Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.605
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731568

RESUMO

Cancer is one of the major causes of death, and its negative impact continues to rise globally. Chemotherapy, which is the most common therapy, has several limitations due to its tremendous side effects. Therefore, developing an alternate therapeutic agent with high biocompatibility is indeed needed. The anti-oxidative effects and bioactivities of several different crude extracts of marine algae have been evaluated both in vitro and in vivo. In the present study, we synthesized the aqueous extract (HA) from the marine algae Amphiroa anceps, and then, a liposome was formulated for that extract (NHA). The extracts were characterized using different photophysical tools like dynamic light scattering, UV-visible spectroscopy, FTIR, scanning electron microscopy, and GC-MS analysis. The SEM image revealed a size range of 112-185 nm for NHA and the GC-MS results showed the presence of octadecanoic acid and n-Hexadecanoic acid in the majority. The anticancer activity was studied using A549 cells, and the NHA inhibited the cancer cells dose-dependently, with the highest killing of 92% at 100 µg/mL. The in vivo studies in the zebrafish model showed that neither the HA nor NHA of Amphiroa anceps showed any teratogenic effect. The outcome of our study showed that NHA can be a potential drug candidate for inhibiting cancer with good biocompatibility up to a dose of 100 µg/mL.


Assuntos
Antineoplásicos , Rodófitas , Peixe-Zebra , Rodófitas/química , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Células A549 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lipossomos/química , Cromatografia Gasosa-Espectrometria de Massas , Nanopartículas/química , Linhagem Celular Tumoral
2.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697643

RESUMO

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Assuntos
Homeostase , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Piroptose/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Camundongos , Bortezomib/farmacologia , Bortezomib/química , Lipossomos/química , Animais , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Hidróxidos/química , Hidróxidos/farmacologia , Nanoestruturas/química , Nanopartículas/química
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732135

RESUMO

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Assuntos
Doxorrubicina , Fibronectinas , Glioblastoma , Ácido Hialurônico , Hidrogéis , Oligopeptídeos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fibronectinas/metabolismo , Fibronectinas/antagonistas & inibidores , Hidrogéis/química , Linhagem Celular Tumoral , Ácido Hialurônico/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Lipossomos/química , Apoptose/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo
4.
Int J Nanomedicine ; 19: 4411-4427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774028

RESUMO

Background: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation and joint destruction. Despite progress in RA therapy, it remains difficult to achieve long-term remission in RA patients. Phosphodiesterase 3B (Pde3b) is a member of the phosphohydrolyase family that are involved in many signal transduction pathways. However, its role in RA is yet to be fully addressed. Methods: Studies were conducted in arthritic DBA/1 mice, a suitable mouse strain for collagen-induced rheumatoid arthritis (CIA), to dissect the role of Pde3b in RA pathogenesis. Next, RNAi-based therapy with Pde3b siRNA-loaded liposomes was assessed in a CIA model. To study the mechanism involved, we investigated the effect of Pde3b knockdown on macrophage polarization and related signaling pathway. Results: We demonstrated that mice with CIA exhibited upregulated Pde3b expression in macrophages. Notably, intravenous administration of liposomes loaded with Pde3b siRNA promoted the macrophage anti-inflammatory program and alleviated CIA in mice, as indicated by the reduced inflammatory response, synoviocyte infiltration, and bone and cartilage erosion. Mechanistic study revealed that depletion of Pde3b increased cAMP levels, by which it enhanced PKA-CREB-C/EBPß pathway to transcribe the expression of anti-inflammatory program-related genes. Conclusion: Our results support that Pde3b is involved in the pathogenesis of RA, and Pde3b siRNA-loaded liposomes might serve as a promising therapeutic approach against RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Terapia Genética , Lipossomos , Macrófagos , Camundongos Endogâmicos DBA , RNA Interferente Pequeno , Animais , Lipossomos/química , Lipossomos/administração & dosagem , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/terapia , Artrite Reumatoide/induzido quimicamente , Camundongos , Artrite Experimental/genética , Artrite Experimental/prevenção & controle , Artrite Experimental/terapia , Macrófagos/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , Terapia Genética/métodos , Masculino , Transdução de Sinais/efeitos dos fármacos
5.
ACS Appl Bio Mater ; 7(5): 3190-3201, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38709861

RESUMO

We report an near-infrared (NIR)-trackable and therapeutic liposome with skin tumor specificity. Liposomes with a hydrodynamic diameter of ∼20 nm are tracked under the vein visualization imaging system in the presence of loaded paclitaxel and NIR-active agents. The ability to track liposome nanocarriers is recorded on the tissue-mimicking phantom model and in vivo mouse veins after intravenous administration. The trackable liposome delivery provides in vitro and in vivo photothermal heat (∼40 °C) for NIR-light-triggered area-specific chemotherapeutic release. This approach can be linked with a real-time vein-imaging system to track and apply area-specific local heat, which hitchhikes liposomes from the vein and finally releases them at the tumor site. We conducted studies on mice skin tumors that indicated the disappearance of tumors visibly and histologically (H&E stains). The ability of nanocarriers to monitor after administration is crucial for improving the effectiveness and specificity of cancer therapy, which could be achieved in the trackable delivery system.


Assuntos
Raios Infravermelhos , Lipossomos , Paclitaxel , Medicina de Precisão , Neoplasias Cutâneas , Lipossomos/química , Animais , Camundongos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/terapia , Paclitaxel/química , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Teste de Materiais , Materiais Biocompatíveis/química , Tamanho da Partícula , Humanos , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais
6.
ACS Appl Bio Mater ; 7(5): 2836-2850, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38717017

RESUMO

High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1ß, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.


Assuntos
Homeostase , Poloxâmero , Polietilenoglicóis , Canais de Cátion TRPV , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Poloxâmero/química , Poloxâmero/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Homeostase/efeitos dos fármacos , Oxirredução , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Teste de Materiais , Lesão por Frio/metabolismo , Lesão por Frio/tratamento farmacológico , Tamanho da Partícula , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Lipossomos/química , Humanos , Administração Tópica , Congelamento das Extremidades/metabolismo , Congelamento das Extremidades/tratamento farmacológico
7.
ACS Nano ; 18(20): 13249-13265, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38720584

RESUMO

The therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE via multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes in vivo, restrained CD4+T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4+T cells. In addition, Dexlip-MSCs initiated cellular reprogramming by activating the glucocorticoid receptor (GR) signaling pathway to upregulate the expression of anti-inflammatory factors such as cysteine-rich secretory protein LCCL-containing domain 2 (CRISPLD2) and downregulate the expression of proinflammatory factors. In addition, Dexlip-MSCs synergistically increased the anti-inflammatory inhibitory effect of CD4+T cells through the release of dexamethasone liposomes or Dex-integrated MSC-derived exosomes (Dex-MSC-EXOs). Based on these synergistic biological effects, we demonstrated that Dexlip-MSCs alleviated disease progression in MRL/lpr mice more effectively than Dexlip or MSCs alone. These features indicate that our stem cell delivery strategy is a promising therapeutic approach for clinical SLE treatment.


Assuntos
Dexametasona , Lúpus Eritematoso Sistêmico , Células-Tronco Mesenquimais , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Dexametasona/farmacologia , Dexametasona/química , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Lipossomos/química , Transplante de Células-Tronco Mesenquimais , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos Endogâmicos MRL lpr , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
8.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698399

RESUMO

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Assuntos
Hidrogéis , Lipossomos , Polietilenoglicóis , Tripsina , Xantonas , Lipossomos/química , Animais , Polietilenoglicóis/química , Hidrogéis/química , Humanos , Tripsina/metabolismo , Tripsina/química , Feminino , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias da Mama/tratamento farmacológico , Proteólise
9.
Adv Protein Chem Struct Biol ; 140: 59-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38762280

RESUMO

It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.


Assuntos
Adjuvantes Imunológicos , Lipossomos , Adjuvantes Imunológicos/química , Humanos , Lipossomos/química , Animais , Peptídeos/química , Peptídeos/imunologia , Vacinas/química , Vacinas/imunologia
10.
J Nanobiotechnology ; 22(1): 257, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755645

RESUMO

Imperceptible examination and unideal treatment effect are still intractable difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). At present, despite 5-fluorouracil (5-FU), as a clinical first-line FOLFIRINOX chemo-drug, has achieved significant therapeutic effects. Nevertheless, these unavoidable factors such as low solubility, lack of biological specificity and easy to induce immunosuppressive surroundings formation, severely limit their treatment in PDAC. As an important source of energy for many tumor cells, tryptophan (Trp), is easily degraded to kynurenine (Kyn) by indolamine 2,3- dioxygenase 1 (IDO1), which activates the axis of Kyn-AHR to form special suppressive immune microenvironment that promotes tumor growth and metastasis. However, our research findings that 5-FU can induce effectively immunogenic cell death (ICD) to further treat tumor by activating immune systems, while the secretion of interferon-γ (IFN-γ) re-induce the Kyn-AHR axis activation, leading to poor treatment efficiency. Therefore, a metal matrix protease-2 (MMP-2) and endogenous GSH dual-responsive liposomal-based nanovesicle, co-loading with 5-FU (anti-cancer drug) and NLG919 (IDO1 inhibitor), was constructed (named as ENP919@5-FU). The multifunctional ENP919@5-FU can effectively reshape the tumor immunosuppression microenvironment to enhance the effect of chemoimmunotherapy, thereby effectively inhibiting cancer growth. Mechanistically, PDAC with high expression of MMP-2 will propel the as-prepared nanovesicle to dwell in tumor region via shedding PEG on the nanovesicle surface, effectively enhancing tumor uptake. Subsequently, the S-S bond containing nanovesicle was cut via high endogenous GSH, leading to the continued release of 5-FU and NLG919, thereby enabling circulating chemoimmunotherapy to effectively cause tumor ablation. Moreover, the combination of ENP919@5-FU and PD-L1 antibody (αPD-L1) showed a synergistic anti-tumor effect on the PDAC model with abdominal cavity metastasis. Collectively, ENP919@5-FU nanovesicle, as a PDAC treatment strategy, showed excellent antitumor efficacy by remodeling tumor microenvironment to circulate tumor chemoimmunotherapy amplification, which has promising potential in a precision medicine approach.


Assuntos
Carcinoma Ductal Pancreático , Fluoruracila , Imunoterapia , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos , Humanos , Imunoterapia/métodos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Lipossomos/química , Cinurenina/metabolismo , Interferon gama/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico
11.
Sci Rep ; 14(1): 10499, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714740

RESUMO

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Assuntos
Curcumina , Sistemas de Liberação de Medicamentos , Lipossomos , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Humanos , Lipossomos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Microbolhas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Ondas Ultrassônicas , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos
12.
Int J Nanomedicine ; 19: 3071-3086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562611

RESUMO

Introduction: The high mortality rate of malignant ovarian cancer is attributed to the absence of effective early diagnosis methods. The LHRH receptor is specifically overexpressed in most ovarian cancers, and the integrin αvß3 receptor is also overexpressed on the surface of ovarian cancer cells. In this study, we designed LHRH analogues (LHRHa)/RGD co-modified paclitaxel liposomes (LHRHa-RGD-LP-PTX) to target LHRH receptor-positive ovarian cancers more effectively and enhance the anti-ovarian cancer effects. Methods: LHRHa-RGD-LP-PTX liposomes were prepared using the thin film hydration method. The morphology, physicochemical properties, cellular uptake, and cell viability were assessed. Additionally, the cellular uptake mechanism of the modified liposomes was investigated using various endocytic inhibitors. The inhibitory effect of the formulations on tumor spheroids was observed under a microscope. The co-localization with lysosomes was visualized using confocal laser scanning microscopy (CLSM), and the in vivo tumor-targeting ability of the formulations was assessed using the IVIS fluorescent imaging system. Finally, the in vivo anti-tumor efficacy of the formulations was evaluated in the armpits of BALB/c nude mice. Results: The results indicated that LHRHa-RGD-LP-PTX significantly enhanced cellular uptake in A2780 cells, increased cytotoxicity, and hand a more potent inhibitory effect on tumor spheroids of A2780 cells. It also showed enhanced co-localization with endosomes or lysosome in A2780 cells, improved tumor-targeting capability, and demonstrated an enhanced anti-tumor effect in LHRHR-positive ovarian cancers. Conclusion: The designed LHRHa-RGD-LP-PTX liposomes significantly enhanced the tumor-targeting ability and therapeutic efficacy for LHRH receptor-positive ovarian cancers.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Lipossomos/química , Receptores LHRH , Integrina alfaVbeta3 , Linhagem Celular Tumoral , Camundongos Nus , Paclitaxel/uso terapêutico , Oligopeptídeos/química
13.
Int J Pharm ; 655: 124077, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38569975

RESUMO

Developing drug delivery systems (DDSs) is one of the approaches used to improve cancer treatment, with the main goal of loading cancer drugs into a carrier targeting a specific organ and avoiding the distribution to healthy tissues. Nanoparticles (NPs) have been shown to be one of the optimum carriers that can be used as DDSs. Lipid-based NPs, such as liposomes, have been investigated in the current study due to their low toxicity and ability to carry hydrophilic and hydrophobic molecules. In the current studies, conventional liposomes composed of DPPC, and cholesterol and PEGylated liposomes composed of DPPC, cholesterol, and DSPE-PEG2000 are manufactured and loaded with Carboplatin. The study focused on investigating and comparing the impact of modifying the carboplatin-loaded liposomes with different concentrations of DSPE-PEG2000 on the NP diameter, polydispersity, ζ-potential, encapsulation efficiency (EE%), and drug release. The hydrodynamic microfluidic system was used to investigate any possible improvement in the EE% over other conventional methods. The results showed the microfluidic system's promising effect in enhancing the EE% of the Carboplatin. Moreover, the results showed a smaller diameter and higher stability of the PEGylated liposome. However, conventional liposomes represent better homogeneity and higher encapsulation efficiency for hydrophilic molecules.


Assuntos
Lipossomos , Microfluídica , Fosfatidiletanolaminas , Lipossomos/química , Carboplatina , Polietilenoglicóis/química , Colesterol/química
14.
Biochem Biophys Res Commun ; 709: 149806, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579619

RESUMO

Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.


Assuntos
Antineoplásicos , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Fosfolipídeos/química , Membranas Artificiais , Lipossomos/química
15.
J Aerosol Med Pulm Drug Deliv ; 37(2): 100-110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38640446

RESUMO

Inhalation of liposomes formulated with phospholipids similar to endogenous lung surfactants and lipids offers biocompatibility and versatility within the pulmonary medicine field to treat a range of diseases such as lung cancer, cystic fibrosis and lung infections. Manipulation of the physicochemical properties of liposomes enables innovative design of the carrier to meet specific delivery, release and targeting requirements. This delivery system offers several benefits: improved pharmacokinetics with reduced toxicity, enhanced therapeutic efficacy, increased delivery of poorly soluble drugs, taste masking, biopharmaceutics degradation protection and targeted cellular therapy. This section provides an overview of liposomal formulation and delivery, together with their applications for different disease states in the lung.


Assuntos
Lipossomos , Pneumonia , Humanos , Lipossomos/química , Lipossomos/metabolismo , Administração por Inalação , Pulmão/metabolismo , Fosfolipídeos , Sistemas de Liberação de Medicamentos
16.
PLoS One ; 19(4): e0300467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593146

RESUMO

Liposome nanoparticles can carry a wide range of therapeutic molecules including small molecules and nucleic acid-based therapeutics. Potential benefits include translocation across physiological barriers, reduced systemic toxicity, and enhanced pharmacokinetic parameters such as absorption, distribution, selective release and optimal elimination kinetics. Liposome nanoparticles can be generated with a wide range of natural and synthetic lipid-based molecules that confer desirable properties depending on the desired therapeutic application Nel et al (2023), Large (2021), Elkhoury (2020). This protocol article seeks to detail the procedures involved in the production of cationic liposomes using thin-film dispersed hydration method with an estimated uniform size of 60-70 nm for targeted drug administration in tumor cells, by modifying the previous one also published by the same authors cited here. The method was carrying out using N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl (DOTAP, 2 mg) as cationic lipid and cholesterol (0.5 mg) in a molar ratio of 7:3 respectively. The liposomal suspension was obtained and its physical, chemical and biological properties were determined. A two-step extrusion process, using 100 nm and 50 nm polycarbonate membranes, was carried. The results demonstrate generation of liposome nanoparticles with a size of 60-70 nm stable for at least 16 weeks and with an encapsulation efficiency of approximately 81% using Doxorubicin.


Assuntos
Nanopartículas , Ácidos Nucleicos , Lipossomos/química , Nanopartículas/química , Doxorrubicina , Lipídeos/química
17.
Nanoscale ; 16(19): 9412-9425, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38650478

RESUMO

Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This in vivo study evaluated the potential of novel nanoformulation based on poly(lactic-co-glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). In vivo toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX). The study was performed using Wistar Han rats of both sexes that were treated intravenously for 28 days with 5 doses of tested substances at intervals of 5 days. Histopathological analyses of heart tissues showed the presence of myofiber necrosis, degeneration processes, myocytolysis, and hemorrhage after treatment with ConvDOX, whereas only myofiber degeneration and hemorrhage were present after the treatment with nanoformulations. All DOX formulations caused an increase in the troponin T with the greatest increase caused by convDOX. qPCR analyses revealed an increase in the expression of inflammatory markers IL-6 and IL-8 after ConvDOX and an increase in IL-8 expression after lipoDOX treatments. The mass spectra imaging (MSI) of heart tissue indicates numerous metabolic and lipidomic changes caused by ConvDOX, while less severe cardiac damages were found after treatment with nanoformulations. In the case of LipoDOX, autophagy and apoptosis were still detectable, whereas PLGADOX induced only detectable mitochondrial toxicity. Cardiotoxic effects were frequently sex-related with the greater risk of cardiotoxicity observed mostly in male rats.


Assuntos
Cardiotoxicidade , Doxorrubicina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/análogos & derivados , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Masculino , Cardiotoxicidade/prevenção & controle , Feminino , Apoptose/efeitos dos fármacos , Nanopartículas/química , Miocárdio/patologia , Miocárdio/metabolismo , Polietilenoglicóis/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Coração/efeitos dos fármacos , Lipossomos/química
18.
Nanotheranostics ; 8(3): 285-297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577322

RESUMO

Rationale: Microbubble (MB) contrast agents combined with ultrasound targeted microbubble cavitation (UTMC) are a promising platform for site-specific therapeutic oligonucleotide delivery. We investigated UTMC-mediated delivery of siRNA directed against epidermal growth factor receptor (EGFR), to squamous cell carcinoma (SCC) via a novel MB-liposome complex (LPX). Methods: LPXs were constructed by conjugation of cationic liposomes to the surface of C4F10 gas-filled lipid MBs using biotin/avidin chemistry, then loaded with siRNA via electrostatic interaction. Luciferase-expressing SCC-VII cells (SCC-VII-Luc) were cultured in Petri dishes. The Petri dishes were filled with media in which LPXs loaded with siRNA against firefly luciferase (Luc siRNA) were suspended. Ultrasound (US) (1 MHz, 100-µs pulse, 10% duty cycle) was delivered to the dishes for 10 sec at varying acoustic pressures and luciferase assay was performed 24 hr later. In vivo siRNA delivery was studied in SCC-VII tumor-bearing mice intravenously infused with a 0.5 mL saline suspension of EGFR siRNA LPX (7×108 LPX, ~30 µg siRNA) for 20 min during concurrent US (1 MHz, 0.5 MPa spatial peak temporal peak negative pressure, five 100-µs pulses every 1 ms; each pulse train repeated every 2 sec to allow reperfusion of LPX into the tumor). Mice were sacrificed 2 days post treatment and tumor EGFR expression was measured (Western blot). Other mice (n=23) received either EGFR siRNA-loaded LPX + UTMC or negative control (NC) siRNA-loaded LPX + UTMC on days 0 and 3, or no treatment ("sham"). Tumor volume was serially measured by high-resolution 3D US imaging. Results: Luc siRNA LPX + UTMC caused significant luciferase knockdown vs. no treatment control, p<0.05) in SCC-VII-Luc cells at acoustic pressures 0.25 MPa to 0.9 MPa, while no significant silencing effect was seen at lower pressure (0.125 MPa). In vivo, EGFR siRNA LPX + UTMC reduced tumor EGFR expression by ~30% and significantly inhibited tumor growth by day 9 (~40% decrease in tumor volume vs. NC siRNA LPX + UTMC, p<0.05). Conclusions: Luc siRNA LPXs + UTMC achieved functional delivery of Luc siRNA to SCC-VII-Luc cells in vitro. EGFR siRNA LPX + UTMC inhibited tumor growth and suppressed EGFR expression in vivo, suggesting that this platform holds promise for non-invasive, image-guided targeted delivery of therapeutic siRNA for cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Lipossomos , Animais , Camundongos , Lipossomos/química , RNA Interferente Pequeno/genética , Microbolhas , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Receptores ErbB/genética , Luciferases
19.
FEBS Lett ; 598(9): 1061-1079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649155

RESUMO

The molecular mechanisms of selective RNA loading into exosomes and other extracellular vesicles are not yet completely understood. In order to show that a pool of RNA sequences binds both the amino acid arginine and lipid membranes, we constructed a bifunctional RNA 10Arg aptamer specific for arginine and lipid vesicles. The preference of RNA 10Arg for lipid rafts was visualized and confirmed using FRET microscopy in neuroblastoma cells. The selection-amplification (SELEX) method using a doped (with the other three nucleotides) pool of RNA 10Arg sequences yielded several RNA 10Arg(D) sequences, and the affinities of these RNAs both to arginine and liposomes are improved in comparison to pre-doped RNA. Generation of these bispecific aptamers supports the hypothesis that an RNA molecule can bind both to RNA-binding proteins (RBPs) through arginine within the RBP-binding site and to membrane lipid rafts, thus facilitating RNA loading into exosomes and other extracellular vesicles.


Assuntos
Arginina , Lipossomos , Arginina/química , Arginina/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Sequência de Bases , RNA/metabolismo , RNA/química , RNA/genética , Exossomos/metabolismo , Exossomos/genética , Exossomos/química , Transferência Ressonante de Energia de Fluorescência
20.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663337

RESUMO

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Assuntos
Carcinoma Ductal Pancreático , Irinotecano , Minociclina , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Minociclina/farmacologia , Minociclina/uso terapêutico , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Diester Fosfórico Hidrolases/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Inibidores da Topoisomerase I/química , Lipossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA