Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Mol Cell ; 82(3): 527-541.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35016033

RESUMO

Citrulline can be converted into argininosuccinate by argininosuccinate synthetase (ASS1) in the urea cycle and the citrulline-nitric oxide cycle. However, the regulation and biological function of citrulline metabolism remain obscure in the immune system. Unexpectedly, we found that macrophage citrulline declines rapidly after interferon gamma (IFN-γ) and/or lipopolysaccharide (LPS) stimulation, which is required for efficient proinflammatory signaling activation. Mechanistically, IFN-γ and/or LPS stimulation promotes signal transducers and activators of transcription 1 (STAT1)-mediated ASS1 transcription and Janus kinase2 (JAK2)-mediated phosphorylation of ASS1 at tyrosine 87, thereby leading to citrulline depletion. Reciprocally, increased citrulline directly binds to JAK2 and inhibits JAK2-STAT1 signaling. Blockage of ASS1-mediated citrulline depletion suppresses the host defense against bacterial infection in vivo. We therefore define a central role for ASS1 in controlling inflammatory macrophage activation and antibacterial defense through depletion of cellular citrulline and, further, identify citrulline as an innate immune-signaling metabolite that engages a metabolic checkpoint for proinflammatory responses.


Assuntos
Argininossuccinato Sintase/metabolismo , Citrulina/metabolismo , Imunidade Inata , Inflamação/enzimologia , Listeriose/enzimologia , Ativação de Macrófagos , Macrófagos/enzimologia , Animais , Argininossuccinato Sintase/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Listeria monocytogenes/imunologia , Listeriose/genética , Listeriose/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Células RAW 264.7 , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
2.
Int Immunopharmacol ; 96: 107625, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33857803

RESUMO

Listeria monocytogenes is the third major cause of death among food poisoning. Our previous studies have demonstrated that steroid receptor coactivator 3 (SRC-3) plays a critical protective role in host defense against extracellular bacterial pathogens such as Escherichia coli and Citrobacter rodentium. However, its role involved in intracellular bacterial pathogen infection remains unclear. Herein, we found that SRC-3-/- mice are more resistant to L. monocytogenes infection after tail intravenous injection with L. monocytogenes compared with wild-type mice. After infecting with L. monocytogenes, SRC-3-/- mice exhibited decreased mortality rate, decreased bacterial load, less body weight loss, less proinflammatory cytokines and less severe tissue damage compared with wild-type mice. SRC-3-/- mice produced more ROS and decreased L. monocytogenes-induced lymphocyte apoptosis. Mechanically, SRC-3-/- mice displayed decreased expressions of negative regulator of ROS (NRROS) and interferon (IFN)-ß and its target genes such as Daxx, Mx1 and TRAIL associated with apoptosis. Taken together, SRC-3 deficiency can protect host from L. monocytogenes infection through increasing ROS production and decreasing lymphocyte apoptosis via affecting the expressions of NRROS and IFN-ß.


Assuntos
Apoptose/genética , Listeria monocytogenes/imunologia , Listeriose/genética , Listeriose/imunologia , Linfócitos/metabolismo , Coativador 3 de Receptor Nuclear/deficiência , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Linfócitos/citologia , Macrófagos , Masculino , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Resistência a Myxovirus , Coativador 3 de Receptor Nuclear/genética , Cultura Primária de Células , Baço/microbiologia , Baço/patologia , Sobrevida/fisiologia
3.
Dev Cell ; 56(4): 443-460.e11, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33621492

RESUMO

Intracellular pathogens alter their host cells' mechanics to promote dissemination through tissues. Conversely, host cells may respond to the presence of pathogens by altering their mechanics to limit infection. Here, we monitored epithelial cell monolayers infected with intracellular bacterial pathogens, Listeria monocytogenes or Rickettsia parkeri, over days. Under conditions in which these pathogens trigger innate immune signaling through NF-κB and use actin-based motility to spread non-lytically intercellularly, we found that infected cell domains formed three-dimensional mounds. These mounds resulted from uninfected cells moving toward the infection site, collectively squeezing the softer and less contractile infected cells upward and ejecting them from the monolayer. Bacteria in mounds were less able to spread laterally in the monolayer, limiting the growth of the infection focus, while extruded infected cells underwent cell death. Thus, the coordinated forceful action of uninfected cells actively eliminates large domains of infected cells, consistent with this collective cell response representing an innate immunity-driven process.


Assuntos
Competição entre as Células , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Imunidade Inata , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Listeriose/microbiologia , Transdução de Sinais , Actomiosina/metabolismo , Animais , Apoptose , Fenômenos Biomecânicos , Adesão Celular , Linhagem Celular , Simulação por Computador , Cães , Interações Hospedeiro-Patógeno , Humanos , Junções Intercelulares/metabolismo , Terapia a Laser , Listeriose/genética , Células Madin Darby de Rim Canino , NF-kappa B/metabolismo , Imagem com Lapso de Tempo , Transcrição Gênica
4.
J Immunol ; 205(3): 853-863, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591396

RESUMO

As a specialized subset of intestinal epithelial cells (IECs), goblet cells (GCs) play an important role during the antibacterial response via mucin production. However, the regulatory mechanisms involved in GC differentiation and function during infection, particularly the role of immune cell-IEC cross-talk, remain largely unknown. In this study, using Villin∆Ltbr conditional knockout mice, we demonstrate that LTßR, expressed on IECs, is required for GC hyperplasia and mucin 2 (MUC2) expression during Listeria infection for host defense but not homeostatic maintenance in the naive state. Analysis of single gene-deficient mice revealed that the ligand lymphotoxin (LT), but not LIGHT, and type 3 innate lymphoid cells (ILC3s), but not conventional T cells, are required for MUC2-dependent Listeria control. Conditional deficiency of LT in ILC3s further confirmed the importance of LT signals derived from ILC3s. Lack of ILC3-derived LT or IEC-derived LTßR resulted in the defective expression of genes related to GC differentiation but was not correlated with IEC proliferation and cell death, which were found to be normal by Ki-67 and Annexin V staining. In addition, the alternative NF-κB signaling pathway (involving RelB) in IECs was found to be required for the expression of GC differentiation-related genes and Muc2 and required for the anti-Listeria response. Therefore, our data together suggest a previously unrecognized ILC3-IEC interaction and LT-LTßR-RelB signaling axis governing GC differentiation and function during Listeria infection for host defense.


Assuntos
Diferenciação Celular/imunologia , Células Caliciformes/imunologia , Listeria/imunologia , Listeriose/imunologia , Linfócitos/imunologia , Linfotoxina-alfa/imunologia , Transdução de Sinais/imunologia , Animais , Diferenciação Celular/genética , Células Caliciformes/patologia , Listeriose/genética , Listeriose/patologia , Linfócitos/patologia , Receptor beta de Linfotoxina , Linfotoxina-alfa/genética , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , Transdução de Sinais/genética
5.
RNA Biol ; 17(10): 1492-1507, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32584699

RESUMO

The invasion of mammalian cells by intracellular bacterial pathogens reshuffles their gene expression and functions; however, we lack dynamic insight into the distinct control levels that shape the host response. Here, we have addressed the respective contribution of transcriptional and translational regulations during a time-course of infection of human intestinal epithelial cells by an epidemic strain of Listeria monocytogenes, using transcriptome analysis paralleled with ribosome profiling. Upregulations were dominated by early transcriptional activation of pro-inflammatory genes, whereas translation inhibition appeared as the major driver of downregulations. Instead of a widespread but transient shutoff, translation inhibition affected specifically and durably transcripts encoding components of the translation machinery harbouring a 5'-terminal oligopyrimidine motif. Pre-silencing the most repressed target gene (PABPC1) slowed down the intracellular multiplication of Listeria monocytogenes, suggesting that the infected host cell can benefit from the repression of genes involved in protein synthesis and thereby better control infection.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno/genética , Listeria monocytogenes/fisiologia , Biossíntese de Proteínas , Transcrição Gênica , Células Cultivadas , Humanos , Listeriose/genética , Listeriose/microbiologia , RNA Mensageiro/genética , Fatores de Tempo
6.
J Immunol ; 205(3): 760-766, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32540996

RESUMO

P2X5 is a member of the P2X purinergic receptor family of ligand-gated cation channels and has recently been shown to regulate inflammatory bone loss. In this study, we report that P2X5 is a protective immune regulator during Listeria monocytogenes infection, as P2X5-deficient mice exhibit increased bacterial loads in the spleen and liver, increased tissue damage, and early (within 3-6 d) susceptibility to systemic L. monocytogenes infection. Whereas P2X5-deficient mice experience normal monocyte recruitment in response to L. monocytogenes, P2X5-deficient bone marrow-derived macrophages (BMMs) exhibit defective cytosolic killing of L. monocytogenes We further showed that P2X5 is required for L. monocytogenes-induced inflammasome activation and IL-1ß production and that defective L. monocytogenes killing in P2X5-deficient BMMs is substantially rescued by exogenous IL-1ß or IL-18. Finally, in vitro BMM killing and in vivo L. monocytogenes infection experiments employing either P2X7 deficiency or extracellular ATP depletion suggest that P2X5-dependent anti-L. monocytogenes immunity is independent of the ATP-P2X7 inflammasome activation pathway. Together, our findings elucidate a novel and specific role for P2X5 as a critical mediator of protective immunity.


Assuntos
Inflamassomos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptores Purinérgicos P2X5/deficiência , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/imunologia , Animais , Suscetibilidade a Doenças , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Listeriose/genética , Listeriose/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Receptores Purinérgicos P2X5/imunologia
7.
Front Immunol ; 10: 1388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297109

RESUMO

TLR2 signaling plays a critical protective role against acute Listeria monocytogenes (Lm) infection by up-regulating inflammatory cytokines and promoting macrophage antimicrobial capabilities. However, the underlying mechanism by which TLR2 regulates hepatic macrophage-mediated anti-Lm immune responses remains poorly understood. In this study, we found that both the absolute number and proportion of monocyte/macrophage (Mo/MΦ) in the liver and spleen of Tlr2-/- mice were significantly lower compared to wild type mice. Changes in TLR2 signaling in both hepatocytes and Mo/MΦs were associated with the infiltration of Mo/MΦs in response to Lm-infection. Analyses by proteome profiler array and ELISA revealed that hepatocytes recruited Mo/MΦs via TLR2-dependent secretion of CCL2 and CXCL1, which was confirmed by receptor blocking and exogenous chemokine administration. Importantly, we found that TLR2 contributed to macrophage mobility in the liver through a TLR2/NO/F-actin pathway, facilitating the formation of macrophage-associated hepatic microabscesses. Moreover, TLR2 activation induced the expression of several PRRs on hepatic macrophages associated with the recognition of Lm and augmented macrophage bacterial clearance activity. Our findings provide insight into the intrinsic mechanisms of TLR2-induced Mo/MΦ migration and mobility, as well as the interaction between macrophages and hepatocytes in resistance to Lm infection.


Assuntos
Listeria monocytogenes/imunologia , Listeriose/imunologia , Abscesso Hepático/imunologia , Fígado/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Listeriose/genética , Listeriose/microbiologia , Listeriose/patologia , Fígado/microbiologia , Fígado/patologia , Abscesso Hepático/genética , Abscesso Hepático/microbiologia , Abscesso Hepático/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Receptor 2 Toll-Like/genética
8.
J Innate Immun ; 11(6): 469-480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30884482

RESUMO

To investigate the role of fatty acid-binding protein 5 (FABP5) in infectious diseases, FABP5-deficient mice were challenged with Listeria monocytogenes, a facultative intracellular bacterial pathogen. Interestingly, FABP5-deficient animals were able to clear the infection within 3 days whereas control wild-type (WT) animals showed comparatively higher bacterial burdens in the liver and spleen. Sections of infected tissues showed an increase in inflammatory foci in WT mice compared to FABP5-deficient mice. FABP5-deficient mice had lower circulating inflammatory cytokines and increased inducible nitric oxide synthase production. FABP5-deficient mouse bone marrow-derived macrophages produced higher levels of nitrite anion than their WT counterparts in response to various stimuli. Additionally, in contrast to FABP5-/- mice, transgenic mice overexpressing FABP5 in myeloid cells (LysM-Cre driven) showed decreased survival rates and increased bacterial burden and inflammatory cytokines. Overall, these findings suggest that increased FABP5 levels correlate with a higher L. monocytogenes bacterial burden and elevated subsequent inflammation.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Inflamação/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Macrófagos/fisiologia , Proteínas de Neoplasias/metabolismo , Animais , Carga Bacteriana , Sobrevivência Celular , Células Cultivadas , Citocinas/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Inflamação/genética , Mediadores da Inflamação/metabolismo , Listeriose/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética
9.
Nat Microbiol ; 4(4): 701-713, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804548

RESUMO

The innate immune system is crucial for eventual control of infections, but may also contribute to pathology. Listeria monocytogenes is an intracellular Gram-positive bacteria and a major cause of food-borne disease. However, important knowledge on the interactions between L. monocytogenes and the immune system is still missing. Here, we report that Listeria DNA is sorted into extracellular vesicles (EVs) in infected cells and delivered to bystander cells to stimulate the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway. This was also observed during infections with Francisella tularensis and Legionella pneumophila. We identify the multivesicular body protein MVB12b as a target for TANK-binding kinase 1 phosphorylation, which is essential for the sorting of DNA into EVs and stimulation of bystander cells. EVs from Listeria-infected cells inhibited T-cell proliferation, and primed T cells for apoptosis. Collectively, we describe a pathway for EV-mediated delivery of foreign DNA to bystander cells, and suggest that intracellular bacteria exploit this pathway to impair antibacterial defence.


Assuntos
Vesículas Extracelulares/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Listeria monocytogenes/genética , Listeriose/genética , Listeriose/microbiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos Cíclicos , Nucleotidiltransferases/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Transporte Vesicular/genética
10.
Front Immunol ; 9: 2751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538705

RESUMO

MicroRNA (miR) miR-155 modulates microglial activation and polarization, but its role in activation of microglia during bacterial brain infection is unclear. We studied miR-155 expression in brains of C57BL/6 (B6.WT) mice infected i.p. with the neuro-invasive bacterial pathogen Listeria monocytogenes (L. monocytogenes). Infected mice were treated with ampicillin starting 2 days (d) post-infection (p.i.) and analyzed 3d, 7d, and 14d p.i. Virulent L. monocytogenes strains EGD and 10403s upregulated miR-155 in whole brain 7 d p.i. whereas infection with avirulent, non-neurotropic Δhly or ΔactA L. monocytogenes mutants did not. Similarly, infection with virulent but not mutated bacteria upregulated IFN-γ mRNA in the brain at 7 d p.i. Upregulation of miR-155 in microglia was confirmed by qPCR of flow cytometry-sorted CD45intCD11bpos brain cells. Subsequently, brain leukocyte influxes and gene expression in sorted microglia were compared in L. monocytogenes-infected B6.WT and B6.Cg-Mir155tm1.1Rsky/J (B6.miR-155-/-) mice. Brain influxes of Ly-6Chigh monocytes and upregulation of IFN-related genes in microglia were similar to B6.WT mice at 3 d p.i. In contrast, by d 7 p.i. expressions of microglial IFN-related genes, including markers of M1 polarization, were significantly lower in B6.miR-155-/- mice and by 14 d p.i., influxes of activated T-lymphocytes were markedly reduced. Notably, CD45highCD11bpos brain cells from B6.miR-155-/- mice isolated at 7 d p.i. expressed 2-fold fewer IFN-γ transcripts than did cells from B6.WT mice suggesting reduced IFN-γ stimulation contributed to dampened gene expression in B6.miR-155-/- microglia. Lastly, in vitro stimulation of 7 d p.i. brain cells with heat-killed L. monocytogenes induced greater production of TNF in B6.miR-155-/- microglia than in B6.WT microglia. Thus, miR-155 affects brain inflammation by multiple mechanisms during neuroinvasive L. monocytogenes infection. Peripheral miR-155 promotes brain inflammation through its required role in optimal development of IFN-γ-secreting lymphocytes that enter the brain and activate microglia. Microglial miR-155 promotes M1 polarization, and also inhibits inflammatory responses to stimulation by heat-killed L. monocytogenes, perhaps by targeting Tab2.


Assuntos
Interferon gama/imunologia , Listeria monocytogenes/imunologia , MicroRNAs/imunologia , Microglia/imunologia , Regulação para Cima/imunologia , Animais , Comunicação Celular/imunologia , Encefalite/genética , Encefalite/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Interferon gama/genética , Listeriose/genética , Listeriose/imunologia , Listeriose/microbiologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Microglia/microbiologia , Monócitos/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Linfócitos T/imunologia , Regulação para Cima/genética
11.
J Exp Med ; 215(12): 3165-3179, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30429249

RESUMO

Phosphatidylinositol-3 kinases (PI3Ks) modulate cellular growth, proliferation, and survival; dysregulation of the PI3K pathway can lead to autoimmune disease and cancer. PIK3IP1 (or transmembrane inhibitor of PI3K [TrIP]) is a putative transmembrane regulator of PI3K. TrIP contains an extracellular kringle domain and an intracellular domain with homology to the inter-SH2 domain of the PI3K regulatory subunit p85, but the mechanism of TrIP function is poorly understood. We show that both the kringle and p85-like domains are necessary for TrIP inhibition of PI3K and that TrIP is down-modulated from the surface of T cells during T cell activation. In addition, we present evidence that the kringle domain may modulate TrIP function by mediating oligomerization. Using an inducible knockout mouse model, we show that TrIP-deficient T cells exhibit more robust activation and can mediate clearance of Listeria monocytogenes infection faster than WT mice. Thus, TrIP is a negative regulator of T cell activation and may represent a novel target for immune modulation.


Assuntos
Proteínas de Transporte/imunologia , Classe Ia de Fosfatidilinositol 3-Quinase/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Proteínas de Transporte/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Listeria monocytogenes/imunologia , Listeriose/genética , Listeriose/imunologia , Listeriose/patologia , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Linfócitos T/patologia
12.
Front Immunol ; 9: 2101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258450

RESUMO

Innate lymphoid cells (ILCs) are the most recently identified family of the innate immune system and are hypothesized to modulate immune functions prior to the generation of adaptive immune responses. Subsets of ILCs reside in the mucosa and regulate immune responses to external pathogens; however, their role and the mechanism by which they protect against intracellular bacterial infection is not completely understood. In this report, using S. typhimurium and L. monocytogenes, we found that the levels of group 1 ILCs and NCR+ ILC3s were increased upon infection and that these increases were associated with Runt-related transcription factor 3 (Runx3) expression. Runx3 fl/fl PLZF-cre mice were much more sensitive to infection with the intracellular bacterial pathogens S. typhimurium and L. monocytogenes partially due to abnormal Group 1 ILC and NCR+ILC3 function. We also found that Runx3 directly binds to the Il12Rß2 promoter and intron 8 to accelerate the expression of Il12Rß2 and modulates IFNγ secretion triggered by the IL12/ STAT4 axis. Therefore, we demonstrate that Runx3 influences group 1 ILC- and NCR+ILC3-mediated immune protection against intracellular bacterial infections of both the gut and liver.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Imunidade Inata , Interleucina-12/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Linfócitos/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia , Animais , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Interleucina-12/genética , Listeriose/genética , Listeriose/patologia , Linfócitos/patologia , Camundongos , Camundongos Transgênicos , Infecções por Salmonella/genética , Infecções por Salmonella/patologia , Transdução de Sinais/genética
13.
Cell Rep ; 23(4): 1124-1137, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694890

RESUMO

Sirtuin 2 is a nicotinamide-adenine-dinucleotide-dependent deacetylase that regulates cell processes such as carcinogenesis, cell cycle, DNA damage, and infection. Subcellular localization of SIRT2 is crucial for its function but is poorly understood. Infection with the bacterial pathogen Listeria monocytogenes, which relocalizes SIRT2 from the cytoplasm to the chromatin, provides an ideal stimulus for the molecular study of this process. In this report, we provide a map of SIRT2 post-translational modification sites and focus on serine 25 phosphorylation. We show that infection specifically induces dephosphorylation of S25, an event essential for SIRT2 chromatin association. Furthermore, we identify a nuclear complex formed by the phosphatases PPM1A and PPM1B, with SIRT2 essential for controlling H3K18 deacetylation and SIRT2-mediated gene repression during infection and necessary for a productive Listeria infection. This study reveals a molecular mechanism regulating SIRT2 function and localization, paving the way for understanding other SIRT2-regulated cellular processes.


Assuntos
Cromatina/metabolismo , Listeria monocytogenes , Listeriose/metabolismo , Sirtuína 2/metabolismo , Animais , Cromatina/genética , Células HeLa , Humanos , Listeriose/genética , Camundongos , Camundongos Knockout , Fosforilação , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Processamento de Proteína Pós-Traducional , Sirtuína 2/genética
14.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311243

RESUMO

The host employs both cell-autonomous and system-level responses to limit pathogen replication in the initial stages of infection. Previously, we reported that the eukaryotic initiation factor 2α (eIF2α) kinases heme-regulated inhibitor (HRI) and protein kinase R (PKR) control distinct cellular and immune-related activities in response to diverse bacterial pathogens. Specifically for Listeria monocytogenes, there was reduced translocation of the pathogen to the cytosolic compartment in HRI-deficient cells and consequently reduced loading of pathogen-derived antigens on major histocompatibility complex class I (MHC-I) complexes. Here we show that Hri-/- mice, as well as wild-type mice treated with an HRI inhibitor, are more susceptible to listeriosis. In the first few hours of L. monocytogenes infection, there was much greater pathogen proliferation in the liver of Hri-/- mice than in the liver of Hri+/+ mice. Further, there was a rapid increase of serum interleukin-6 (IL-6) levels in Hri+/+ mice in the first few hours of infection whereas the increase in IL-6 levels in Hri-/- mice was notably delayed. Consistent with these in vivo findings, the rate of listeriolysin O (LLO)-dependent pathogen efflux from infected Hri-/- macrophages and fibroblasts was significantly higher than the rate seen with infected Hri+/+ cells. Treatment of cells with an eIF2α kinase activator enhanced both the HRI-dependent and PKR-dependent infection phenotypes, further indicating the pharmacologically malleability of this signaling pathway. Collectively, these results suggest that HRI mediates the cellular confinement and killing of virulent L. monocytogenes in addition to promoting a system-level cytokine response and that both are required to limit pathogen replication during the first few hours of infection.


Assuntos
Listeria monocytogenes/fisiologia , Listeriose/enzimologia , Proteínas Serina-Treonina Quinases/imunologia , Animais , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Listeria monocytogenes/genética , Listeriose/genética , Listeriose/imunologia , Listeriose/microbiologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética
15.
Sci Rep ; 7(1): 17821, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259308

RESUMO

The human pathogen L. monocytogenes and the animal pathogen L. ivanovii, together with four other species isolated from symptom-free animals, form the "Listeria sensu stricto" clade. The members of the second clade, "Listeria sensu lato", are believed to be solely environmental bacteria without the ability to colonize mammalian hosts. To identify novel determinants that contribute to infection by L. monocytogenes, the causative agent of the foodborne disease listeriosis, we performed a genome comparison of the two clades and found 151 candidate genes that are conserved in the Listeria sensu stricto species. Two factors were investigated further in vitro and in vivo. A mutant lacking an ATP-binding cassette transporter exhibited defective adhesion and invasion of human Caco-2 cells. Using a mouse model of foodborne L. monocytogenes infection, a reduced number of the mutant strain compared to the parental strain was observed in the small intestine and the liver. Another mutant with a defective 1,2-propanediol degradation pathway showed reduced persistence in the stool of infected mice, suggesting a role of 1,2-propanediol as a carbon and energy source of listeriae during infection. These findings reveal the relevance of novel factors for the colonization process of L. monocytogenes.


Assuntos
Listeria monocytogenes/genética , Listeriose/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Células CACO-2 , Linhagem Celular Tumoral , Feminino , Doenças Transmitidas por Alimentos/genética , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Listeriose/genética , Camundongos , Camundongos Endogâmicos BALB C , Virulência/genética
16.
Cell Physiol Biochem ; 42(4): 1358-1365, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704812

RESUMO

BACKGROUND: Cellular glucose uptake may involve either non-concentrative glucose carriers of the GLUT family or Na+-coupled glucose-carrier SGLT1, which accumulates glucose against glucose gradients and may thus accomplish cellular glucose uptake even at dramatically decreased extracellular glucose concentrations. SGLT1 is not only expressed in epithelia but as well in tumour cells and immune cells. Immune cell functions strongly depend on their metabolism, therefore we hypothesized that deficiency of SGLT1 modulates the defence against bacterial infection. To test this hypothesis, we infected wild type mice and gene targeted mice lacking functional SGLT1 with Listeria monocytogenes. METHODS: SGLT1 deficient mice and wild type littermates were infected with 1x104 CFU Listeria monocytogenes intravenously. Bacterial titers were determined by colony forming assay, SGLT1, TNF-α, IL-6 and IL-12a transcript levels were determined by qRT-PCR, as well as SGLT1 protein abundance and localization by immunohistochemistry. RESULTS: Genetic knockout of SGLT1 (Slc5a1-/- mice) significantly compromised bacterial clearance following Listeria monocytogenes infection with significantly enhanced bacterial load in liver, spleen, kidney and lung, and significantly augmented hepatic expression of TNF-α and IL-12a. While all wild type mice survived, all SGLT1 deficient mice died from the infection. CONCLUSIONS: SGLT1 is required for bacterial clearance and host survival following murine Listeria infection.


Assuntos
Expressão Gênica/imunologia , Glucose/imunologia , Listeriose/genética , Listeriose/mortalidade , Fígado/imunologia , Transportador 1 de Glucose-Sódio/imunologia , Animais , Carga Bacteriana , Transporte Biológico , Glucose/metabolismo , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Rim/imunologia , Rim/microbiologia , Rim/patologia , Listeria monocytogenes , Listeriose/imunologia , Listeriose/microbiologia , Fígado/microbiologia , Fígado/patologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transportador 1 de Glucose-Sódio/deficiência , Transportador 1 de Glucose-Sódio/genética , Baço/imunologia , Baço/microbiologia , Baço/patologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
Immunobiology ; 222(8-9): 913-917, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28545808

RESUMO

During an immune response inflammatory macrophages with their wide variety of effector mechanisms including the expression of inducible nitric oxide synthase play an important part in the defense against invading pathogens. The inflammatory phenotype requires the presence of TNF which suppresses alternative activation. In the bacterial Listeria monocytogenes infection model inflammatory macrophages are crucial for protection. After infection, TNF-deficient hosts have a similar number of splenic macrophages but die rapidly. A more detailed analysis of these cells showed that while inducible nitric oxide synthase is expressed at a comparable level TNF-deficient macrophages show an increased expression of Arginase 1.


Assuntos
Arginase/genética , Listeria monocytogenes , Listeriose/genética , Fator de Necrose Tumoral alfa/deficiência , Animais , Carga Bacteriana , Fígado/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Baço/microbiologia , Fator de Necrose Tumoral alfa/genética
18.
PLoS Pathog ; 13(5): e1006388, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542482

RESUMO

Interferons (IFNs) target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ) acts on a cell surface receptor (IFNGR) to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1) driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.


Assuntos
Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/imunologia , Receptores de Interferon/genética , Animais , Regulação para Baixo , Feminino , Humanos , Interferon Tipo I/imunologia , Listeriose/genética , Listeriose/microbiologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Knockout , Receptores de Interferon/imunologia , Receptor de Interferon gama
19.
Biomed Res Int ; 2017: 2101575, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29445733

RESUMO

The facultative intracellular pathogen Listeria monocytogenes causes a severe food-borne infection in humans and animals. L. monocytogenes invasion factor InlB interacts with the tyrosine kinase c-Met via the N-terminal internalin domain. Previously, distinct variants of the InlB internalin domain (idInlB) have been described in L. monocytogenes field isolates. Three variants were used to restore full-length InlB expression in the L. monocytogenes strain EGDeΔinlB. Obtained isogenic L. monocytogenes strains were tested in the invasion assay and intravenous, intraperitoneal, and intragastric models of infection in mice. All idInlBs were functional, restored InlB activity as an invasion factor, and improved invasion of the parental strain EGDeΔinlB into human kidney HEK23 cells. Meanwhile, distinct idInlBs provided different mortality rates and bacterial loads in internal organs. When recombinant strains were compared, the variant designated idInlB14 decreased severity of disease caused by intravenous and intraperitoneal bacterial administration, whereas this variant improved intestine colonization and stimulated intragastric infection. Obtained results demonstrated that naturally occurring idInlBs differed in their impact on severity of L. monocytogenes infection in mice in dependence on the infection route.


Assuntos
Proteínas de Bactérias/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Proteínas de Membrana/genética , Administração Intravenosa , Animais , Citoplasma/microbiologia , Citoplasma/patologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Regulação Bacteriana da Expressão Gênica , Células HEK293 , Humanos , Injeções Intraperitoneais , Listeria monocytogenes/genética , Listeriose/genética , Listeriose/patologia , Camundongos , Domínios Proteicos , Índice de Gravidade de Doença
20.
Sci Rep ; 6: 39796, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004776

RESUMO

The ubiquitin-modifying enzyme A20, an important negative feedback regulator of NF-κB, impairs the expansion of tumor-specific CD8+ T cells but augments the proliferation of autoimmune CD4+ T cells. To study the T cell-specific function of A20 in bacterial infection, we infected T cell-specific A20 knockout (CD4-Cre A20fl/fl) and control mice with Listeria monocytogenes. A20-deficient pathogen-specific CD8+ T cells expanded stronger resulting in improved pathogen control at day 7 p.i. Imaging flow cytometry revealed that A20-deficient Listeria-specific CD8+ T cells underwent increased apoptosis and necroptosis resulting in reduced numbers of memory CD8+ T cells. In contrast, the primary CD4+ T cell response was A20-independent. Upon secondary infection, the increase and function of pathogen-specific CD8+ T cells, as well as pathogen control were significantly impaired in CD4-Cre A20fl/fl mice. In vitro, apoptosis and necroptosis of Listeria-specific A20-deficient CD8+ T cells were strongly induced as demonstrated by increased caspase-3/7 activity, RIPK1/RIPK3 complex formation and more morphologically apoptotic and necroptotic CD8+ T cells. In vitro, A20 limited CD95L and TNF-induced caspase3/7 activation. In conclusion, T cell-specific A20 limited the expansion but reduced apoptosis and necroptosis of Listeria-specific CD8+ T cells, resulting in an impaired pathogen control in primary but improved clearance in secondary infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Listeria/imunologia , Listeriose/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Memória Imunológica , Listeriose/genética , Listeriose/patologia , Camundongos , Camundongos Transgênicos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA