Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681950

RESUMO

The MYB transcription factor family is one of the largest families in plants, and its members have various biological functions. R2R3-MYB genes are involved in the synthesis of pigments that yield petal colors. Liriodendron plants are widely cultivated as ornamental trees owing to their peculiar leaves, tulip-like flowers, and colorful petals. However, the mechanism underlying petal coloring in this species is unknown, and minimal information about MYB genes in Liriodendron is available. Herein, this study aimed to discern gene(s) involved in petal coloration in Liriodendron via genome-wide identification, HPLC, and RT-qPCR assays. In total, 204 LcMYB superfamily genes were identified in the Liriodendron chinense genome, and 85 R2R3-MYB genes were mapped onto 19 chromosomes. Chromosome 4 contained the most (10) R2R3-MYB genes, and chromosomes 14 and 16 contained the fewest (only one). MEME analysis showed that R2R3-MYB proteins in L. chinense were highly conserved and that their exon-intron structures varied. The HPLC results showed that three major carotenoids were uniformly distributed in the petals of L. chinense, while lycopene and ß-carotene were concentrated in the orange band region in the petals of Liriodendron tulipifera. Furthermore, the expression profiles via RT-qPCR assays revealed that four R2R3-MYB genes were expressed at the highest levels at the S3P/S4P stage in L. tulipifera. This result combined with the HPLC results showed that these four R2R3-MYB genes might participate in carotenoid synthesis in the petals of L. tulipifera. This work laid a cornerstone for further functional characterization of R2R3-MYB genes in Liriodendron plants.


Assuntos
Carotenoides/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes myb , Genoma de Planta , Liriodendron/genética , Proteínas de Plantas/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Liriodendron/crescimento & desenvolvimento , Liriodendron/metabolismo , Filogenia , Pigmentação , Proteínas de Plantas/genética , RNA-Seq , Fatores de Transcrição
2.
Tree Physiol ; 27(8): 1103-12, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17472937

RESUMO

Aluminum (Al) in acidic soils is toxic to plants, affecting growth, water uptake and nutrient assimilation. Aluminum resistance in some plant species and genotypes has been ascribed to organic acid exudation from roots and arbuscular mycorrhizal (AM) fungal symbiosis. We investigated variation among several AM species in altering Al resistance of Liriodendron tulipifera L. and evaluated AM influence on organic acid production as a potential Al resistance mechanism. Growth, nutritional responses and rhizosphere organic acid profiles were assessed for seedlings in association with Acaulospora morrowiae Spain & Schenck, Glomus claroideum Schenck & Smith, G. clarum Nicol. & Schenck or Paraglomus brasilianum (Spain & Miranda) Morton & Redecker and non-mycorrhizal seedlings exposed to 0, 50 or 200 microM Al. Plants colonized by G. clarum had the greatest biomass, least Al and most phosphorus (P) in leaf tissues and exuded malate and citrate into the rhizosphere at rates that complexed 99% of delivered Al in all treatments. Other AM fungi did not confer significant Al resistance on L. tulipifera and did not maintain citrate and malate exudation in response to Al exposure. This study illustrates functional diversity among AM fungal species in conferred Al resistance to plants and highlights the potential importance of fungal diversity in ecosystem responses to environmental stresses.


Assuntos
Alumínio/metabolismo , Ácidos Carboxílicos/metabolismo , Liriodendron/microbiologia , Micorrizas/metabolismo , Simbiose/fisiologia , Liriodendron/crescimento & desenvolvimento , Liriodendron/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA