Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062943

RESUMO

Phosphorus (P) and iron (Fe) deficiency are major limiting factors for plant productivity worldwide. White lupin (Lupinus albus L.) has become a model plant for understanding plant adaptations to P and Fe deficiency, because of its ability to form cluster roots, bottle-brush-like root structures play an important role in the uptake of P and Fe from soil. However, little is known about the signaling pathways involved in sensing and responding to P and Fe deficiency. Sucrose, sent in increased concentrations from the shoot to the root, has been identified as a long-distance signal of both P and Fe deficiency. To unravel the responses to sucrose as a signal, we performed Oxford Nanopore cDNA sequencing of white lupin roots treated with sucrose for 10, 15, or 20 min compared to untreated controls. We identified a set of 17 genes, including 2 bHLH transcription factors, that were up-regulated at all three time points of sucrose treatment. GO (gene ontology) analysis revealed enrichment of auxin and gibberellin responses as early as 10 min after sucrose addition, as well as the emerging of ethylene responses at 20 min of sucrose treatment, indicating a sequential involvement of these hormones in plant responses to sucrose.


Assuntos
Regulação da Expressão Gênica de Plantas , Lupinus , Fósforo , Transdução de Sinais , Sacarose , Lupinus/metabolismo , Lupinus/genética , Sacarose/metabolismo , Fósforo/metabolismo , Fósforo/deficiência , Deficiências de Ferro , Transcriptoma , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Adaptação Fisiológica/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Ferro/metabolismo
2.
Food Res Int ; 187: 114426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763676

RESUMO

Germination is a process that enhances the content of health-promoting secondary metabolites. However, the bioaccessibility of these compounds depends on their stability and solubility throughout the gastrointestinal tract. The study aimed to explore how germination time influences the content and bioaccessibility of γ-aminobutyric acid and polyphenols and antioxidant capacity of lupin (Lupinus angustifolius L.) sprouts during simulated gastrointestinal digestion. Gamma-aminobutyric acid showed a decrease following gastrointestinal digestion (GID) whereas phenolic acids and flavonoids exhibited bioaccessibilities of up to 82.56 and 114.20%, respectively. Although the digestion process affected the profile of phenolic acids and flavonoids, certain isoflavonoids identified in 7-day sprouts (G7) showed resistance to GID. Germination not only favored antioxidant activity but also resulted in germinated samples exhibiting greater antioxidant properties than ungerminated counter parts after GID. Intestinal digests from G7 did not show cytotoxicity in RAW 264.7 macrophages, and notably, they showed an outstanding ability to inhibit the production of reactive oxygen species. This suggests potential benefit in mitigating oxidative stress. These findings contribute to understand the dynamic interplay between bioprocessing and digestion in modulating the bioaccessibility of bioactive compounds in lupin, thereby impacting health.


Assuntos
Antioxidantes , Disponibilidade Biológica , Digestão , Germinação , Lupinus , Lupinus/metabolismo , Lupinus/química , Antioxidantes/metabolismo , Germinação/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Animais , Polifenóis/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Ácido gama-Aminobutírico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/análise , Trato Gastrointestinal/metabolismo
3.
Plant Cell Environ ; 47(4): 1416-1431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226783

RESUMO

White lupin (lupinus albus L.) forms special bottlebrush-like root structures called cluster roots (CR) when phosphorus is low, to remobilise sparingly soluble phosphates in the soil. The molecular mechanisms that control the CR formation remain unknown. Root development in other plants is regulated by CLE  (CLAVATA3/ EMBRYO SURROUNDING REGION (ESR)-RELATED) peptides, which provide more precise control mechanisms than common phytohormones. This makes these peptides interesting candidates to be involved in CR formation, where fine tuning to environmental factors is required. In this study we present an analysis of CLE peptides in white lupin. The peptides LaCLE35 (RGVHy PSGANPLHN) and LaCLE55 (RRVHy PSCHy PDPLHN) reduced root growth and altered CR in hydroponically cultured white lupins. We demonstrate that rootlet density and rootlet length were locally, but not systemically, impaired by exogenously applied CLE35. The peptide was identified in the xylem sap. The inhibitory effect of CLE35 on root growth was attributed to arrested cell elongation in root tips. Taken together, CLE peptides affect both rootlet density and rootlet length, which are two critical factors for CR formation, and may be involved in fine tuning this peculiar root structure that is present in a few crops and many Proteaceae species, under low phosphorus availability.


Assuntos
Lupinus , Raízes de Plantas , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Peptídeos
4.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005249

RESUMO

Four species of lupin (white lupin, yellow lupin, blue lupin and Andean lupin) are widely cropped thanks to the excellent nutritional composition of their seeds: high protein content (28-48 g/100 g); good lipid content (4.6-13.5 g/100 g, but up to 20.0 g/100 g in Andean lupin), especially unsaturated triacylglycerols; and richness in antioxidant compounds like carotenoids, tocols and phenolics. Particularly relevant is the amount of free phenolics, highly bioaccessible in the small intestine. However, the typical bitter and toxic alkaloids must be eliminated before lupin consumption, hindering its diffusion and affecting its nutritional value. This review summarises the results of recent research in lupin composition for the above-mentioned three classes of antioxidant compounds, both in non-debittered and debittered seeds. Additionally, the influence of technological processes to further increase their nutritional value as well as the effects of food manufacturing on antioxidant content were scrutinised. Lupin has been demonstrated to be an outstanding raw material source, superior to most crops and suitable for manufacturing foods with good antioxidant and nutritional properties. The bioaccessibility of lupin antioxidants after digestion of ready-to-eat products still emerges as a dearth in current research.


Assuntos
Alcaloides , Lupinus , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Alcaloides/metabolismo , Sementes/química , Lupinus/metabolismo , Carotenoides/metabolismo , Fenóis/análise
5.
J Plant Physiol ; 290: 154119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879220

RESUMO

The appropriate timing of organ abscission determines plant growth, development, reproductive success, and yield in relation to crop species. Among these, yellow lupine is an example of a crop species that loses many fully developed flowers, which limits the formation of pods with high-protein seeds and affects its economic value. Lupine flower abscission, similarly to the separation of other organs, depends on a complex regulatory network functioning in the cells of the abscission zone (AZ). In the present study, genetic, biochemical, and cellular methods were used to highlight the complexity of the interactions among strong hormonal stimulators of abscission, including abscisic acid (ABA), ethylene, and jasmonates (JAs) precisely in the AZ cells, with all results supporting that the JA-related pathway has an important role in the phytohormonal cross-talk leading to flower abscission in yellow lupine. Based on obtained results, we conclude that ABA and ET have positive influence on JAs biosynthesis and signaling pathway in time-dependent manner. Both phytohormones changes lipoxygenase (LOX) gene expression, affects LOX protein abundance, and JA accumulation in AZ cells. We have also shown that the signaling pathway of JA is highly sensitive to ABA and ET, given the accumulation of COI1 receptor and MYC2 transcription factor in response to these phytohormones. The results presented provide novel information about the JAs-dependent separation of organs and provide insight and details about the phytohormone-related mechanisms of lupine flower abscission.


Assuntos
Ácido Abscísico , Lupinus , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Lupinus/metabolismo , Etilenos/metabolismo , Flores , Regulação da Expressão Gênica de Plantas
6.
Genes (Basel) ; 14(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37895238

RESUMO

(1) Background: Seed storage mobilization, together with oxidative metabolism, with the ascorbate-glutathione (AsA-GSH) cycle as a crucial signaling and metabolic functional crossroad, is one of the main regulators of the control of cell morphogenesis and division, a fundamental physiological process driving seed germination and seedling growth. This study aims to characterize the cellular changes, composition, and patterns of the protein mobilization and ROS-dependent gene expression of redox metabolism in Lupinus angustifolius L. (narrow-leafed lupin, NLL) cotyledons during seed germination. (2) Methods: We performed gene expression analyses via RT-qPCR for conglutins α (1, 2, and 3), ß (1, 2, and 5), γ (1, 2), and δ (2 and 4), including a ubiquitin gene as a control, and for redox metabolism-related genes; GADPH was used as a control gene. A microscopic study was developed on cotyledon samples from different germination stages, including as IMB (imbibition), and 2-5, 7, 9, and 11 DAI (days after imbibition), which were processed for light microscopy. SDS-PAGE and immunocytochemistry assays were performed using an anti-ß-conglutin antibody (Agrisera), and an anti-rabbit IgG Daylight 488-conjugated secondary antibody. The controls were made while omitting primary Ab. (3) Results and Discussion: Our results showed that a large amount of seed storage protein (SSP) accumulates in protein bodies (PBs) and mobilizes during germination. Families of conglutins (ß and γ) may play important roles as functional and signaling molecules, beyond the storage function, at intermediate steps of the seed germination process. In this regard, metabolic activities are closely associated with the regulation of oxidative homeostasis through AsA-GSH activities (γ-L-Glutamyl-L-cysteine synthetase, NOS, Catalase, Cu/Zn-SOD, GPx, GR, GS, GsT) after the imbibition of NLL mature seeds, metabolism activation, and dormancy breakage, which are key molecular and regulatory signaling pathways with particular importance in morphogenesis and developmental processes. (4) Conclusions: The knowledge generated in this study provides evidence for the functional changes and cellular tightly regulated events occurring in the NLL seed cotyledon, orchestrated by the oxidative-related metabolic machinery involved in seed germination advancement.


Assuntos
Germinação , Lupinus , Plântula , Lupinus/genética , Lupinus/metabolismo , Sementes/metabolismo , Oxirredução
7.
Biochem Biophys Res Commun ; 673: 175-178, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37392481

RESUMO

γ-conglutin (γ-C) is a hexameric glycoprotein accumulated in lupin seeds and has long been considered as a storage protein. Recently, it has been investigated for its possible postprandial glycaemic regulating action in human nutrition and for its physiological role in plant defence. The quaternary structure of γ-C results from the assembly of six monomers in reversible pH-dependent association/dissociation equilibrium. Our working hypothesis was that the γ-C hexamer is made up of glycosylated subunits in association with not-glycosylated isoforms, that seem to have 'escaped' the correct glycosylation process in the Golgi. Here we describe the isolation of not-glycosylated γ-C monomers in native condition by two in tandem lectin-based affinity chromatography and the characterization of their oligomerization capacity. We report, for the first time, the observation that a plant multimeric protein may be formed by identical polypeptide chains that have undergone different post-translational modifications. All obtained considered, the results strongly suggest that the not-glycosylated isoform can also take part in the oligomerization equilibrium of the protein.


Assuntos
Lupinus , Humanos , Lupinus/química , Lupinus/metabolismo , Glicosilação , Proteínas de Plantas/metabolismo , Glicoproteínas/metabolismo , Sementes/metabolismo , Isoformas de Proteínas/metabolismo
8.
Food Chem ; 426: 136622, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356243

RESUMO

The demand for high-quality and sustainable protein sources is on the rise. Lupin is an emerging plant-based source of protein with health-enhancing properties; however, the allergenic potential of lupins limits their widespread adoption in food products. A combination of discovery and targeted quantitative proteome measurements was used to investigate the impact of solid-state fermentation induced by Rhizopus oligosporus on the proteome composition and allergenic protein abundances of white lupin seed. In total, 1,241 proteins were uniquely identified in the fermented sample. Moreover, the effectiveness of the solid-state fermentation in reducing the abundance of the tryptic peptides derived from white lupin allergens was demonstrated. Comparably, a greater decrease was noted for the major white lupin allergen based on ß-conglutin peptide abundances. Hence, conventional solid-state fermentation processing can be beneficial for reducing the potential allergenicity of lupin-based foods. This finding will open new avenues for unlocking the potential of this under-utilised legume.


Assuntos
Alérgenos , Lupinus , Alérgenos/análise , Proteoma/análise , Fermentação , Lupinus/química , Peptídeos/metabolismo , Sementes/química
9.
Food Chem ; 426: 136458, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329795

RESUMO

Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.


Assuntos
Diabetes Mellitus , Inibidores da Dipeptidil Peptidase IV , Lupinus , Humanos , Animais , Camundongos , Lupinus/química , Células CACO-2 , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Peptídeos/química , Dipeptidil Peptidase 4/metabolismo , Glucose
10.
Plant Foods Hum Nutr ; 78(2): 270-278, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36729316

RESUMO

Plant ferritin is suggested as a good source of iron for human. Usually present in trace amounts, it was induced in legumes seeds by their sprouting in FeSO4 solution. Fortified sprouts were digested in the in vitro model of the human gastrointestinal tract. ~49% of lupine and ~ 45% of soy proteins were extracted into gastric fluid and next ~ 12% and only ~ 1% into intestine fluid from lupine and soybean, respectively. Gastric digestion released mainly ferrous iron (~ 85% from lupine and ~ 95% in soybean sprouts). Complexed iron constituted ~ 43% of total iron in intestine after lupine digestion and ~ 55% after soybean digestion. Intestine digestion doubled the total iron released from lupine sprouts (from ~ 21% up to 38%), while in soybean it increased from ~ 16% up to ~ 23%. Ferritin presence was confirmed by the specific antibodies in digestive fluids, but it is only partially extracted from sprouts during in vitro digestion.


Assuntos
Ferro , Lupinus , Humanos , Ferro/metabolismo , Glycine max , Ferritinas , Verduras , Digestão
11.
Nutrients ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771230

RESUMO

Breast cancer (BC) is the most widespread tumor in women and the second type of most common cancer worldwide. Despite all the technical and medical advances in existing therapies, between 30 and 50% of patients with BC will develop metastasis, which contributes to the failure of existing treatments. This situation urges the need to find more effective prevention and treatment strategies like the use of plant-based nutraceutical compounds. In this context, we purified three Narrow Leafed Lupin (NLL) ß-conglutins isoforms using affinity-chromatography and evaluated their effectiveness in terms of viability, proliferation, apoptosis, stemness properties, and mechanism of action on both BC cell lines and a healthy one. NLL ß-conglutins proteins have very promising effects at the molecular level on BC cells at very low concentrations, emerging as a potential natural cytotoxic agent and preserving the viability of healthy cells. These proteins could act through a dual mechanism involving tumorigenic and stemness-related genes such as SIRT1 and FoxO1, depending on the state of p53. More studies must be carried out to completely understand the underlying mechanisms of action of these nutraceutical compounds in BC in vitro and in vivo, and their potential use for the inhibition of other cancer cell types.


Assuntos
Neoplasias da Mama , Lupinus , Humanos , Feminino , Lupinus/química , Citotoxinas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Armazenamento de Sementes , Sementes/química
12.
Biomaterials ; 293: 121984, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580717

RESUMO

The reprocessing of vegetal-waste represents a new research field in order to design novel biomaterials for potential biomedical applications and in food industry. Here we obtained a biomaterial from Lupinus albus L. hull (LH) that was characterized micro-structurally by scanning electron microscopy and for its antimicrobial and scaffolding properties. A good adhesion and proliferation of human mesenchymal stem cells (hMSCs) seeded on LH scaffold were observed. Thanks to its high content of cellulose and beneficial phytochemical substances, LH and its derivatives can represent an available source for fabrication of biocompatible and bioactive scaffolds. Therefore, a reprocessing protocol of LH was optimized for producing a new LH bioplastic named BPLH. This new biomaterial was characterized by chemico-physical analyses. The water uptake, degradability and antimicrobial properties of BPLH were evaluated, as well as the mechanical properties. A good adhesion and proliferation of both fibroblasts and hMSCs on BPLH were observed over 2 weeks, and immunofluorescence analysis of hMSCs after 3 weeks indicates an initial commitment toward muscle differentiation. Our work represents a new approach toward the recovery and valorization of the vegetal waste showing the remarkable properties of LH and BPLH as cellular waste-based scaffold with potential applications in cell-based food field as well as in medicine for topical patches in wound healing and bedsores treatment.


Assuntos
Lupinus , Células-Tronco Mesenquimais , Humanos , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Verduras , Diferenciação Celular , Proliferação de Células , Osteogênese , Engenharia Tecidual/métodos
13.
Molecules ; 27(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558162

RESUMO

Among all legumes sprouts' active compounds, isoflavones seem to be the most important; nevertheless, their high content is not always associated with beneficial effects. These compounds may prevent or stimulate hormone-dependent cancers due to their estrogen-like activity. Different LED light quality can change the synthesis of active compounds and significantly influence the biological activity of the sprouts. This study aimed to evaluate the effects of LED light (red, blue, green, yellow), as well as total darkness, and natural light conditions (as reference), on isoflavones content, determined by HPLC-UV-VIS, during 10 days of harvesting of chickpea and lupin sprouts. Due to the ambiguous estrogenic potential of isoflavones, the impact of these sprouts on normal and cancer prostate and breast cells was evaluated. Yellow LED light resulted in the highest sum of isoflavones in chickpea sprouts (up to 1 g/100 g dw), while for green LED light, the isoflavones sum was the lowest. The exact opposite effect was noted for lupin sprouts, with the predominance of green over the yellow LED light. The examined sprouts were of high safety to non-neoplastic breast and prostate cells, with interesting cytotoxic effects on breast MCF7 and prostate DU145 cancer cells. No clear relationship was observed between the activity and isoflavones content.


Assuntos
Cicer , Isoflavonas , Lupinus , Isoflavonas/farmacologia , Alimento Funcional , Próstata
14.
Molecules ; 27(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364140

RESUMO

Andean lupin (Lupinus mutabilis) oil is rich in monounsaturated (54.2%) and polyunsaturated (28.5%) fatty acids but has a ω-3:ω-6 ratio (1:9.2) above the recommended values for human health. Sacha inchi (Plukenetia volubilis) oil presents a high polyunsaturated fatty acid content (linolenic 47.2% and linoleic 34.7%), along a ω-3:ω-6 ratio (1:0.74) good for human consumption. The objective of this research was to study the physico-chemical properties and oxidative stability of tarwi and sacha inchi oil blends (1:4, 1:3, 1:1, 3:1 and 4:1 w:w) with suitable ω-3:ω-6 ratios. All blends showed ω-3:ω-6 ratios between 1:0.8 and 1:1.9, acceptable from a nutritional point of view, and high total tocopherols' content (1834-688 mg/kg), thanks to sacha inchi. The oxidative stability index (OSI) of the mixtures by the Rancimat method at 120 °C ranged from 0.46 to 8.80 h. The shelf-life of 1:1 tarwi/sacha inchi oil blend was 1.26 years; its entropy (-17.43 J/mol), enthalpy (107.04 kJ/mol), activation energy (110.24 kJ/mol) and Gibbs energy (113.76 kJ/mol) suggest low oxidation reaction rates and good stability. Hence, balanced blends of tarwi/sacha inchi oils can achieve optimal nutritional properties and enhanced shelf-life.


Assuntos
Euphorbiaceae , Ácidos Graxos Ômega-3 , Lupinus , Humanos , Óleos de Plantas/química , Euphorbiaceae/química , Sementes/química , Ácidos Graxos Ômega-3/análise , Valor Nutritivo , Estresse Oxidativo
15.
PeerJ ; 10: e13836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935254

RESUMO

Lupinus polyphyllus is rich in color, making it a well-known horticultural ornamental plant. However, little is known about the genes related to anthocyanin and carotenoid biosynthesis in L. polyphyllus. In this study, transcriptome sequencing was performed on eight different colors of L. polyphyllus. A total of 1.13 billion clean reads were obtained and assembled into 89,124 unigenes, which were then aligned with six databases, resulting in the identification of 54,823 annotated unigenes. Among these unigenes, 76 and 101 were involved in the biosynthetic pathway of carotenoids and anthocyanins, respectively. In addition, 505 transcription factors were revealed, which belonged to the MYB, R2R3-MYB, NAC, bHLH, and WD40 families. A total of 6,700 differentially expressed genes (DEGs) were obtained by comparative transcriptome analysis. Among them, 17 candidate unigenes (four carotenoid genes, seven anthocyanin genes, and six TFs) were specifically up-regulated for one or more colors of L. polyphyllus. Eight representative candidate unigenes were analyzed by qRT-PCR. The findings enrich the transcriptome database of lupine, and provide a rich molecular resource for research on the coloration mechanism of L. polyphyllus.


Assuntos
Lupinus , Transcriptoma , Humanos , Transcriptoma/genética , Lupinus/genética , Antocianinas/genética , Perfilação da Expressão Gênica/métodos , Carotenoides
16.
J Pharm Pharmacol ; 74(12): 1700-1717, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36039938

RESUMO

OBJECTIVES: Lupinus is a large and diverse genus comprising approximately 200 species, belonging to the family Fabaceae. Lupinus plants have been used for heart stimulants, nerves, urinary tract infections, skin disorders, and psoriasis in folk medicine. This review aims to recap the traditional medicinal uses, nutritional value, phytochemical profile, and biological activities of Lupinus species. KEY FINDINGS: From the literature survey, Lupinus is considered as a factory of various phytochemicals like flavonoids, iso-flavonoids, alkaloids, triterpenoids. The presence of proteins, essential fatty acids, and amino acids, as well as alkaloids, minerals, and dietary fibers, indicated that the plants in this genus had a high nutritional value. The Lupinus extracts displayed promising antidiabetic, anticancer, antimicrobial, antidiabetic, antihypertensive, antioxidant, anti-inflammatory, and antimicrobial activities. CONCLUSIONS: The current review provides updated information that could drive the researchers for further studies. The in vitro and in vivo experiments have demonstrated various pharmacological properties. Some pharmacokinetic and toxicological investigations are warranted to ensure its safety and validity for human use.


Assuntos
Lupinus , Humanos , Etnofarmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fitoterapia
17.
J Agric Food Chem ; 70(27): 8243-8253, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767743

RESUMO

We have previously reported the in vitro hypocholesterolemic, anti-inflammatory, and antioxidant effects of Alcalase-generated lupin protein hydrolysate (LPH). Given that lipoprotein deposition, oxidative stress, and inflammation are the main components of atherogenesis, we characterized the LPH composition, in silico identified LPH-peptides with activities related to atherosclerosis, and evaluated the in vivo LPH effects on atherosclerosis risk factors in a mouse model of atherosclerosis. After 15 min of Alcalase hydrolysis, peptides smaller than 8 kDa were obtained, and 259 peptides out of 278 peptides found showed biological activities related to atherosclerosis risk factors. Furthermore, LPH administration for 12 weeks reduced the plasma lipids, as well as the cardiovascular and atherogenic risk indexes. LPH also increased the total antioxidant capacity, decreased endothelial permeability, inflammatory response, and atherogenic markers. Therefore, this study describes for the first time that LPH prevents the early stages of atherosclerosis.


Assuntos
Aterosclerose , Lupinus , Animais , Antioxidantes , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Dieta Ocidental , Lupinus/química , Camundongos , Peptídeos , Hidrolisados de Proteína/farmacologia , Subtilisinas
18.
Syst Appl Microbiol ; 45(4): 126324, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35580548

RESUMO

Three moderately halophilic strains, TMW 2.2308T, TMW 2.2299 and TMW 2.2304, were isolated from a lupine-based moromi fermentation. Initial identification based on their low molecular sub-proteome using mass spectrometry showed relation to the genus Halomonas, however, low score values indicated novelty. The comparison of 16S rRNA gene sequences placed these strains within the genus Chromohalobacter with C. japonicus CECT 7219T (99.67% 16S rRNA sequence similarity to strain TMW2.2308T), C. canadensis DSM 6769T (99.54%) and C. beijerinckii LMG 2148T (99.32%) being their closest relatives. However, average nucleotide highest identity values of TMW 2.2308T to C. beijerinckii LMG 2148T of 93.12% and 92.88% to C. japonicus CECT 7219T demonstrate that it represents a novel species within the genus Chromohalobacter with additional strains TMW 2.2299 (96.91%) and TMW 2.2304 (96.98%). The isolated strains were non-spore-forming, motile and able to grow at temperatures from 5 to 45 °C with an optimum at 37 °C. Growth of TMW 2.2308T occurs at 5 to 25% (w/v) NaCl with optimum growth between 10and 12.5%. The genome of TMW 2.2308T has a size of 3.47 Mb and a G + C content of 61.0 mol%. The polyphasic evidence lead to the classification of TMW 2.2308T, TMW 2.2299 and TMW 2.2304 as members of a novel species of the genus Chromohalobacter. We propose a novel species as Chromohalobacter moromii sp. nov., with TMW 2.2308T (=DSM113153T =CECT30422T) as the type strain.


Assuntos
Chromohalobacter , Lupinus , Técnicas de Tipagem Bacteriana , Chromohalobacter/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Fermentação , Lupinus/genética , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Molecules ; 27(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011535

RESUMO

Fusarium oxysporum is an aggressive phytopathogen that affects various plant species, resulting in extensive local and global economic losses. Therefore, the search for competent alternatives is a constant pursuit. Quinolizidine alkaloids (QA) are naturally occurring compounds with diverse biological activities. The structural diversity of quinolizidines is mainly contributed by species of the family Fabaceae, particularly the genus Lupinus. This quinolizidine-based chemo diversity can be explored to find antifungals and even mixtures to address concomitant effects on F. oxysporum. Thus, the antifungal activity of quinolizidine-rich extracts (QREs) from the leaves of eight greenhouse-propagated Lupinus species was evaluated to outline promising QA mixtures against F. oxysporum. Thirteen main compounds were identified and quantified using an external standard. Quantitative analysis revealed different contents per quinolizidine depending on the Lupinus plant, ranging from 0.003 to 32.8 mg/g fresh leaves. Bioautography showed that all extracts were active at the maximum concentration (5 µg/µL). They also exhibited >50% mycelium growth inhibition. All QREs were fungistatic except for the fungicidal QRE of L. polyphyllus Lindl. Angustifoline, matrine, 13α-hydroxylupanine, and 17-oxolupanine were ranked to act jointly against the phytopathogen. Our findings constitute reference information to better understand the antifungal activity of naturally afforded QA mixtures from these globally important plants.


Assuntos
Antifúngicos/farmacologia , Lupinus/química , Extratos Vegetais/farmacologia , Quinolizidinas/farmacologia , Antifúngicos/química , Cromatografia Gasosa-Espectrometria de Massas , Efeito Estufa , Lupinus/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Quinolizidinas/química
20.
Mycologia ; 114(1): 76-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34851235

RESUMO

The genus Lupinus (Fabaceae) consists of over 250 plant species located throughout the world. Powdery mildew, caused by Erysiphe species, is a common disease infecting these ecologically, ornamentally, and agriculturally important plants. In the present work, we conducted phylogenetic and taxonomic analyses on Erysiphe species colonizing hosts of the leguminous genus Lupinus, using sequences from the internal transcribed spacer (ITS) and 28S genomic regions. Powdery mildews of the genus Erysiphe on Fabaceae are taxonomically intricate and challenging. Therefore, it is necessary to phylogenetically analyze the DNA retrieved from powdery mildew on lupines in a broad context that includes common and allied powdery mildew species that occur on a range of leguminous plants such as Erysiphe astragali, E. baeumleri, E. pisi, and E. trifoliorum. A new species Erysiphe lupini, found in the USA on Lupinus lepidus, L. polyphyllus, and Lupinus sp., is described. Additionally, Erysiphe intermedia (≡ Microsphaera trifolii var. intermedia) has been confirmed as a North American lupine powdery mildew that is a sister species to E. astragali on Astragalus spp. European Erysiphe collections on lupines were often referred to as E. intermedia, but our analyses have shown that they pertain to E. trifoliorum. The E. trifoliorum clade is composed of several species (i.e. E. baeumleri, E. euonymi, E. hyperici, and E. trifoliorum), that cannot be sufficiently resolved based solely on ITS+28S sequences. Morphological and biological differences between the species are discussed and provide evidence that the species concerned should be maintained. Finally, a sequence obtained from a powdery mildew collected in Portugal on the native Lupinus micranthus pertained to the Erysiphe guarinonii clade. This collection is tentatively treated as Erysiphe sp. To fix the application of the species names E. astragali, E. baeumleri (including its synonym E. marchica), and E. intermedia, epitypes have been designated with ex-epitype sequences.


Assuntos
Ascomicetos , Lupinus , Ascomicetos/genética , DNA Fúngico/genética , Erysiphe , Filogenia , Doenças das Plantas , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA