Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612771

RESUMO

The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a significant threat to many immunocompromised cancer patients with pulmonary infections. This review highlights the complexity of interactions in the host's defensive eicosanoid signaling network and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs) and their mouse counterparts are integral elements of the innate immune system, mostly operating in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.


Assuntos
Ferroptose , Lipoxigenases , Humanos , Animais , Camundongos , Carcinogênese , Hospedeiro Imunocomprometido , Inflamação
2.
Pharmacol Ther ; 256: 108612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369063

RESUMO

Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.


Assuntos
Neoplasias , Oxilipinas , Humanos , Oxilipinas/metabolismo , Lipoxigenases , Prostaglandina-Endoperóxido Sintases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Citocromos , Neoplasias/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/metabolismo
3.
Funct Plant Biol ; 512024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220246

RESUMO

Soybean (Glycine max ) is the world's most widely grown seed legume. One of the most important pests that decrease seed quality and reduce yield of soybean crops is the southern green stink bug (Nezara viridula ). Insect damage triggers accumulation of defensive compounds such as protease inhibitors (PIs), isoflavonoids and reactive oxygen species, which are regulated by the lipoxygenase (LOX)-regulated jasmonic acid (JA) to stop insect feeding. This study identified and characterised the role of LOX isoforms in the modulation of chemical defences in seeds of field-grown soybean that decreased digestive enzyme activities of N. viridula after insect attack. Stink bugs attack increased LOX 1 and LOX 2 expression, and activities of LOX 1 and LOX 3 isoenzymes in developing soybean seeds. In addition, stink bug damage and methyl jasmonate application induced expression and activity of both cysteine PIs and trypsin PIs in developing soybean seeds, suggesting that herbivory induced JA in soybean seeds. High PI activity levels in attacked seeds decreased cysteine proteases and α-amylases activities in the gut of stink bugs that fed on field-grown soybean. We demonstrated that LOX isoforms of seeds are concomitantly induced with JA-regulated PIs by stink bugs attack, and these PIs inhibit the activity of insect digestive enzymes. To our knowledge, this is the first study to investigate the participation of LOX in modulating JA-regulated defences against stink bugs in seeds of field-grown soybean, and our results suggest that soybean PIs may inhibit α-amylase activity in the gut of N. viridula .


Assuntos
Ciclopentanos , Glycine max , Heterópteros , Oxilipinas , Animais , Lipoxigenases , Sementes , Heterópteros/fisiologia , Isoformas de Proteínas , Inibidores Enzimáticos , Receptores Depuradores Classe E
4.
Biomed Pharmacother ; 171: 116153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232664

RESUMO

Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by persistent inflammation and joint destruction. A lipid mediator (LM, namely, 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX in a ratio of 3:47:50) produced by soybean lipoxygenase from DHA, exhibits anti-inflammatory activity. In this study, we determined the effect of LM on collagen antibody-induced arthritis (CAIA) in mice and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in RAW264.7 cells. LM effectively downregulated the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K, inhibited osteoclast formation, and suppressed the NF-κB signaling pathway in vitro. In vivo, LM at 10 µg/kg/day significantly decreased paw swelling and inhibited progression of arthritis in CAIA mice. Moreover, proinflammatory cytokine (tumor necrosis factor-α, interleukin (IL)-6, IL-1ß, IL-17, and interferon-γ) levels in serum were decreased, whereas IL-10 levels were increased following LM treatment. Furthermore, LM alleviated joint inflammation, cartilage erosion, and bone destruction in the ankles, which may be related to matrix metalloproteinase and Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathway. Our findings suggest that LM attenuates arthritis severity, restores serum imbalances, and modifies joint damage. Thus, LM represents a promising therapy for relieving RA symptoms.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Osteoclastos , Ligante RANK/metabolismo , Glycine max , Ácidos Docosa-Hexaenoicos/farmacologia , Artrite Reumatoide/metabolismo , Artrite Experimental/patologia , Inflamação/metabolismo , Lipoxigenases/metabolismo , Lipoxigenases/farmacologia
5.
Int J Immunopathol Pharmacol ; 37: 3946320231223826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134963

RESUMO

Introduction: Aberrant epithelial-mesenchymal transition (EMT) and migration frequently occur during tumour progression. BML-111, an analogue of lipoxin A4, has been implicated in inflammation in cancer research. Methods: 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, western blot, Reverse Transcription Polymerase Chain Reaction (RT-PCR), transwell assay, immunofluorescence, and immunohistochemistry were conducted in this study. Results: In vitro experiments revealed that BML-111 inhibited EMT and migration in CoCl2-stimulated MCF-7 cells. These effects were achieved by inhibiting MMP-2 and MMP-9, which are downregulated by 5-lipoxygenase (5-LOX). Moreover, BML-111 inhibited EMT and migration of breast cancer cells in BALB/c nude mice inoculated with MCF-7 cells. Conclusion: Our results suggest that BML-111 may be a potential therapeutic drug for breast cancer and that blocking the 5-LOX pathway could be a possible approach for mining effective drug targets.


Assuntos
Neoplasias da Mama , Lipoxinas , Camundongos , Humanos , Animais , Feminino , Células MCF-7 , Lipoxinas/farmacologia , Lipoxinas/metabolismo , Lipoxinas/uso terapêutico , Camundongos Nus , Transição Epitelial-Mesenquimal , Lipoxigenases/farmacologia , Lipoxigenases/uso terapêutico , Movimento Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629162

RESUMO

The GC-MS profiling of the endogenous oxylipins (Me/TMS) from cucumber (Cucumis sativus L.) leaves, flowers, and fruit peels revealed a remarkable abundance of 16-hydroxy-9,12,14-octadecatrienoic acid (16-HOT). Incubations of homogenates from these organs with α-linolenic acid yielded 16(S)-hydroperoxide (16-HPOT) as a predominant product. Targeted proteomic analyses of these tissues revealed the presence of several highly homologous isoforms of the putative "9S-lipoxygenase type 6". One of these isoenzymes (CsLOX3, an 877 amino acid polypeptide) was prepared by heterologous expression in E. coli and exhibited 16(S)- and 13(S)-lipoxygenase activity toward α-linolenic and linoleic acids, respectively. Furthermore, α-linolenate was a preferred substrate. The molecular structures of 16(S)-HOT and 16(S)-HPOT (Me or Me/TMS) were unequivocally confirmed by the mass spectral data, 1H-NMR, 2D 1H-1H-COSY, TOCSY, HMBC, and HSQC spectra, as well as enantiomeric HPLC analyses. Thus, the vegetative CsLOX3, biosynthesizing 16(S)-HPOT, is the first 16(S)-LOX and ω3-LOX ever discovered. Eicosapentaenoic and hexadecatrienoic acids were also specifically transformed to the corresponding ω3(S)-hydroperoxides by CsLOX3.


Assuntos
Cucumis sativus , Ácidos Graxos Ômega-3 , Cucumis sativus/genética , Ácido alfa-Linolênico , Escherichia coli , Proteômica , Peróxido de Hidrogênio , Lipoxigenases
8.
Sci Rep ; 13(1): 10644, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391468

RESUMO

Mammalian lipoxygenases (LOXs) are involved in the biosynthesis of mediators of anaphylactic reactions and have been implicated in cell maturation, the pathogenesis of bronchial asthma, atherosclerosis, rheumatoid arthritis, cardiovascular diseases, Alzheimer's disease and osteoporosis. Hence LOX inhibition in chronic conditions can lead to reducing the disease progression, which can be a good target for treating these diseases. The present study deals with designing methyl gallate derivatives and their anti-inflammatory effect by in silico, in vitro and in vivo methods. Designed derivatives were docked against LOX enzyme, and molecular dynamic simulations were carried out. Following the synthesis of derivatives, in vitro LOX inhibition assay, enzyme kinetics and fluorescence quenching studies were performed. One of the derivatives of methyl gallate (MGSD 1) was demonstrated as an anti-inflammatory agent for the treatment of rheumatoid arthritis in the animal model. Amelioration of Freund's complete adjuvant (FCA)-induced arthritis by methyl gallate and its derivative with a concentration of 10-40 mg.kg-1 has been assessed in vivo in a 28-day-long study. TNF-α and COX-2 gene expression were also studied. Methyl gallate synthetic derivatives (MGSDs) inhibited LOX with an IC50 of 100 nM, 304 nM, and 226 nM for MGSD 1, MGSD 2, and MGSD 3, respectively. Fluorescence quenching methods also prove their binding characteristics, and 200 ns simulations studies showed that the RMSDs for the entire complex were less than 2.8 Å. The in vivo results showed that methyl gallate was required approximately five times diclofenac for the same level of effect, and the synthesised (MGSD 1) compound required only approximately 1/12 of diclofenac for the same level of effect in in-vivo studies. The preeminent expression of COX-2 and TNF-α genes was significantly decreased after the treatment of the methyl gallate derivative. Hence, the in vivo results showed that the referenced synthetic derivative might have more arthritis-reducing properties than the parent compound methyl gallate and is more potent than the standard drug diclofenac, with no apparent induced toxicity.


Assuntos
Artrite Reumatoide , Citocinas , Animais , Lipoxigenase , Ciclo-Oxigenase 2/genética , Fator de Necrose Tumoral alfa , Diclofenaco , Lipoxigenases , Expressão Gênica , Mamíferos
9.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903544

RESUMO

In recent years, many efforts are being made to produce tef-based food for its nutritive and health-promoting advantages. Tef grain is always whole milled because of its tiny grain size and whole flours contain bran (pericarp, aleurone, and germ) where major non-starch lipids could be deposited along with the lipid-degrading enzymes: lipase and lipoxygenase. As lipoxygenase shows little activity in low moisture, the inactivation of lipase is the common objective for most heat treatments to extend the shelf life of flours. In this study, tef flour lipase inactivation kinetics via hydrothermal treatments assisted using microwaves (MW) were studied. The effects of tef flour moisture level (12%, 15%, 20%, and 25%) and MW treatment time (1, 2, 4, 6, and 8 min) on flour lipase activity (LA) and free fatty acid (FFA) content were evaluated. The effects of MW treatment on flour pasting characteristics and the rheological properties of gels prepared from the treated flours were also explored. The inactivation process followed a first-order kinetic response and the apparent rate constant of thermal inactivation increased exponentially with the moisture content of the flour (M) according to the equation 0.048·exp (0.073·M) (R2 = 0.97). The LA of the flours decreased up to 90% under the studied conditions. MW treatment also significantly reduced (up to 20%) the FFA level in the flours. The rheological study confirmed the presence of significant modifications induced by the treatment, as a lateral effect of the flour stabilization process.


Assuntos
Farinha , Lipase , Micro-Ondas , Géis , Lipoxigenases
10.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770981

RESUMO

The phenolic structural analogues of synthetic antioxidants such as butylated hydroxytoluene (BHT) in essential oils have been reported to exhibit antioxidant properties. Additionally, their lipophilicity makes them suitable for use in lipid-rich foods. This study evaluated the antioxidant capacity of carvacrol, a monoterpenoid antioxidant compound in the Monodora myristica (Gaertn.) seed essential oil, compared to the seed essential oil and BHT. In vitro studies (ferric reducing antioxidant power (FRAP), metal chelating activity (MCA), and nitric oxide scavenging activity (NOSA)) were conducted to ascertain if the antioxidant capacity of carvacrol was comparable to that of the seed essential oil. The potential binding affinity and molecular interactions between carvacrol and lipoxygenase (LOX) and its homologous model were investigated in silico. The molecular docking was performed using Autodock Vina, and the best poses were subjected to molecular dynamics simulation. The IC50 for MCA and NOSA were: carvacrol 50.29 µL/mL, seed essential oil (SEO) 71.06 µL/mL; and carvacrol 127.61 µL/mL, SEO 165.18 µL/mL, respectively. The LOX model was Ramachandran favoured (97.75%) and the overall quality factor in the ERRAT plot was 95.392. The results of the molecular docking and molecular dynamics simulations revealed that lipoxygenase has a higher affinity (-22.79 kcal/mol) for carvacrol compared to BHT. In the LOX-BHT and LOX-carvacrol complexes, the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and the radius of gyration (RoG) were not significantly different, indicating similar molecular interactions. The results obtained from this study suggest that carvacrol exhibits an antioxidant capacity that may be explored as an alternative for crude essential oils and synthetic compounds during the storage of lipid-rich foods.


Assuntos
Antioxidantes , Óleos Voláteis , Antioxidantes/química , Armazenamento de Alimentos/métodos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Simulação de Acoplamento Molecular , Estudos Prospectivos , Quelantes , Lipoxigenases
11.
Toxicon ; 222: 106986, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442690

RESUMO

Crotoxin (CTX) is a neurotoxin that is isolated from the venom of Crotalus durissus terrificus, which displays immunomodulatory, anti-inflammatory, and anti-tumoral effects. Previous research has demonstrated that CTX promotes the adherence of leukocytes to the endothelial cells in blood microcirculation and the high endothelial venules of lymph nodes, which reduces the number of blood cells and lymphocytes. Studies have also shown that these effects are mediated by lipoxygenase-derived mediators. However, the exact lipoxygenase-derived eicosanoid involved in the CTX effect on lymphocytes is yet to be characterized. As CTX stimulates lipoxin-derived mediators from macrophages and lymphocyte effector functions could be modulated by activating formyl peptide receptors, we aimed to investigate whether these receptors were involved in CTX-induced redistribution and functions of lymphocytes in rats. We used male Wistar rats treated with CTX to demonstrate that Boc2 (butoxycarbonyl-Phe-Leu-Phe-Leu-Phe), an antagonist of formyl peptide receptors, prevented CTX-induced decrease in the number of circulating lymphocytes and increased the expression of the lymphocyte adhesion molecule LFA1. CTX reduced the T and B lymphocyte functions, such as lymphocyte proliferation in response to the mitogen Concanavalin A and antibody production in response to BSA immunization, respectively, which was prevented by the administration of Boc2. Importantly, mesenteric lymph node lymphocytes from CTX-treated rats showed an increased release of 15-epi-LXA4. These results indicate that formyl peptide receptors mediate CTX-induced redistribution of lymphocytes and that 15-epi-LXA4 is a key mediator of the immunosuppressive effects of CTX.


Assuntos
Crotoxina , Ratos , Masculino , Animais , Crotoxina/farmacologia , Ratos Wistar , Receptores de Formil Peptídeo/metabolismo , Células Endoteliais , Linfócitos , Lipoxigenases/metabolismo , Lipoxigenases/farmacologia , Crotalus/metabolismo
12.
Biomed Res Int ; 2023: 8289750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162338

RESUMO

The present study investigated the phytochemical content of Hibiscus panduriformis, Alternanthera pungens, and Wissadula rostrata and assessed their radical scavenging and anti-inflammatory properties. n-Hexane, dichloromethane (DCM), ethyl acetate, and methanol extracts were prepared from the powdered plant parts. The phytochemical analysis was performed using qualitative high-performance thin-layer chromatography, and polyphenols were quantified using well-established methods. The anti-inflammatory effect was by lipoxygenase inhibition, while the antiradical impact was evaluated through DPPH and ABTS radicals. Steroids, triterpenoids, flavonoids, and tannins were identified in the three plants. The highest phenolic content (95.67 ± 2.19 mg gallic acid equivalent/g) was obtained in the methanolic extract of W. rostrata, while the lowest was measured in H. panduriformis. H. panduriformis was found to be highly rich in flavonoids (61.22 ± 0.09 mg rutin equivalent/g), condensed tannins (62.53 ± 0.03 mg catechin equivalent/g), and hydrolyzable tannins (125.1 ± 1.02 mg tannic acid equivalent/g). The methanolic extract of H. panduriformis displayed the greatest antilipoxygenase activity with an IC50 value of 8.78 ± 1.05 µg/mL. It should be noted that although a moderate to low effect was observed, the extracts were more likely to scavenge DPPH (IC50 values ranged from 0.106 ± 0.010 to 1 mg/mL) than ABTS radicals. There was a strong to moderate correlation between the antilipoxygenase and DPPH radical scavenging effects of the methanolic extracts and total phenolic content (antilipoxygenase, r = 0.7175; DPPH, r = 0.9376). Furthermore, it is worth noting that this is the first report investigating the phytochemical analysis and in vitro biological properties of Hibiscus panduriformis. The results highlighted the richness of this plant in polyphenols and demonstrated its high and moderate effects on lipoxygenase and DPPH radicals, respectively. To this intent, further in vivo and in vitro studies on this plant, along with exhaustive phytochemical analysis, are needed.


Assuntos
Amaranthaceae , Hibiscus , Malvaceae , Antioxidantes/química , Extratos Vegetais/química , Flavonoides/farmacologia , Flavonoides/análise , Fenóis/farmacologia , Fenóis/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Anti-Inflamatórios/farmacologia , Lipoxigenases
13.
Molecules ; 27(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296655

RESUMO

Chalcones have been well examined in the extant literature and demonstrated antibacterial, antifungal, anti-inflammatory, and anticancer properties. A detailed evaluation of the purported health benefits of chalcone and its derivatives, including molecular mechanisms of pharmacological activities, can be further explored. Therefore, this review aimed to describe the main characteristics of chalcone and its derivatives, including their method synthesis and pharmacotherapeutics applications with molecular mechanisms. The presence of the reactive α,ß-unsaturated system in the chalcone's rings showed different potential pharmacological properties, including inhibitory activity on enzymes, anticancer, anti-inflammatory, antibacterial, antifungal, antimalarial, antiprotozoal, and anti-filarial activity. Changing the structure by adding substituent groups to the aromatic ring can increase potency, reduce toxicity, and broaden pharmacological action. This report also summarized the potential health benefits of chalcone derivatives, particularly antimicrobial activity. We found that several chalcone compounds can inhibit diverse targets of antibiotic-resistance development pathways; therefore, they overcome resistance, and bacteria become susceptible to antibacterial compounds. A few chalcone compounds were more active than conventional antibiotics, like vancomycin and tetracycline. On another note, a series of pyran-fused chalcones and trichalcones can block the NF-B signaling complement system implicated in inflammation, and several compounds demonstrated more potent lipoxygenase inhibition than NSAIDs, such as indomethacin. This report integrated discussion from the domains of medicinal chemistry, organic synthesis, and diverse pharmacological applications, particularly for the development of new anti-infective agents that could be a useful reference for pharmaceutical scientists.


Assuntos
Anti-Infecciosos , Antimaláricos , Chalcona , Chalconas , Chalcona/farmacologia , Chalconas/farmacologia , Chalconas/química , Antifúngicos/farmacologia , Vancomicina , Antimaláricos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios não Esteroides/farmacologia , Indometacina , Preparações Farmacêuticas , Lipoxigenases , Tetraciclinas , Relação Estrutura-Atividade
14.
Part Fibre Toxicol ; 19(1): 65, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280873

RESUMO

BACKGROUND: Exposure to particulate matter air pollution is associated with an increased risk of cardiovascular mortality in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not yet understood. Enhanced platelet and pro-thrombotic activity in COPD patients may explain their increased cardiovascular risk. We aim to explore whether short-term exposure to ambient particulate matter is associated with pro-thrombotic changes in adults with and without COPD, and investigate the underlying biological mechanisms in a longitudinal panel study. Serum concentration of thromboxane (Tx)B2 was measured to reflect platelet and pro-thrombotic activity. Lipoxygenase-mediated lipid peroxidation products (hydroxyeicosatetraenoic acids [HETEs]) and inflammatory biomarkers (interleukins [ILs], monocyte chemoattractant protein-1 [MCP-1], tumour necrosis factor alpha [TNF-α], and macrophage inflammatory proteins [MIPs]) were measured as potential mediating determinants of particle-associated pro-thrombotic changes. RESULTS: 53 COPD and 82 non-COPD individuals were followed-up on a maximum of four visits conducted from August 2016 to September 2017 in Beijing, China. Compared to non-COPD individuals, the association between exposure to ambient ultrafine particles (UFPs) during the 3-8 days preceding clinical visits and the TxB2 serum concentration was significantly stronger in COPD patients. For example, a 103/cm3 increase in the 6-day average UFP level was associated with a 25.4% increase in the TxB2 level in the COPD group but only an 11.2% increase in the non-COPD group. The association in the COPD group remained robust after adjustment for the levels of fine particulate matter and gaseous pollutants. Compared to the non-COPD group, the COPD group also showed greater increases in the serum concentrations of 12-HETE (16.6% vs. 6.5%) and 15-HETE (9.3% vs. 4.5%) per 103/cm3 increase in the 6-day UFP average. The two lipid peroxidation products mediated 35% and 33% of the UFP-associated increase in the TxB2 level of COPD patients. UFP exposure was also associated with the increased levels of IL-8, MCP-1, MIP-1α, MIP-1ß, TNF-α, and IL-1ß in COPD patients, but these inflammatory biomarkers did not mediate the TxB2 increase. CONCLUSIONS: Short-term exposure to ambient UFPs was associated with a greater pro-thrombotic change among patients with COPD, at least partially driven by lipoxygenase-mediated pathways following exposure. Trial registration ChiCTR1900023692 . Date of registration June 7, 2019, i.e. retrospectively registered.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Material Particulado/toxicidade , Quimiocina CCL2 , Fator de Necrose Tumoral alfa , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Peroxidação de Lipídeos , Quimiocina CCL3 , Quimiocina CCL4 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Interleucina-8 , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Inflamação/induzido quimicamente , Biomarcadores , Lipoxigenases , Tromboxanos , Exposição Ambiental/análise
15.
Biomed Pharmacother ; 155: 113267, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271539

RESUMO

Acute respiratory distress syndrome (ARDS), a serious manifestation of acute lung injury (ALI), is a debilitating inflammatory lung disease that is caused by multiple risk factors. One of the primary causes that can lead to ALI/ARDS is cigarette smoke (CS) and its primary mode of action is via oxidative stress. Despite extensive research, no appropriate therapy is currently available to treat ALI/ARDS, which means there is a dire need for new potential approaches. In our study we explored the protective effects of 70 % methanolic-aqueous extract of Ipomoea nil (Linn.) Roth, named as In.Mcx against CS-induced ALI mice models and RAW 264.7 macrophages because Ipomoea nil has traditionally been used to treat breathing irregularities. Male Swiss albino mice (20-25 ± 2 g) were subjected to CS for 10 uninterrupted days in order to establish CS-induced ALI murine models. Dexamethasone (1 mg/kg), In.Mcx (100 200, and 300 mg/kg) and normal saline (10 mL/kg) were given to respective animal groups, 1 h before CS-exposure. 24 h after the last CS exposure, the lungs and bronchoalveolar lavage fluid (BALF) of all euthanized mice were harvested. Altered alveolar integrity and elevated lung weight-coefficient, total inflammatory cells, oxidative stress, expression of pro-inflammatory cytokines (IL-1ß and IL-6) and chemokines (KC) were significantly decreased by In.Mcx in CS-exposed mice. In.Mcx also revealed significant lowering IL-1ß, IL-6 and KC expression in CSE (4 %)-activated RAW 264.7 macrophage. Additionally, In.Mcx showed marked enzyme inhibition activity against Acetylcholinesterase, Butyrylcholinesterase and Lipoxygenase. Importantly, In.Mcx dose-dependently and remarkably suppressed the CS-induced oxidative stress via not only reducing the MPO, TOS and MDA content but also improving TAC production in the lungs. Accordingly, HPLC analysis revealed the presence of many important antioxidant components. Finally, In.Mcx showed a marked decrease in the NF-κB expression both in in vivo and in vitro models. Our findings suggest that In.Mcx has positive therapeutic effects against CS-induced ALI via suppressing uncontrolled inflammatory response, oxidative stress, lipoxygenase and NF-κB p65 pathway.


Assuntos
Lesão Pulmonar Aguda , Fumar Cigarros , Ipomoea nil , Síndrome do Desconforto Respiratório , Masculino , Camundongos , Animais , NF-kappa B/metabolismo , Antioxidantes/uso terapêutico , Acetilcolinesterase , Butirilcolinesterase , Solução Salina/efeitos adversos , Interleucina-6 , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/uso terapêutico , Nicotiana/efeitos adversos , Citocinas/metabolismo , Quimiocinas , Dexametasona/efeitos adversos , Lipoxigenases/uso terapêutico
16.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292930

RESUMO

Rice is the third largest food crop in the world, especially in Asia. Its production in various regions is affected to different degrees by drought stress. Melatonin (MT), a novel growth regulator, plays an essential role in enhancing stress resistance in crops. Nevertheless, the underlying mechanism by which melatonin helps mitigate drought damage in rice remains unclear. Therefore, in the present study, rice seedlings pretreated with melatonin (200 µM) were stressed with drought (water potential of -0.5 MPa). These rice seedlings were subsequently examined for their phenotypes and physiological and molecular properties, including metabolite contents, enzyme activities, and the corresponding gene expression levels. The findings demonstrated that drought stress induced an increase in malondialdehyde (MDA) levels, lipoxygenase (LOX) activity, and reactive oxygen species (ROS, e.g., O2- and H2O2) in rice seedlings. However, the melatonin application significantly reduced LOX activity and the MDA and ROS contents (O2- production rate and H2O2 content), with a decrease of 29.35%, 47.23%, and (45.54% and 49.33%), respectively. It activated the expression of ALM1, OsPOX1, OsCATC, and OsAPX2, which increased the activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), respectively. Meanwhile, the melatonin pretreatment enhanced the proline, fructose, and sucrose content by inducing OsP5CS, OsSUS7, and OsSPS1 gene expression levels. Moreover, the melatonin pretreatment considerably up-regulated the expression levels of the melatonin synthesis genes TDC2 and ASMT1 under drought stress by 7-fold and 5-fold, approximately. These improvements were reflected by an increase in the relative water content (RWC) and the root-shoot ratio in the drought-stressed rice seedlings that received a melatonin application. Consequently, melatonin considerably reduced the adverse effects of drought stress on rice seedlings and improved rice's ability to tolerate drought by primarily boosting endogenous antioxidant enzymes and osmoregulation abilities.


Assuntos
Melatonina , Oryza , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Plântula , Catalase/metabolismo , Oryza/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ascorbato Peroxidases/metabolismo , Secas , Osmorregulação , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Prolina/metabolismo , Água/metabolismo , Frutose/metabolismo , Sacarose/metabolismo , Expressão Gênica , Lipoxigenases/metabolismo
17.
Molecules ; 27(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36144656

RESUMO

In this work, a three-component reaction of 3-acetyl-4-hydroxycoumarine, malononitrile, or cyanoacetate in the presence of ammonium acetate was used to form coumarin derivatives. The chemical structures of new compounds were identified by 1H, 13C NMR and an elemental analysis. These compounds were examined in vitro for their antimicrobial activity against a panel of bacterial strains. In addition, these compounds were investigated for antioxidant activities by superoxideradical, DPPH (2,2-Diphenyl-1-picrylhydrazyl), and hydroxyl radical scavenging assays, in which most of them displayed significant antioxidant activities. Furthermore, these compounds were evaluated for anti-inflammatory activity by indirect hemolytic and lipoxygenase inhibition assays and revealed good activity. In addition, screening of the selected compounds 2-4 against colon carcinoma cell lines (HCT-116) and hepatocellular carcinoma cell lines (HepG-2) showed that that 2-amino-4-hydroxy-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)nicotinonitrile 4 exhibited good cytotoxic activity against standard Vinblastine, while the other compounds exhibited moderate cytotoxic activity. Docking simulation showed that2-amino-4-hydroxy-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)nicotinonitrile 4 is an effective inhibitor of the tumor protein HCT-116. A large fluorescence enhancement in a highly acidic medium was observed, and large fluorescence quenching by the addition of traces of Cu2+ and Ni2+ was also remarked.


Assuntos
Anti-Infecciosos , Antineoplásicos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Radical Hidroxila , Lipoxigenases , Simulação de Acoplamento Molecular , Vimblastina
18.
Chemosphere ; 308(Pt 3): 136523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165928

RESUMO

Plants essentially require manganese (Mn) for their normal metabolic functioning. However, excess Mn in the cellular environment is detrimental to plant growth, development, and physio-biochemical functions. Taurine (TAU) is an amino acid with potent antioxidant and anti-inflammatory properties in animals and humans. However, no previous study has investigated the potential of TAU in plant metal stress tolerance. The current study provides some novel insights into the effect of TAU in modulating the defense system of Trifolium alexandrinum plants under Mn toxicity. Manganese toxicity resulted in higher oxidative stress and membrane damage through increased superoxide radical, hydrogen peroxide, malondialdehyde, and methylglyoxal generation alongside enhanced lipoxygenase (LOX) activity. Mn toxicity also resulted in limited uptake of potassium (K+), phosphorus (P), calcium (Ca2+), and increased the accumulation of Mn in both leaf and roots. However, TAU circumvented the Mn-induced oxidative stress by upregulating the activities of antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) and levels of ascorbic acid, proline, anthocyanins, phenolics, flavonoids and glutathione (GSH). Taurine conspicuously improved the growth, photosynthetic pigments, hydrogen sulphide (H2S), and nitric oxide (NO) levels of Mn stressed plants. Taurine also improved the uptake of K+, Ca2+, P and reduced the Mn content in stressed plants. Overall, exogenous taurine might be a suitable strategy to combat Mn stress in T. alexandrinum plants but applications at field levels for various crops and metal toxicities and economic suitability need to be addressed before final recommendations.


Assuntos
Sulfeto de Hidrogênio , Trifolium , Aminoácidos/metabolismo , Antocianinas , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/farmacologia , Cálcio/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Lipoxigenases/metabolismo , Malondialdeído/metabolismo , Manganês/toxicidade , Óxido Nítrico/metabolismo , Nutrientes , Estresse Oxidativo , Fósforo/metabolismo , Fotossíntese , Potássio , Prolina/metabolismo , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Superóxido Dismutase/metabolismo , Superóxidos , Taurina/farmacologia , Transferases/metabolismo , Transferases/farmacologia , Trifolium/metabolismo
19.
J Microbiol Biotechnol ; 32(9): 1126-1133, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36039381

RESUMO

This study investigated the contribution of lipoxygenase (LOX) inhibitors, nordihydroguaiaretic acid (NDGA), tetra-O-methyl nordihydroguaiaretic acid (M4N) and zileuton (ZIL), and thromboxane A2 (TXA2) inhibitor 4,5-diphenylimidazole (DPI) in the proliferation of Brucella abortus infection. None of the compounds affected the uptake of Brucella into the macrophages. We determined the effect of neutralizing leukotriene B4 (LTB4) receptor and showed that the uptake of the bacteria was inhibited at 30 min post-infection. M4N treatment attenuated intracellular survival of Brucella at 2 h post-incubation but it was not observed in the succeeding time points. DPI treatment showed reduced survival of Brucella at 24 h post-incubation while blocking LTB4 receptor was observed to have a lower intracellular growth at 48 h post-incubation suggesting different action of the inhibitors in the course of the survival of Brucella within the cells. Reduced proliferation of the bacteria in the spleens of mice was observed in animals treated with ZIL or DPI. Increased serum cytokine level of TNF-α and MCP-1 was observed in mice treated with M4N or ZIL while a lower IFN-γ level in ZIL-treated mice and a higher IL-12 serum level in DPI-treated mice were observed at 7 d post-infection. At 14 d post-infection, ZIL-treated mice displayed reduced serum level of IL-12 and IL-10. Overall, inhibition of 5-LOX or TXA2 or a combination therapy promises a potential alternative therapy against B. abortus infection. Furthermore, strong ligands for LTB4 receptor could also be a good candidate for the control of Brucella infection.


Assuntos
Brucella abortus , Brucelose , Animais , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Citocinas/metabolismo , Interleucina-10 , Interleucina-12 , Leucotrieno B4/farmacologia , Inibidores de Lipoxigenase/farmacologia , Lipoxigenases , Masoprocol/análogos & derivados , Masoprocol/farmacologia , Camundongos , Receptores do Leucotrieno B4 , Tromboxano A2/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
20.
Z Naturforsch C J Biosci ; 77(11-12): 519-523, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36018718

RESUMO

Several Magnolia species have exhibited potent biological activities such as anti-inflammatory, anti-angiogenesis, anticonvulsant, anti-obesity, and antiviral activities. However, the Magnolia candollii from Malaysia has not been investigated yet. Hence, this study aims to investigate the chemical composition and bioactivities of the essential oil of Magnolia candollii H.Keng from Malaysia. The hydrodistillation process was used to produce the essential oil, and gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to analyse it. In total, 44 chemical components were identified in the bark oil, accounting for 98.4%. The major components of the essential oil were α-pinene (29.7%), elemol (10.2%), ß-pinene (8.5%), ß-caryophyllene (7.2%), α-terpineol (7.0%), guaiol (5.4%), and bulnesol (4.9%). Acetylcholinesterase and anti-inflammatory activities were also evaluated using the Ellman method and lipoxygenase enzyme, respectively, in which the essential oil showed moderate inhibitory activity against acetylcholinesterase (I%: 70.2%) and lipoxygenase (I%: 72.5%). Thus, the findings may be helpful for identifying the medicinal and therapeutic uses of the essential oil from the Magnolia genus.


Assuntos
Magnolia , Óleos Voláteis , Óleos Voláteis/química , Magnolia/química , Acetilcolinesterase , Cromatografia Gasosa-Espectrometria de Massas , Óleos de Plantas/química , Anti-Inflamatórios , Lipoxigenases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA