Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Commun Biol ; 7(1): 840, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987288

RESUMO

The architecture of the actin cortex determines the generation and transmission of stresses, during key events from cell division to migration. However, its impact on myosin-induced cell shape changes remains unclear. Here, we reconstitute a minimal model of the actomyosin cortex with branched or linear F-actin architecture within giant unilamellar vesicles (GUVs, liposomes). Upon light activation of myosin, neither the branched nor linear F-actin architecture alone induces significant liposome shape changes. The branched F-actin network forms an integrated, membrane-bound "no-slip boundary" -like cortex that attenuates actomyosin contractility. By contrast, the linear F-actin network forms an unintegrated "slip boundary" -like cortex, where actin asters form without inducing membrane deformations. Notably, liposomes undergo significant deformations at an optimized balance of branched and linear F-actin networks. Our findings highlight the pivotal roles of branched F-actin in force transmission and linear F-actin in force generation to yield membrane shape changes.


Assuntos
Actinas , Membrana Celular , Miosinas , Actinas/metabolismo , Membrana Celular/metabolismo , Miosinas/metabolismo , Forma Celular , Animais , Actomiosina/metabolismo , Lipossomas Unilamelares/metabolismo , Lipossomas Unilamelares/química , Biomimética , Lipossomos/metabolismo , Lipossomos/química , Modelos Biológicos , Citoesqueleto de Actina/metabolismo
2.
Biomater Sci ; 12(13): 3423-3430, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38809312

RESUMO

Micro-nanomaterials that can adopt different structures are powerful tools in the fields of biological and medical sciences. We previously developed a lipid membrane that can convert between 2D nanosheet and 3D vesicle forms using cationic copolymer polyallylamine-graft-polyethylene glycol and the anionic peptide E5. The properties of the membrane during conversion have been characterized only by confocal laser scan microscopy. Furthermore, due to the 2D symmetry of the lipid nanosheet, the random folding of the lipid bilayer into either the original or the reverse orientation occurs during sheet-to-vesicle conversion, compromising the structural consistency of the membrane. In this study, flow cytometry was applied to track the conversion of more than 5000 lipid membranes from 3D vesicles to 2D nanosheets and back to 3D vesicles, difficult with microscopies. The lipid nanosheets exhibited more side scattering intensity than 3D vesicles, presumably due to free fluctuation and spin of the sheets in the suspension. Furthermore, by immobilizing bovine serum albumin as one of the representative proteins on the outer leaflet of giant unilamellar vesicles at a relatively low coverage, complete restoration of lipid membranes to the original 3D orientation was obtained after sheet-to-vesicle conversion. This convertible membrane system should be applicable in a wide range of fields. Our findings also provide experimental evidence for future theoretical studies on membrane behavior.


Assuntos
Soroalbumina Bovina , Soroalbumina Bovina/química , Polietilenoglicóis/química , Animais , Bicamadas Lipídicas/química , Poliaminas/química , Bovinos , Nanoestruturas/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Peptídeos/química
3.
J Phys Chem B ; 128(20): 4986-4995, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38739415

RESUMO

Membrane fusion is considered the first step in the entry of enveloped viruses into the host cell. Several targeted strategies have been implemented to block viral entry by limiting the fusion protein to form a six-helix bundle, which is a prerequisite for fusion. Nonetheless, the development of broad-spectrum fusion inhibitors is essential to combat emerging and re-emerging viral infections. TG-23, a coronin 1, a tryptophan-aspartate-rich phagosomal protein-derived peptide, demonstrated inhibition of fusion between small unilamellar vesicles (SUVs) by modulating the membrane's physical properties. However, its inhibitory efficacy reduces with an increasing concentration of membrane cholesterol. The present work aims to develop a fusion inhibitor whose efficacy would be unaltered in the presence of membrane cholesterol. A stretch of the tryptophan-aspartic acid-containing peptide with a similar secondary structure and hydrophobicity profile of TG-23 from coronin 1 was synthesized, and its ability to inhibit SUV-SUV fusion with varying concentrations of membrane cholesterol was evaluated. Our results demonstrate that the GG-21 peptide inhibits fusion irrespective of the cholesterol content of the membrane. We have further evaluated the peptide-induced change in the membrane organization and dynamics utilizing arrays of steady-state and time-resolved fluorescence measurements and correlated these results with their effect on fusion. Interestingly, GG-21 displays inhibitory efficacy in a wide variety of lipid compositions despite having a secondary structure and physical properties similar to those of TG-23. Overall, our results advocate that the secondary structure and physical properties of the peptide may not be sufficient to predict its inhibitory efficacy.


Assuntos
Fusão de Membrana , Proteínas dos Microfilamentos , Peptídeos , Colesterol/química , Fusão de Membrana/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/química , Peptídeos/química , Peptídeos/farmacologia , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
4.
Colloids Surf B Biointerfaces ; 238: 113922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678790

RESUMO

The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.


Assuntos
Bicamadas Lipídicas , Resveratrol , Resveratrol/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Estilbenos/química , Materiais Biomiméticos/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
5.
Langmuir ; 39(16): 5891-5900, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37036429

RESUMO

The construction of bacterial outer membrane models with native lipids like lipopolysaccharide (LPS) is a barrier to understanding antimicrobial permeability at the membrane interface. Here, we engineer bacterial outer membrane (OM)-mimicking giant unilamellar vesicles (GUVs) by constituting LPS under different pH conditions and assembled GUVs with controlled dimensions. We quantify the LPS reconstituted in GUV membranes and reveal their arrangement in the leaflets of the vesicles. Importantly, we demonstrate the applications of OM vesicles by exploring antimicrobial permeability activity across membranes. Model peptides, melittin and magainin-2, are examined where both peptides exhibit lower membrane activity in OM vesicles than vesicles devoid of LPS. Our findings reveal the mode of action of antimicrobial peptides in bacterial-membrane-mimicking models. Notably, the critical peptide concentration required to elicit activity on model membranes correlates with the cell inhibitory concentrations that revalidate our models closely mimic bacterial membranes. In conclusion, we provide an OM-mimicking model capable of quantifying antimicrobial permeability across membranes.


Assuntos
Anti-Infecciosos , Lipossomas Unilamelares , Lipossomas Unilamelares/metabolismo , Membrana Externa Bacteriana/metabolismo , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Peptídeos , Permeabilidade
6.
ACS Synth Biol ; 12(2): 369-374, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652603

RESUMO

Spontaneous and induced front-rear polarization and a subsequent asymmetric actin cytoskeleton is a crucial event leading to cell migration, a key process involved in a variety of physiological and pathological conditions such as tissue development, wound healing, and cancer. Migration of adherent cells relies on the balance between adhesion to the underlying matrix and cytoskeleton-driven front protrusion and rear retraction. A current challenge is to uncouple the effect of adhesion and shape from the contribution of the cytoskeleton in regulating the onset of front-rear polarization. Here, we present a minimal model system that introduces an asymmetric actin cytoskeleton in synthetic cells, which are resembled by giant unilamellar lipid vesicles (GUVs) adhering onto symmetric and asymmetric micropatterned surfaces. Surface micropatterning of streptavidin-coated regions with varying adhesion shape and area was achieved by maskless UV photopatterning. To further study the effects of GUV shape on the cytoskeletal organization, actin filaments were polymerized together with bundling proteins inside the GUVs. The micropatterns induce synthetic cell deformation upon adhesion to the surface, with the cell shape adapting to the pattern shape and size. As expected, asymmetric patterns induce an asymmetric deformation in adherent synthetic cells. Actin filaments orient along the long axis of the deformed GUV, when having a length similar to the size of the major axis, whereas short filaments exhibit random orientation. With this bottom-up approach we have laid the first steps to identify the relationship between cell front-rear polarization and cytoskeleton organization in the future. Such a minimal system will allow us to further study the major components needed to create a polarized cytoskeleton at the onset of migration.


Assuntos
Sinais (Psicologia) , Lipossomas Unilamelares , Lipossomas Unilamelares/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Lipídeos
7.
Biomaterials ; 285: 121522, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500392

RESUMO

Immune vigilance ensures body integrity by eliminating malignant cells through the complex but coordinated cooperation of highly diversified lymphocytes populations. The sheer complexity of the immune system has slowed development of immunotherapies based on top-down genetic engineering of lymphocytes. In contrast, bottom-up assembly of synthetic cell compartments has contributed novel engineering strategies to reverse engineer and understand cellular phenomena as molecularly defined systems. Towards reducing the complexity of immunological systems, herein, a bottom-up approach for controlled assembly of fully-synthetic immune-inspired cells from predefined molecular components based on giant unilamellar vesicles is described. For construction of target-specific cytotoxic immune cells, the Fas-ligand-based apoptosis-inducing immune cell module is combined with an antibody-mediated cellular cytotoxicity-inspired system. The designed immune cells identify leukemia cells by specific surface antigens. Subsequently, they form stable attachments sites and eliminate their targets by induction of apoptosis. A structural and functional characterization of the synthetic immune cells by means of microfluidics, live cell, confocal and electron microscopy, dynamic light scattering as well as flow cytometry is presented. This study demonstrates the bioinspired construction of effector immune cells from defined molecular building blocks, enabling learning-by-building approaches in synthetic immunology.


Assuntos
Antineoplásicos , Células Artificiais , Células Artificiais/química , Citotoxicidade Imunológica , Proteína Ligante Fas , Imunoterapia , Microfluídica , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
8.
Adv Sci (Weinh) ; 8(21): e2101934, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34546652

RESUMO

Ultrasound is a promising new modality for non-invasive neuromodulation. Applied transcranially, it can be focused down to the millimeter or centimeter range. The ability to improve the treatment's spatial resolution to a targeted brain region could help to improve its effectiveness, depending upon the application. The present paper details a neurostimulation scheme using gas-filled nanostructures, gas vesicles (GVs), as actuators for improving the efficacy and precision of ultrasound stimuli. Sonicated primary neurons display dose-dependent, repeatable Ca2+ responses, closely synced to stimuli, and increased nuclear expression of the activation marker c-Fos in the presence of GVs. GV-mediated ultrasound triggered rapid and reversible Ca2+ responses in vivo and could selectively evoke neuronal activation in a deep-seated brain region. Further investigation indicate that mechanosensitive ion channels are important mediators of this effect. GVs themselves and the treatment scheme are also found not to induce significant cytotoxicity, apoptosis, or membrane poration in treated cells. Altogether, this study demonstrates a simple and effective method to achieve enhanced and better-targeted neurostimulation with non-invasive low-intensity ultrasound.


Assuntos
Nanoestruturas/química , Ondas Ultrassônicas , Lipossomas Unilamelares/química , Área Tegmentar Ventral/metabolismo , Anabaena/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Gases/química , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação , Ratos , Lipossomas Unilamelares/metabolismo , Área Tegmentar Ventral/patologia , Área Tegmentar Ventral/efeitos da radiação
9.
Chem Phys Lipids ; 237: 105083, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33887213

RESUMO

Human islet amyloid polypeptide (hIAPP) is a highly amyloidogenic peptide found in pancreatic islets of type-2 diabetes (T2D) patients. Under certain conditions, hIAPP is able to form amyloid fibrils that play a role in the progression of T2D. hIAPP is synthesized in the ß-cell of the pancreas and stored in the secretory granules before being released into the extracellular compartment. It has been suggested that natural stabilizing agents, such as insulin or zinc present in the secretory granules with hIAPP could prevent hIAPP fibril formation. The difference in the amino acid sequences of IAPP among species strongly correlates with amyloidogenicity and toxicity. The residue histidine at position 18 is known to be important in modulating the fibril formation, membrane leakage and toxicity. In this study, we have synthesized four analogues of hIAPP (H18R-IAPP, H18K-IAPP, H18A-IAPP and H18E-IAPP) and characterized their aggregation with either insulin or zinc in order to determine the effect of the residue-18 on the insulin-IAPP and zinc-IAPP interactions using a variety of biophysical experiments including thioflavin-T fluorescence, transmission electron microscopy imaging, circular dichroism, and NMR spectroscopy. We show that insulin reduced hIAPP fibril formation both in solution and in the presence of membrane and hIAPP-membrane damage and that the interactions are somewhat mediated by the residue-18. In addition, our results reveal that zinc affects the process of hIAPP fibril formation in solution but not in the presence of membrane. Our results indicate that the nature of the residue-18 is important for zinc binding. Based on this observation, we hypothesize that zinc binds to the residues in the N-terminal region of hIAPP, which is not accessible in the presence of membrane due to its strong interaction with lipids.


Assuntos
Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregados Proteicos/fisiologia , Lipossomas Unilamelares/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Microscopia Eletrônica de Transmissão , Ligação Proteica , Espectrometria de Fluorescência , Lipossomas Unilamelares/química
10.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619111

RESUMO

Possible segregation of plasma membrane (PM) phosphoinositide metabolism in membrane lipid domains is not fully understood. We exploited two differently lipidated peptide sequences, L10 and S15, to mark liquid-ordered, cholesterol-rich (Lo) and liquid-disordered, cholesterol-poor (Ld) domains of the PM, often called raft and nonraft domains, respectively. Imaging of the fluorescent labels verified that L10 segregated into cholesterol-rich Lo phases of cooled giant plasma-membrane vesicles (GPMVs), whereas S15 and the dye FAST DiI cosegregated into cholesterol-poor Ld phases. The fluorescent protein markers were used as Förster resonance energy transfer (FRET) pairs in intact cells. An increase of homologous FRET between L10 probes showed that depleting membrane cholesterol shrank Lo domains and enlarged Ld domains, whereas a decrease of L10 FRET showed that adding more cholesterol enlarged Lo and shrank Ld Heterologous FRET signals between the lipid domain probes and phosphoinositide marker proteins suggested that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and phosphatidylinositol 4-phosphate (PtdIns4P) are present in both Lo and Ld domains. In kinetic analysis, muscarinic-receptor-activated phospholipase C (PLC) depleted PtdIns(4,5)P2 and PtdIns4P more rapidly and produced diacylglycerol (DAG) more rapidly in Lo than in Ld Further, PtdIns(4,5)P2 was restored more rapidly in Lo than in Ld Thus destruction and restoration of PtdIns(4,5)P2 are faster in Lo than in Ld This suggests that Lo is enriched with both the receptor G protein/PLC pathway and the PtdIns/PI4-kinase/PtdIns4P pathway. The significant kinetic differences of lipid depletion and restoration also mean that exchange of lipids between these domains is much slower than free diffusion predicts.


Assuntos
Microdomínios da Membrana/metabolismo , Peptídeos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Transformada , Colesterol/metabolismo , Difusão , Diglicerídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Lipoilação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lipídeos de Membrana/metabolismo , Peptídeos/genética , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Lipossomas Unilamelares/metabolismo
11.
Biochim Biophys Acta Biomembr ; 1863(6): 183572, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548215

RESUMO

Surfactant protein C (SP-C) is a protein present in the pulmonary surfactant system that is involved in the biophysical properties of this lipoprotein complex, but it also has a role in lung defense and homeostasis. In this article, we propose that the link between both functions could rely on the ability of SP-C to induce fragmentation of phospholipid membranes and generate small vesicles that serve as support to present different ligands to cells in the lungs. Our results using bimolecular fluorescence complementation and tunable resistive pulse sensing setups suggest that SP-C oligomerization could be the triggering event that causes membrane budding and nanovesiculation. As shown by fluorescence microscopy and flow cytometry, these vesicles are differentially assimilated by alveolar macrophages and alveolar type II cells, indicating distinct roles of these alveoli-resident cells in the processing of the SP-C- induced vesicles and their cargo. These results depict a more accurate picture of the mechanisms of this protein, which could be relevant for the comprehension of pulmonary pathologies and the development of new therapeutic approaches.


Assuntos
Proteína C Associada a Surfactante Pulmonar/metabolismo , Lipossomas Unilamelares/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Dimerização , Endocitose , Citometria de Fluxo , Humanos , Microscopia de Fluorescência , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Domínios Proteicos , Multimerização Proteica , Proteína C Associada a Surfactante Pulmonar/química , Proteína C Associada a Surfactante Pulmonar/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Lipossomas Unilamelares/química
12.
Viruses ; 12(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971895

RESUMO

Coronaviruses (CoVs) are enveloped, positive sense, single strand RNA viruses that cause respiratory, intestinal and neurological diseases in mammals and birds. Following replication, CoVs assemble on intracellular membranes including the endoplasmic reticulum Golgi intermediate compartment (ERGIC) where the envelope protein (E) functions in virus assembly and release. In consequence, E potentially contains membrane-modifying peptides. To search for such peptides, the E coding sequence of Mouse Hepatitis Virus (MHV) was inspected for its amino acid conservation, proximity to the membrane and/or predicted amphipathic helices. Peptides identified in silico were synthesized and tested for membrane-modifying activity in the presence of giant unilamellar vesicles (GUVs) consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), sphingomyelin and cholesterol. To confirm the presence of membrane binding peptides identified in the context of a full-length E protein, the wild type and a number of mutants in the putative membrane binding peptide were expressed in Lenti-X-293T mammalian and insect cells, and the distribution of E antigen within the expressing cell was assessed. Our data identify a role for the post-transmembrane region of MHV E in membrane binding.


Assuntos
Vírus da Hepatite Murina/química , Peptídeos/química , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Infecções por Coronavirus , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/metabolismo , Mutação , Peptídeos/síntese química , Peptídeos/metabolismo , Células Sf9 , Spodoptera , Lipossomas Unilamelares/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
13.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641477

RESUMO

Positive-strand RNA [(+)RNA] viruses are important pathogens of humans, animals, and plants and replicate inside host cells by coopting numerous host factors and subcellular membranes. To gain insights into the assembly of viral replicase complexes (VRCs) and dissect the roles of various lipids and coopted host factors, we have reconstituted Tomato bushy stunt virus (TBSV) replicase using artificial giant unilamellar vesicles (GUVs). We demonstrate that reconstitution of VRCs on GUVs with endoplasmic reticulum (ER)-like phospholipid composition results in a complete cycle of replication and asymmetrical RNA synthesis, which is a hallmark of (+)RNA viruses. TBSV VRCs assembled on GUVs provide significant protection of the double-stranded RNA (dsRNA) replication intermediate against the dsRNA-specific RNase III. The lipid compositions of GUVs have pronounced effects on in vitro TBSV replication, including (-) and (+)RNA synthesis. The GUV-based assay has led to the discovery of the critical role of phosphatidylserine in TBSV replication and a novel role for phosphatidylethanolamine in asymmetrical (+)RNA synthesis. The GUV-based assay also showed stimulatory effects by phosphatidylinositol-3-phosphate [PI(3)P] and ergosterol on TBSV replication. We demonstrate that eEF1A and Hsp70 coopted replicase assembly factors, Vps34 phosphatidylinositol 3-kinase (PI3K) and the membrane-bending ESCRT factors, are required for reconstitution of the active TBSV VRCs in GUVs, further supporting that the novel GUV-based in vitro approach recapitulates critical steps and involves essential coopted cellular factors of the TBSV replication process. Taken together, this novel GUV assay will be highly suitable to dissect the functions of viral and cellular factors in TBSV replication.IMPORTANCE Understanding the mechanism of replication of positive-strand RNA viruses, which are major pathogens of plants, animals, and humans, can lead to new targets for antiviral interventions. These viruses subvert intracellular membranes for virus replication and coopt numerous host proteins, whose functions during virus replication are not yet completely defined. To dissect the roles of various host factors in Tomato bushy stunt virus (TBSV) replication, we have developed an artificial giant unilamellar vesicle (GUV)-based replication assay. The GUV-based in vitro approach recapitulates critical steps of the TBSV replication process. GUV-based reconstitution of the TBSV replicase revealed the need for a complex mixture of phospholipids, especially phosphatidylserine and phosphatidylethanolamine, in TBSV replication. The GUV-based approach will be useful to dissect the functions of essential coopted cellular factors.


Assuntos
RNA de Cadeia Dupla/genética , RNA Polimerase Dependente de RNA/genética , Tombusvirus/genética , Lipossomas Unilamelares/metabolismo , Proteínas Virais/genética , Bioensaio , Linhagem Celular , Retículo Endoplasmático/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ergosterol/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Células Vegetais/metabolismo , Células Vegetais/virologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/metabolismo , Lipossomas Unilamelares/química , Proteínas Virais/metabolismo , Replicação Viral
14.
Sci Rep ; 10(1): 9752, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546842

RESUMO

The two lectins LecA from Pseudomonas aeruginosa and the B-subunit of Shiga toxin from Shigella dysenteriae (StxB) share the glycosphingolipid globotriaosylceramide (Gb3) as receptor. Counterintuitively, we found that LecA and StxB segregated into different domains after recognizing Gb3 at the plasma membrane of cells. We hypothesized that the orientation of the carbohydrate head group of Gb3 embedded in the lipid bilayer differentially influences LecA and StxB binding. To test this hypothesis, we reconstituted lectin-Gb3 interaction using giant unilamellar vesicles and were indeed able to rebuild LecA and StxB segregation. Both, the Gb3 fatty acyl chain structure and the local membrane environment, modulated Gb3 recognition by LecA and StxB. Specifically, StxB preferred more ordered membranes compared to LecA. Based on our findings, we propose comparing staining patterns of LecA and StxB as an alternative method to assess membrane order in cells. To verify this approach, we re-established that the apical plasma membrane of epithelial cells is more ordered than the basolateral plasma membrane. Additionally, we found that StxB recognized Gb3 at the primary cilium and the periciliary membrane, whereas LecA only bound periciliary Gb3. This suggests that the ciliary membrane is of higher order than the surrounding periciliary membrane.


Assuntos
Adesinas Bacterianas/metabolismo , Ligação Proteica/fisiologia , Toxinas Shiga/metabolismo , Adesinas Bacterianas/fisiologia , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Glicoesfingolipídeos/metabolismo , Lectinas/metabolismo , Lectinas/fisiologia , Ligantes , Bicamadas Lipídicas/química , Ligação Proteica/genética , Pseudomonas aeruginosa , Toxina Shiga/metabolismo , Shigella dysenteriae , Triexosilceramidas/metabolismo , Lipossomas Unilamelares/metabolismo
15.
Eur Biophys J ; 49(5): 371-381, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32494845

RESUMO

Stretching in the plasma membranes of cells and lipid membranes of vesicles plays important roles in various physiological and physicochemical phenomena. Irreversible electroporation (IRE) is a minimally invasive non-thermal tumor ablation technique where a series of short electrical energy pulses with high frequency is applied to destabilize the cell membranes. IRE also induces lateral tension due to stretching in the membranes of giant unilamellar vesicles (GUVs). Here, the kinetics of irreversible pore formation under constant electrical tension in GUVs has been investigated. The GUVs are prepared by a mixture of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine using the natural swelling method. An IRE signal of frequency 1.1 kHz is applied to the GUVs through a gold-coated electrode system. Stochastic pore formation is observed for several 'single GUVs' at a particular constant tension. The time course of the fraction of intact GUVs among all the examined GUVs is fitted with a single-exponential decay function from which the rate constant of pore formation in the vesicle, kp, is calculated. The value of kp increases with an increase of membrane tension. An increase in the proportion of negatively charged lipids in a membrane gives a higher kp. Theoretical equations are fitted to the tension-dependent kp and to the probability of pore formation, which allows us to obtain the line tension of the membranes. The decrease in the energy barrier for formation of the nano-size nascent or prepore state, due to the increase in electrical tension, is the main factor explaining the increase of kp.


Assuntos
Fenômenos Eletrofisiológicos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Cinética , Modelos Biológicos , Porosidade , Processos Estocásticos , Termodinâmica
16.
Dalton Trans ; 49(45): 16082-16094, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32469032

RESUMO

Cu(i) P-type ATPases are transmembrane primary active ion pumps that catalyze the extrusion of copper ions across cellular membranes. Their activity is critical in controlling copper levels in all kingdoms of life. Biochemical and structural characterization established the structural framework by which Cu-pumps perform their function. However, the details of the overall mechanism of transport (uniporter vs. cotransporter) and electrogenicity still remain elusive. In this work, we developed a platform to reconstitute the model Cu(i)-pump from E. coli (EcCopA) in artificial lipid bilayer small unilamellar vesicles (SUVs) to quantitatively characterize the metal substrate, putative counter-ions and charge translocation. By encapsulating in the liposome lumen fluorescence detector probes (CTAP-3, pyranine and oxonol VI) responsive to diverse stimuli (Cu(i), pH and membrane potential), we correlated substrate, secondary-ion translocation and charge movement events in EcCopA proteoliposomes. This platform centered on multiple fluorescence reporters allowed study of the mechanism and translocation kinetic parameters in real-time for wild-type EcCopA and inactive mutants. The maximal initial Cu(i) transport rate of 165 nmol Cu(i) mg-1 min-1 and KM, Cu(I) = 0.15 ± 0.07 µM was determined with this analysis. We reveal that Cu(i) pumps are primary-active uniporters and electrogenic. The Cu(i) translocation cycle does not require proton counter-transport resulting in electrogenic generation of transmembrane potential upon translocation of one Cu(i) per ATP hydrolysis cycle. Thus, mechanistic differences between Cu(i) pumps and other better characterized P-type ATPases are discussed. The platform opens the venue to study translocation events and mechanisms of transport in other transition metal P-type ATPase pumps.


Assuntos
Membrana Celular/enzimologia , ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Transporte de Elétrons , Escherichia coli/citologia , Escherichia coli/enzimologia , Lipossomas Unilamelares/metabolismo
17.
Biomolecules ; 10(5)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365477

RESUMO

Several mitochondrial proteins, such as adenine nucleotide translocase (ANT), aspartate/glutamate carrier, dicarboxylate carrier, and uncoupling proteins 2 and 3, are suggested to have dual transport functions. While the transport of charge (protons and anions) is characterized by an alteration in membrane conductance, investigating substrate transport is challenging. Currently, mainly radioactively labeled substrates are used, which are very expensive and require stringent precautions during their preparation and use. We present and evaluate a fluorescence-based method using Magnesium Green (MgGrTM), a Mg2+-sensitive dye suitable for measurement in liposomes. Given the different binding affinities of Mg2+ for ATP and ADP, changes in their concentrations can be detected. We obtained an ADP/ATP exchange rate of 3.49 ± 0.41 mmol/min/g of recombinant ANT1 reconstituted into unilamellar liposomes, which is comparable to values measured in mitochondria and proteoliposomes using a radioactivity assay. ADP/ATP exchange calculated from MgGrTM fluorescence solely depends on the ANT1 content in liposomes and is inhibited by the ANT-specific inhibitors, bongkrekic acid and carboxyatractyloside. The application of MgGrTM to investigate ADP/ATP exchange rates contributes to our understanding of ANT function in mitochondria and paves the way for the design of other substrate transport assays.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Fluorometria/métodos , Lipossomas Unilamelares/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Corantes Fluorescentes , Glicina/análogos & derivados , Cinética , Magnésio/metabolismo , Camundongos , Proteínas Recombinantes/metabolismo , Xantenos
18.
Mater Sci Eng C Mater Biol Appl ; 112: 110943, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409089

RESUMO

Artepillin C is the main compound present in propolis from Baccharis dracunculifolia, whose antitumor activity has been the focus of many studies. Herein, we shall investigate the Artepillin C mechanisms of action against cells derived from the oropharyngeal carcinoma (HEp-2). Cytotoxicity tests revealed that the concentrations of Artepillin C required to reduce cell viability by 50% (CC50) are dependent on the incubation time, decreasing from 40.7 × 10-5 mol/L to 15.7 × 10-5 mol/L and 9.05 × 10-5 mol/L considering 12, 24 and 48 h, respectively. Hydrophobic interactions on neutral species of Artepillin C induce aggregation over the HEp-2 plasma membrane, given the acid conditions of the cellular culture. Indeed, Langmuir monolayers mimicking cellular membranes of tumor cells revealed Artepillin C affinity to interact with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) containing 20 mol% of 1,2-dipalmitoyl-sn-glychero-3-phosphoserine (DPPS), leading aggregation on giant unilamellar vesicles (GUVs) at pH 3.2. Moreover, leakage experiments on GUVs have shown that the presence of DPPS enhances the efflux of the fluorescent probe signaling the membrane permeabilization, which is the origin of the necrotic pathway triggered in HEp-2 cells, as observed by flow cytometry assays.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Fenilpropionatos/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Fenilpropionatos/metabolismo , Fenilpropionatos/farmacologia , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
19.
Chem Biol Drug Des ; 95(6): 610-623, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32147880

RESUMO

Using a minimalist approach, an 11-residue peptide (Peptide 1) tagged with rhodamine fluorophore was designed and synthesized for selective detection of cancer cells. Peptide 1 contains RGD and NGR motifs to bind, respectively, integrins and aminopeptidase CD13, which are over expressed in cancer cells. Surface tension measurements revealed that peptide 1 possess surface-active property owing to the overall hydrophobicity and cationic nature of the peptide. Peptide 1 displays cancer cell-selective binding at ≤5.0 µM concentrations, while peptide 2 (randomized sequence of 1) shows non-selective binding to normal and cancer cells. Fluorescence microscopy and FACS analysis demonstrated the intracellular localization of peptide 1 in three different cancer cell lines, confirming the role of RGD and NGR motifs. Cytotoxicity assay exhibited the viability of normal and cancer cells up to 100 µM concentrations of peptide 1. Steady-state fluorescence measurements disclosed the preferential interactions of the peptide 1 with anionic POPC/POPG bilayers rather than with zwitterionic POPC lipid bilayers. Circular dichroism studies showed minimal changes in the secondary structure of peptide 1 upon binding with the anionic lipid bilayers. Peptide 1 is largely unordered, non-toxic, and useful for identification of cancer cells. Peptide 1 provides a template for designing drug-loaded peptides for targeted delivery into cancer cells.


Assuntos
Antígenos CD13/química , Citometria de Fluxo/métodos , Integrinas/química , Peptídeos/química , Sequência de Aminoácidos , Antígenos CD13/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Integrinas/metabolismo , Bicamadas Lipídicas/química , Imagem Óptica , Peptídeos/metabolismo , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Rodaminas/química , Relação Estrutura-Atividade , Especificidade por Substrato , Lipossomas Unilamelares/metabolismo
20.
J Phys Chem Lett ; 11(5): 1662-1667, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32058725

RESUMO

Phospholipid scramblases that catalyze lipid transbilayer movement are associated with intercellular signaling and lipid homeostasis. Although several studies have shown that the hydrophilic residue-rich groove of the proteins mediates lipid scrambling, the interactions between the groove and the lipid bilayers remain poorly understood. Here we have revealed the structural features of model transmembrane peptides that conduct lipid scrambling as well as the interactions between the peptides and the surrounding lipids by means of experimental and simulation techniques. Peptides with two strongly hydrophilic residues located on the same side of the helices and at a deeper position in the membrane exhibited high scramblase activities. All-atom molecular dynamics simulations showed that the interactions between the hydrophilic residues and lipid head groups regulate the membrane thinning and disorder near the peptides in an order that correlates with the scramblase activity of the peptides. These results provide a basis for understanding the lipid scrambling mechanisms by transmembrane regions.


Assuntos
Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Peptídeos/química , Fosfolipídeos/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA