels showed a beneficial effect in ischemic tissues. However, there has been no comprehensive assessment of the effect of ESWT and miRNAs on steroid-induced ONFH. In the present study, we investigated the role and mechanism of ESWT and miRNAs both in vitro and in vivo. Using a steroid-induced ONFH rat model, we found that ESWT significantly enhances proliferation and angiogenesis as well as alleviates apoptosis. In two types of ECs, ESWT can promote cell proliferation and migration, enhance angiogenesis, and inhibit apoptosis. Notably, our study demonstrates that miR-135b is downregulated and modulated forkhead box protein O1 (FOXO1) in ECs treated with dexamethasone. Remarkably, both miR-135b knockdown and FOXO1 overexpression reversed the beneficial effect of ESWT on ECs. Additionally, our data suggest that ESWT activates the FOXO1-related pathway to impact proliferation, apoptosis, and angiogenesis. Taken together, this study indicates that ESWT relieves endothelial injury and dysfunction in steroid-induced ONFH via miR-135b targeting FOXO1.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/terapia , Metilprednisolona/toxicidade , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Indutores da Angiogênese , Animais , Proliferação de Células , Sobrevivência Celular , Células Endoteliais/efeitos dos fármacos , Cabeça do Fêmur/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Glucocorticoides/toxicidade , Células HEK293 , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Masculino , Metilprednisolona/administração & dosagem , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Distribuição Aleatória , Ratos
6.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885991

RESUMO

Inflammation caused by bacterial lipopolysaccharide (LPS) disrupts epithelial homeostasis and threatens both human and animal health. Therefore, the discovery and development of new anti-inflammatory drugs is urgently required. Plant-derived essential oils (EOs) have good antioxidant and anti-inflammatory activities. Thus, this study aims to screen and evaluate the effects of cinnamon oil and eucalyptus oil on anti-inflammatory activities. The associated evaluation indicators include body weight gain, visceral edema coefficient, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nitrogen monoxide (NO), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), Urea, Crea, ALT, TLR4, MyD88, NF-κB, IκB-α, iNOS, and Mn-SOD. In addition, tissue injury was determined by H&E staining. The results revealed that cinnamon oil and eucalyptus oil suppressed inflammation by decreasing SOD, TNF-α, and NF-κB levels. We also found that cinnamon oil increased the level of GSH-Px, MDA, and Mn-SOD, as well as the visceral edema coefficient of the kidney and liver. Altogether, these findings illustrated that cinnamon oil and eucalyptus oil exhibited wide antioxidant and anti-inflammatory activities against LPS-induced inflammation.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Cinnamomum zeylanicum/química , Óleo de Eucalipto/administração & dosagem , Eucalyptus/química , Lipopolissacarídeos/efeitos adversos , Óleos Voláteis/administração & dosagem , Animais , Animais não Endogâmicos , Citocinas/sangue , Feminino , Inflamação/sangue , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/administração & dosagem , Masculino , Malondialdeído/sangue , Camundongos , Óxido Nítrico/sangue , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/sangue , Resultado do Tratamento , Aumento de Peso/efeitos dos fármacos
7.
Bull Exp Biol Med ; 172(2): 175-179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34853967

RESUMO

In 3-month bone marrow transplants of CBA mice from bone marrow donors receiving single injections of TLR-4 ligand (LPS) or NOD-2 ligand (muramyl dipeptide, MDP) 24 h before transplantation, an increase in the total number of MSCs (by 2.6 and 1.9 times, respectively), as well as a slight increase in the number of nuclear cells and the mass of bone capsules (by 1.3 and 1.2 times) were observed. After combined administration of MDР and LPS to donors, the total content of MSCs in the grafts was higher by 1.6 times in comparison with the total result of their isolated administration (and by 7.2 times in comparison with the control). At the same time, the concentration of osteogenic MSCs in the grafts of all groups was almost the same and corresponded to the control level. The number of nuclear cells and the mass of bone capsules of the grafts after combined administration of LPS and MDP were close (~80%) to the sum of the results of their isolated administration. These findings suggest that activation of the stromal tissue and the success of bone marrow transplantation depend on the intensity of innate immune responses. These data can be useful for the development of optimal methods of tissue transplantation.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/administração & dosagem , Células da Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Lipopolissacarídeos/administração & dosagem , Doadores de Tecidos , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Combinação de Medicamentos , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos CBA , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD2/agonistas , Receptor 4 Toll-Like/agonistas
8.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831270

RESUMO

Endotoxemia-activated tumor necrosis factor (TNFα)/nuclear factor kappa B (NFκB) signals result in acute on chronic inflammation-driven renal dysfunction in advanced cirrhosis. Systemic activation of peroxisome proliferator-activated receptor gamma (PPARγ) with pioglitazone can suppress inflammation-related splanchnic and pulmonary dysfunction in cirrhosis. This study explored the mechanism and effects of pioglitazone treatment on the abovementioned renal dysfunction in cirrhotic rats. Cirrhotic ascitic rats were induced with renal dysfunction by bile duct ligation (BDL). Then, 2 weeks of pioglitazone treatment (Pio, PPAR gamma agonist, 12 mg/kg/day, using the azert osmotic pump) was administered from the 6th week after BDL. Additionally, acute lipopolysaccharide (LPS, Escherichia coli 0111:B4; Sigma, 0.1 mg/kg b.w, i.p. dissolved in NaCl 0.9%) was used to induce acute renal dysfunction. Subsequently, various circulating, renal arterial and renal tissue pathogenic markers were measured. Cirrhotic BDL rats are characterized by decreased mean arterial pressure, increased cardiac output and portal venous pressure, reduced renal arterial blood flow (RABF), increased renal vascular resistance (RVR), increased relative renal weight/hydroxyproline, downregulated renal PPARγ expression, upregulated renal inflammatory markers (TNFα, NFκB, IL-6, MCP-1), increased adhesion molecules (VCAM-1 and ICAM-1), increased renal macrophages (M1, CD68), and progressive renal dysfunction (increasing serum and urinary levels of renal injury markers (lipocalin-2 and IL-18)). In particular, acute LPS administration induces acute on chronic renal dysfunction (increasing serum BUN/creatinine, increasing RVR and decreasing RABF) by increased TNFα-NFκB-mediated renal inflammatory markers as well as renal M1 macrophage infiltration. In comparison with the BDL+LPS group, chronic pioglitazone pre-treatment prevented LPS-induced renal pathogenic changes in the BDL-Pio+LPS group. Activation of systemic, renal vessel and renal tissue levels of PPARγ by chronic pioglitazone treatment has beneficial effects on the endotoxemia-related TNFα/NFκB-mediated acute and chronic renal inflammation in cirrhosis. This study revealed that normalization of renal and renal arterial levels of PPARγ effectively prevented LPS-induced acute and chronic renal dysfunction in cirrhotic ascitic rats.


Assuntos
Ascite/complicações , Endotoxemia/complicações , Rim/fisiopatologia , Cirrose Hepática/complicações , Pioglitazona/farmacologia , Doença Aguda , Alanina Transaminase/sangue , Animais , Ascite/sangue , Ductos Biliares/patologia , Bilirrubina/sangue , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Doença Crônica , Regulação para Baixo/efeitos dos fármacos , Endotoxemia/sangue , Endotoxinas/sangue , Inflamação/sangue , Inflamação/complicações , Inflamação/patologia , Interleucina-6/sangue , Rim/efeitos dos fármacos , Ligadura , Lipopolissacarídeos/administração & dosagem , Cirrose Hepática/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , NF-kappa B/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/sangue , Resistência Vascular/efeitos dos fármacos
9.
Neuropharmacology ; 200: 108816, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599975

RESUMO

We recently reported that intraperitoneal injection of a low dose of lipopolysaccharide (LPS) prevents chronic stress-induced depression-like behaviors in mice. In this study, we reported that a single intranasal LPS administration (10 µg/mouse) one day prior to stress exposure produced prophylactic effects on chronic social defeat stress (CSDS)-induced depression-like behaviors, which was indicated by the reduction in social interaction time in the social interaction test and the decrease in immobility time in the tail suspension test and forced swimming test. The single intranasal LPS administration prior to stress exposure was also found to prevent CSDS-induced anxiety-like behaviors, including prevention of CSDS-induced decrease in the time spent in open arms in the elevated plus maze test, decrease in the time spent in lit side in the light-dark test, and decrease in the time spent in central regions in the open field test, along with no changes in locomotor activity. Further analysis showed that the single intranasal LPS administration one day prior to stress exposure prevented CSDS-induced increase in levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß mRNA in the hippocampus and prefrontal cortex. Inhibition of innate immune stimulation by minocycline pretreatment not only abrogated the preventive effect of intranasal LPS administration on CSDS-induced depression- and anxiety-like behaviors, but also abrogated the preventive effect of intranasal LPS administration on CSDS-induced neuroinflammatory responses in the hippocampus and prefrontal cortex. These results demonstrate that intranasal administration of innate immune stimulants could be a potential approach for the prevention of depression and anxiety.


Assuntos
Ansiedade/patologia , Comportamento Animal/efeitos dos fármacos , Depressão/patologia , Lipopolissacarídeos/farmacologia , Administração Intranasal , Animais , Ansiedade/etiologia , Depressão/etiologia , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/efeitos dos fármacos , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/farmacologia , Doenças Neuroinflamatórias/patologia , Córtex Pré-Frontal/efeitos dos fármacos , Estresse Psicológico/complicações , Fator de Necrose Tumoral alfa/efeitos dos fármacos
10.
Int Immunopharmacol ; 101(Pt A): 108178, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607226

RESUMO

Sepsis is an unusual systemic infection caused by bacteria, which is a life-threatening organ dysfunction. The innate immune system plays an important role in this process; however, the specific mechanisms remain unclear. Using the LPS + treated mouse model, we found that the survival rate of Tgm2-/- mice was lower than that of the control group, while the inflammation was much higher. We further showed that Tgm2 suppressed apoptosis by inhibiting the JNK/BCL-2 signaling pathway. More importantly, Tgm2 interacted with Aga and regulated mitochondria-mediated apoptosis induced by LPS. Our findings elucidated a protective mechanism of Tgm2 during LPS stimulation and may provide a new reference target for the development of novel anti-infective drugs from the perspective of host immunity.


Assuntos
Aspartilglucosilaminase/metabolismo , Macrófagos/patologia , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Sepse/imunologia , Animais , Apoptose/imunologia , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sepse/patologia
11.
Mol Biol Rep ; 48(9): 6363-6373, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34401985

RESUMO

BACKGROUND: Liver has an important role in the initiation and progression of multiple organ failure that occurs in sepsis. Many natural active substances can be used to reduce the liver injury caused by sepsis. For this aim, the effects of myricetin and apigenin on mice model of acute liver injury was evaluated in this study. METHODS AND RESULTS: Thirty-six mice were randomly divided into six groups as; control, lipopolysaccharide (LPS) (5 mg/kg), LPS + myricetin (100 mg/kg), LPS + myricetin (200 mg/kg), LPS + apigenin (100 mg/kg), and LPS + apigenin (200 mg/kg) groups. Myricetin and apigenin were administered orally for 7 days, and LPS was administered intraperitoneally only on the 7th day of the study. 24 h after LPS application, all animals were sacrificed and serum biochemical parameters, histopathology and oxidative stress and inflammation markers of liver tissue were examined. Myricetin and apigenin pre-treatments increased serum albumin and total protein levels, liver GSH level and catalase and SOD activities and decreased serum ALT, AST, ALP, γ-GT, CRP, total and direct bilirubin levels, liver MPO activity, MDA, NOx, PGE2, TNF-α, IL-1ß, and IL-6 levels, iNOS and COX-2 mRNA levels, phosphorylation of NF-κB p65, IκB, and IKK proteins but not p38, ERK, and JNK proteins in LPS-treated mice. Myricetin and apigenin administration also regained the hepatic architecture disrupted during LPS application. CONCLUSION: Myricetin and apigenin pre-treatments led to reduction of liver injury indices and oxidative stress and inflammatory events and these flavonoids has probably hepatoprotective effects in acute liver injury.


Assuntos
Apigenina/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Flavonoides/administração & dosagem , Lipopolissacarídeos/efeitos adversos , Profilaxia Pré-Exposição/métodos , Substâncias Protetoras/administração & dosagem , Administração Oral , Animais , Catalase/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Citocinas/sangue , Modelos Animais de Doenças , Glutationa/sangue , Hepatite Animal/prevenção & controle , Lipopolissacarídeos/administração & dosagem , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Albumina Sérica/análise , Superóxido Dismutase/sangue , Resultado do Tratamento
12.
J Neuroinflammation ; 18(1): 158, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34273987

RESUMO

BACKGROUND: Administration of lipopolysaccharide (LPS) from Gram-negative bacteria, also known as the human endotoxemia model, is a standardized and safe model of human inflammation. Experimental studies have revealed that peripheral administration of LPS leads to induction of the kynurenine pathway followed by depressive-like behavior and cognitive dysfunction in animals. The aim of the present study is to investigate how acute intravenous LPS administration affects the kynurenine pathway in healthy male human subjects. METHODS: The present study is a prospective, single-blinded, randomized, placebo-controlled cross-over study to investigate the effects of intravenously administered LPS (Escherichia coli O113, 2 ng/kg) on tryptophan and kynurenine metabolites over 48 h and their association with interleukin-6 (IL-6) and C-reactive protein (CRP). The study included 10 healthy, non-smoking men (18-40 years) free from medication. Statistical differences in tryptophan and kynurenine metabolites as well as associations with IL-6 and CRP in LPS and placebo treated subjects were assessed with linear mixed-effects models. RESULTS: Systemic injection of LPS was associated with significantly lower concentrations of plasma tryptophan and kynurenine after 4 h, as well as higher concentrations of quinolinic acid (QUIN) after 48 h compared to the placebo injection. No differences were found in kynurenic acid (KYNA) or picolinic acid plasma concentrations between LPS or placebo treatment. The KYNA/kynurenine ratio peaked at 6 h post LPS injection while QUIN/kynurenine maintained significantly higher from 3 h post LPS injection until 24 h. The kynurenine/tryptophan ratio was higher at 24 h and 48 h post LPS treatment. Finally, we report an association between the kynurenine/tryptophan ratio and CRP. CONCLUSIONS: Our findings strongly support the concept that an inflammatory challenge with LPS induces the kynurenine pathway in humans, activating both the neurotoxic (QUIN) and neuroprotective (KYNA) branch of the kynurenine pathway. TRIAL REGISTRATION: This study is based on a study registered at ClinicalTrials.gov, NCT03392701 . Registered 21 December 2017.


Assuntos
Cinurenina/sangue , Cinurenina/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/metabolismo , Triptofano/sangue , Triptofano/metabolismo , Administração Intravenosa , Adolescente , Adulto , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Estudos Cross-Over , Humanos , Inflamação , Interleucina-6/sangue , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Placebos , Estudos Prospectivos , Sujeitos da Pesquisa , Método Simples-Cego
13.
Sci Rep ; 11(1): 14752, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285283

RESUMO

The present investigation using Positron Emission Tomography shows how peptide VSAK can reduce the detrimental effects produced by lipopolysaccharides in Dutch dwarf rabbits, used to develop the Systemic Inflammatory Response Syndrome (SIRS). Animals concomitantly treated with lipopolysaccharides (LPS) and peptide VSAK show important protection in the loss of radiolabeled-glucose uptake observed in diverse organs when animals are exclusively treated with LPS. Treatment with peptide VSAK prevented the onset of changes in serum levels of glucose and insulin associated with the establishment of SIRS and the insulin resistance-like syndrome. Treatment with peptide VSAK also allowed an important attenuation in the circulating levels of pro-inflammatory molecules in LPS-treated animals. As a whole, our data suggest that peptide VSAK might be considered as a candidate in the development of new therapeutic possibilities focused on mitigating the harmful effects produced by lipopolysaccharides during the course of SIRS.


Assuntos
Glucose/metabolismo , Lipopolissacarídeos/administração & dosagem , Peptídeos/administração & dosagem , Tomografia por Emissão de Pósitrons , Síndrome de Resposta Inflamatória Sistêmica/patologia , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Fluordesoxiglucose F18/química , Glucose/análise , Insulina/sangue , Interleucina-1beta/sangue , Rim/diagnóstico por imagem , Rim/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Coelhos , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Fator de Necrose Tumoral alfa/sangue
14.
J Histochem Cytochem ; 69(8): 511-522, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34291686

RESUMO

Induction of severe inflammatory arthritis in the collagen antibody-induced arthritis (CAIA) murine model causes extensive joint damage and pain-like behavior compromising analysis. While mild models are less severe, their reduced, variable penetrance makes assessment of treatment efficacy difficult. This study aimed to compare macroscopic and microscopic changes in the paws, along with central nervous system activation between a mild and moderate CAIA model. Balb/c mice (n=18) were allocated to control, mild, and moderate CAIA groups. Paw inflammation, bone volume (BV), and paw volume (PV) were assessed. Histologically, the front paws were assessed for joint inflammation, cartilage damage, and pre/osteoclast-like cells and the lumbar spinal cord and the periaqueductal gray (PAG) region of the brain for glial reactivity. A moderate CAIA dose induced (1) significantly greater local paw inflammation, inflammatory cell infiltration, and PV; (2) significantly more osteoclast-like cells on the bone surface and within the surrounding soft tissue; and (3) significantly greater glial reactivity within the PAG compared with the mild CAIA model. These findings support the use of a moderate CAIA model (higher dose of monoclonal antibodies with low-dose lipopolysaccharide) to induce more consistent histopathological features, without excessive joint destruction.


Assuntos
Artrite Experimental/patologia , Reabsorção Óssea/patologia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Edema/patologia , Animais , Anticorpos Monoclonais/administração & dosagem , Artrite Experimental/induzido quimicamente , Artrite Experimental/diagnóstico , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/patologia , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/diagnóstico , Cartilagem Articular/efeitos dos fármacos , Edema/induzido quimicamente , Edema/diagnóstico , Feminino , Membro Anterior/efeitos dos fármacos , Membro Anterior/patologia , Histocitoquímica , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/patologia , Índice de Gravidade de Doença , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
15.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166212, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311083

RESUMO

Previous in vitro studies have shown that protein arginine N-methyltransferase 4 (PRMT4) is a co-activator for an array of cellular activities, including NF-κB-regulated pro-inflammatory responses. Here we investigated the effect of PRMT4 inhibitor TP-064 treatment on macrophage inflammation in vitro and in vivo. Exposure of RAW 264.7 monocyte/macrophages to TP-064 was associated with a significant decrease in the production of pro-inflammatory cytokines upon a lipopolysaccharide challenge. Similarly, thioglycollate-elicited peritoneal cells isolated from wildtype mice treated with TP-064 showed lowered mRNA expression levels and cytokine production of pro-inflammatory mediators interleukin (IL)-1ß, IL-6, IL-12p40, and tumor necrosis factor-α in response to lipopolysaccharide exposure. However, TP-064-treated mice exhibited an ongoing pro-inflammatory peritonitis after 5 days of thioglycollate exposure, as evident from a shift in the peritoneal macrophage polarization state from an anti-inflammatory LY6ClowCD206hi to a pro-inflammatory LY6ChiCD206low phenotype. In addition, TP-064-treated mice accumulated (activated) neutrophils within the peritoneum as well as in the blood (7-fold higher; P < 0.001) and major organs such as kidney and liver, without apparent tissue toxicity. TP-064 treatment downregulated hepatic mRNA expression levels of the PRMT4 target genes glucose-6-phosphatase catalytic subunit (-50%, P < 0.05) and the cyclin-dependent kinases 2 (-50%, P < 0.05) and 4 (-30%, P < 0.05), suggesting a direct transcriptional effect of PRMT4 also in hepatocytes. In conclusion, we have shown that the PRMT4 inhibitor TP-064 induces peritonitis-associated neutrophilia in vivo and inhibits the pro-inflammatory macrophage lipopolysaccharide response in vitro and ex vivo. Our findings suggest that TP-064 can possibly be applied as therapy in NF-κB-based inflammatory diseases.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Macrófagos Peritoneais/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Peritonite/tratamento farmacológico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Neutrófilos/imunologia , Peritonite/sangue , Peritonite/induzido quimicamente , Peritonite/imunologia , Proteína-Arginina N-Metiltransferases/metabolismo , Células RAW 264.7 , Tioglicolatos/administração & dosagem , Tioglicolatos/toxicidade
16.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073872

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Amidas/farmacologia , Citocinas/metabolismo , Etanolaminas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Amidas/uso terapêutico , Animais , Etanolaminas/uso terapêutico , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ácidos Palmíticos/uso terapêutico , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138760

RESUMO

SOCS3 is the main inhibitor of the JAK/STAT3 pathway. This pathway is activated by interleukin 6 (IL-6), a major mediator of the cytokine storm during shock. To determine its role in the vascular response to shock, we challenged mice lacking SOCS3 in the adult endothelium (SOCS3iEKO) with a nonlethal dose of lipopolysaccharide (LPS). SOCS3iEKO mice died 16-24 hours postinjection after severe kidney failure. Loss of SOCS3 led to an LPS-induced type I IFN-like program and high expression of prothrombotic and proadhesive genes. Consistently, we observed intraluminal leukocyte adhesion and neutrophil extracellular trap-osis (NETosis), as well as retinal venular leukoembolization. Notably, heterozygous mice displayed an intermediate phenotype, suggesting a gene dose effect. In vitro studies were performed to study the role of SOCS3 protein levels in the regulation of the inflammatory response. In human umbilical vein endothelial cells, pulse-chase experiments showed that SOCS3 protein had a half-life less than 20 minutes. Inhibition of SOCS3 ubiquitination and proteasomal degradation led to protein accumulation and a stronger inhibition of IL-6 signaling and barrier function loss. Together, our data demonstrate that the regulation of SOCS3 protein levels is critical to inhibit IL-6-mediated endotheliopathy during shock and provide a promising therapeutic avenue to prevent multiorgan dysfunction through stabilization of endothelial SOCS3.


Assuntos
Endotélio Vascular/patologia , Endotoxemia/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Modelos Animais de Doenças , Endotoxemia/diagnóstico , Endotoxemia/mortalidade , Endotoxemia/patologia , Heterozigoto , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Proteólise , Índice de Gravidade de Doença , Proteína 3 Supressora da Sinalização de Citocinas/análise , Proteína 3 Supressora da Sinalização de Citocinas/genética , Ubiquitinação
18.
Biol Pharm Bull ; 44(5): 714-723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952827

RESUMO

Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury (AKI). The previous studies demonstrated that Oridonin can protect kidney against IRI-induced AKI, but the underlying molecular mechanism is unclear. In this study, it showed that Oridonin significantly improved kidney damage, and inhibited the expression of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and MCP-1, as well as macrophage marker F4/80 in kidney and the secretion of inflammatory cytokins in serum of AKI mice in vivo. In addition, Oridonin also effectively reduced the expression and secretion of lipopolysaccharide (LPS)-induced inflammatory factors in macrophage cell line RAW264.7 in vitro. Notably, Oridonin strongly downregulated Mincle and AKT/nuclear factor-kappaB (NF-κB) signaling both in vivo and in vitro, and the results of cellular recovery experiments of overexpression of Mincle in macrophage suggested that Oridonin suppressed inflammatory response of macrophage through inhibiting Mincle, which may be the underlying mechanism of Oridonin improving injury in kidney of AKI mice. In summary, the above results indicated that Oridonin can protect kidney from IRI-induced inflammation and injury by inhibiting the expression of Mincle in macrophage.


Assuntos
Injúria Renal Aguda/prevenção & controle , Diterpenos do Tipo Caurano/farmacologia , Macrófagos/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Diterpenos do Tipo Caurano/uso terapêutico , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Células RAW 264.7 , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia
19.
Nat Commun ; 12(1): 2713, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976225

RESUMO

Interleukin-1ß (IL-1ß) is activated by inflammasome-associated caspase-1 in rare autoinflammatory conditions and in a variety of other inflammatory diseases. Therefore, IL-1ß activity must be fine-tuned to enable anti-microbial responses whilst limiting collateral damage. Here, we show that precursor IL-1ß is rapidly turned over by the proteasome and this correlates with its decoration by K11-linked, K63-linked and K48-linked ubiquitin chains. The ubiquitylation of IL-1ß is not just a degradation signal triggered by inflammasome priming and activating stimuli, but also limits IL-1ß cleavage by caspase-1. IL-1ß K133 is modified by ubiquitin and forms a salt bridge with IL-1ß D129. Loss of IL-1ß K133 ubiquitylation, or disruption of the K133:D129 electrostatic interaction, stabilizes IL-1ß. Accordingly, Il1bK133R/K133R mice have increased levels of precursor IL-1ß upon inflammasome priming and increased production of bioactive IL-1ß, both in vitro and in response to LPS injection. These findings identify mechanisms that can limit IL-1ß activity and safeguard against damaging inflammation.


Assuntos
Caspase 1/genética , Inflamassomos/genética , Interleucina-1beta/genética , Complexo de Endopeptidases do Proteassoma/genética , Processamento de Proteína Pós-Traducional , Animais , Caspase 1/imunologia , Células HEK293 , Humanos , Inflamassomos/imunologia , Inflamação , Interleucina-1beta/imunologia , Lipopolissacarídeos/administração & dosagem , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitinação
20.
Sci Rep ; 11(1): 9856, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972588

RESUMO

Infections with Trypanosoma brucei sp. are established after the injection of metacyclic trypomastigotes into the skin dermis by the tsetse fly vector. The parasites then gain access to the local lymphatic vessels to infect the local draining lymph nodes and disseminate systemically via the bloodstream. Macrophages are considered to play an important role in host protection during the early stage of systemic trypanosome infections. Macrophages are abundant in the skin dermis, but relatively little is known of their impact on susceptibility to intradermal (ID) trypanosome infections. We show that although dermal injection of colony stimulating factor 1 (CSF1) increased the local abundance of macrophages in the skin, this did not affect susceptibility to ID T. brucei infection. However, bacterial LPS-stimulation in the dermis prior to ID trypanosome infection significantly reduced disease susceptibility. In vitro assays showed that LPS-stimulated macrophage-like RAW264.7 cells had enhanced cytotoxicity towards T. brucei, implying that dermal LPS-treatment may similarly enhance the ability of dermal macrophages to eliminate ID injected T. brucei parasites in the skin. A thorough understanding of the factors that reduce susceptibility to ID injected T. brucei infections may lead to the development of novel strategies to help reduce the transmission of African trypanosomes.


Assuntos
Suscetibilidade a Doenças/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Pele/imunologia , Tripanossomíase Africana/imunologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças/microbiologia , Feminino , Humanos , Injeções Intradérmicas , Lipopolissacarídeos/administração & dosagem , Fator Estimulador de Colônias de Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Células RAW 264.7 , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Pele/microbiologia , Suínos , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA