RESUMO
In the present study, granulosa cells (GCs) from domestic cats and Persian leopard were cultured and characterized from selected days. The culture period was divided into two phases: maintenance, which lasted for 7 days, and luteinization, which followed for up to 11 days. Luteinization was performed on ultra-low attachment plates, supporting the formation of spheroids in a medium supplemented with insulin, forskolin, and luteinizing hormone (LH). GCs of domestic cat produced estradiol (E2) and progesterone (P4) during the maintenance phase. The gene expressions of some proteins involved in steroidogenesis were stable (STAR, HSD3B1) or decreased over time (CYP11A1, HSD17B1, CYP17A1, and CYP19A1), which was similar to the expressions of gonatropin receptors (LHCGR and FSHR). During the luteinization phase, P4 concentration significantly increased (P < 0.05), and E2, in contrast to the proliferation phase, was below detection range. The expression of genes of proteins involved in steroidogenesis (STAR, CYP11A1, HSD3B1, HSD17B1, CYP17A1, and CYP19A1) and of gonadotropin receptors (LHCGR and FSHR) significantly increased during the luteinization period, but some expressions exhibited a decrease at the end of the phase (LHCGR, FSHR, HSD17B1, CYP19A1). The morphology of the luteinized GCs of domestic cat resembled large luteal cells and had numerous vacuole-like structures. Also, the GCs of Persian leopard underwent luteinization, shown by increasing P4 production and HSD3B1 expression. This study confirms that GCs from felids can be luteinized in a 3D spheroid system which can be a basis for further studies on luteal cell function of felids. Additionally, we could show that the domestic cat can serve as a model species for establishing cell culture methods which can be transferred to other felids.
Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Panthera , Feminino , Gatos , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Células da Granulosa/metabolismo , Luteinização/fisiologia , Complexos Multienzimáticos/metabolismo , Panthera/metabolismo , Células CultivadasRESUMO
The hypothalamic-pituitary-gonadal axis plays a fundamental role in the endocrine regulation of the reproductive function in mammals. Any change in the function of the participating hormones or their receptors can lead to alterations in sexual differentiation, the onset of puberty, infertility, cancer development, and other dysfunctions. In this study, we analyzed the influence of persistently elevated levels of the human chorionic gonadotropin hormone (hCG), a powerful agonist of pituitary luteinizing hormone (LH), on the reproductive axis of female mice. As a consequence of chronic hCG hypersecretion through a global expression of the hCGbeta-subunit in transgenic (TG) female mice, a series of events perturbed the prepubertal to juvenile transition. The imbalance in gonadotropin action was first manifested by precocious puberty and alterations in gonadal hormone production, with the consequent ovarian function disruption and infertility in adulthood. The expansion of cumulus cells in vivo and in vitro, ovulatory capacity, and gene expression of ovulation-related marker genes after hormone stimulation were normal in 3-week-old TG females. However, the expression of genes related to steroidogenesis and luteinization such as Lhcgr, Prlr, and the steroidogenic enzymes Cyp11a1, Cyp17a1, and Cyp19a1 were significantly elevated in the TG females. This study demonstrates that the excessive secretion of hCG in concert with high prolactin, induced premature luteinization, and enhanced ovarian steroidogenesis, as was shown by the up-regulation of luteal cell markers and progesterone synthesis in the TG mice. Furthermore, progressively impaired reproductive function of the TG females occurred from the peripubertal stage to adulthood, thus culminating in infertility.
Assuntos
Gonadotropina Coriônica , Infertilidade , Humanos , Camundongos , Feminino , Animais , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica Humana Subunidade beta/genética , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Camundongos Transgênicos , Luteinização , Mamíferos/metabolismoRESUMO
STUDY QUESTION: Do cortisol/glucocorticoid receptors play an active role in the human ovary during ovulation and early luteinization? SUMMARY ANSWER: The ovulatory hCG stimulation-induced glucocorticoid receptor signaling plays a crucial role in regulating steroidogenesis and ovulatory cascade in human periovulatory follicles. WHAT IS KNOWN ALREADY: Previous studies reported an increase in cortisol levels in the human follicular fluid after the LH surge or ovulatory hCG administration. However, little is known about the role of cortisol/glucocorticoid receptors in the ovulatory process and luteinization in humans. STUDY DESIGN, SIZE, DURATION: This study was an experimental prospective clinical and laboratory-based study. An in vivo experimental study was accomplished utilizing the dominant ovarian follicles from 38 premenopausal women undergoing laparoscopic sterilization. An in vitro experimental study was completed using the primary human granulosa/lutein cells (hGLC) from 26 premenopausal women undergoing IVF. PARTICIPANTS/MATERIALS, SETTING, METHODS: This study was conducted in a private fertility clinic and academic medical centers. Dominant ovarian follicles were collected before the LH surge and at defined times after hCG administration from women undergoing laparoscopic sterilization. Primary hGLC were collected from women undergoing IVF. hGLC were treated without or with hCG in the absence or presence of RU486 (20 µM; dual antagonist for progesterone receptor and glucocorticoid receptor) or CORT125281 (50 µM; selective glucocorticoid receptor antagonist) for 12 or 36 h. The expression of genes involved in glucocorticoid receptor signaling, steroidogenesis, and ovulatory cascade was studied with RT-quantitative PCR and western blotting. The production of cortisol, corticosterone, and progesterone was assessed by hormone assay kits. MAIN RESULTS AND THE ROLE OF CHANCE: hCG administration upregulated the expression of hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1), nuclear receptor subfamily 3 group C member 1 (NR3C1), FKBP prolyl isomerase 5 (FKBP5), and FKBP prolyl isomerase 4 (FKBP4) in human ovulatory follicles and in hGLC (P < 0.05). RU486 and CORT125281 reduced hCG-induced increases in progesterone and cortisol production in hGLC. The expression of genes involved in glucocorticoid receptor signaling, steroidogenesis, and the key ovulatory process was reduced by RU486 and/or CORT125281 in hGLC. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The role of cortisol/glucocorticoid receptors demonstrated using the hGLC model may not fully reflect their physiological roles in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Successful ovulation and luteinization are essential for female fertility. Women with dysregulated cortisol levels often suffer from anovulatory infertility. Deciphering the functional role of glucocorticoid receptor signaling in human periovulatory follicles enhances our knowledge of basic ovarian physiology and may provide therapeutic insights into treating infertility in women. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by P01HD71875 (to M.J., T.E.C., and M.B.) and R01HD096077 (to M.J.) from the Foundation for the National Institutes of Health and the BTPSRF of the University of Kentucky Markey Cancer Center (P30CA177558). The authors report no competing interests. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Infertilidade Feminina , Progesterona , Feminino , Humanos , Receptores de Glucocorticoides , Hidrocortisona , Glucocorticoides , Estudos Prospectivos , Mifepristona/farmacologia , Infertilidade Feminina/terapia , Receptores do LH/metabolismo , Luteinização , Peptidilprolil IsomeraseRESUMO
With the rapid change of people's lifestyle, more childbearing couples live with irregular schedules (i.e., staying up late) and suffer from decreased fertility and abortion, which can be caused by luteal phase defect (LPD). We used continuous light-exposed mice as a model to observe whether continuous light exposure may affect luteinization and luteal function. We showed that the level of progesterone in serum reduced (p < .001), the number of corpus luteum (CL) decreased (p < .01), and the expressions of luteinization-related genes (Lhcgr, Star, Ptgfr, and Runx2), clock genes (Clock and Per1), and Mt1 were downregulated (p < .05) in the ovaries of mice exposed to continuous light, suggesting that continuous light exposure induces defects in luteinization and luteal functions. Strikingly, injection of melatonin (3 mg/kg) could improve luteal functions in continuous light-exposed mice. Moreover, we found that, after 2 h of hCG injection, the level of pERK1/2 in the ovary decreased in the continuous light group, but increased in the melatonin administration group, suggesting that melatonin can improve LPD caused by continuous light exposure through activating the ERK1/2 pathway. In summary, our data demonstrate that continuous light exposure affects ovary luteinization and luteal function, which can be rescued by melatonin.
Assuntos
Melatonina , Ovário , Feminino , Gravidez , Camundongos , Animais , Ovário/metabolismo , Camundongos Endogâmicos ICR , Melatonina/farmacologia , Melatonina/metabolismo , Corpo Lúteo/metabolismo , Progesterona/metabolismo , LuteinizaçãoRESUMO
High follicle-stimulating hormone (FSH) doses during ovarian stimulation are detrimental to ovulatory follicle function and decrease live birth rate in cattle and women. However, the mechanism whereby excessive FSH causes ovarian dysfunction is unknown. This study tested the hypothesis that excessive FSH during ovarian stimulation induces premature luteinization of ovulatory-size follicles. Small ovarian reserve heifers were injected twice daily for 4 days with 70 IU (N = 7 heifers) or 210 IU (N = 6 heifers) Folltropin-V [commercial FSH-enriched preparation of porcine pituitary glands with minor (<1%) luteinizing hormone (LH) contamination, cpFSH]. Ovulatory-size (≥10 mm) follicles were excised from ovaries after the last cpFSH injection and hormone concentrations in follicular fluid (FF) were determined using ELISA. Luteinization was monitored by assessing cumulus cell-oocyte complex (COC) morphology and measuring concentrations of estradiol (E), progesterone (P), and oxytocin (O) in FF. COCs were classified as having compact (cCOC) or expanded (eCOC) cumulus cell layers, and as estrogen-active (E:P in FF ≥1), estrogen-inactive (EI, E:P in FF ≤1 > 0.1), or extreme-estrogen-inactive (EEI, E:P in FF ≤0.1). A high proportion (72%) of ovulatory-size follicles in 210 IU, but not 70 IU, dose heifers displayed eCOCs. The high doses also produced higher proportions of EI or EEI follicles which had lower E:P ratio and/or E but higher P and/or O concentrations compared with the 70 IU dose heifers. In conclusion, excessive cpFSH doses during ovarian stimulation may induce premature luteinization of most ovulatory-size follicles in heifers with small ovarian reserves.
Assuntos
Hormônio Foliculoestimulante , Hormônio Luteinizante , Animais , Bovinos , Estradiol , Estrogênios , Feminino , Hormônio Foliculoestimulante/farmacologia , Luteinização , Hormônio Luteinizante/farmacologia , Indução da Ovulação/veterinária , ProgesteronaRESUMO
RESEARCH QUESTION: Female age is the single greatest factor influencing reproductive performance and granulosa cells are considered as potential biomarkers of oocyte quality. Is there an age effect on the energy metabolism of human mural granulosa cells? DESIGN: Observational prospective cohort and experimental study including 127 women who had undergone IVF cycles. Women were allocated to two groups: a group of infertile patients aged over 38 years and a control group comprising oocyte donors aged less than 35 years. Individuals with pathologies that could impair fertility were excluded from both groups. Following oocyte retrieval, cumulus and granulosa cells were isolated and their bioenergetic properties (oxidative phosphorylation parameters, rate of aerobic glycolysis and adenine nucleotide concentrations) were analysed and compared. RESULTS: Human mural luteinized granulosa and cumulus cells present high rates of aerobic glycolysis that cannot be increased further when mitochondrial ATP synthesis is inhibited. Addition of follicular fluid to the experimental media is necessary to reach the full respiratory capacity of the cells. Granulosa cells from aged women present lower mitochondrial respiration (12.8 ± 1.6 versus 11.2 ± 1.6 pmol O2/min/mg; Pâ¯=â¯0.046), although mitochondrial mass is not decreased, and lower aerobic glycolysis, than those from young donors (12.9 ± 1.3 versus 10.9 ± 0.5 mpH/min/mg; Pâ¯=â¯0.009). The concurrent decrease in the two energy supply pathways leads to a decrease in the cellular energy charge (0.87 ± 0.01 versus 0.83 ± 0.02; P < 0.001). CONCLUSIONS: Human mural luteinized granulosa cells exhibit a reduction in their energy metabolism as women age that is likely to influence female reproductive potential.
Assuntos
Envelhecimento/fisiologia , Metabolismo Energético/fisiologia , Células da Granulosa/metabolismo , Luteinização , Reprodução/fisiologia , Nucleotídeos de Adenina/análise , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Adulto , Células do Cúmulo/metabolismo , Feminino , Fertilização in vitro , Células da Granulosa/química , Humanos , Mitocôndrias/metabolismo , Recuperação de Oócitos , Estudos ProspectivosRESUMO
Disruption of granulosa cells (GCs), the main functional cells in the ovary, is associated with impaired female fertility. Epidemiological studies demonstrated that women have detectable levels of organic pollutants (e.g., perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene) in their follicular fluid (FF), and thus these compounds may directly affect the function of GCs in the ovary. Considering that humans are exposed to multiple pollutants simultaneously, we elucidated the effects of a mixture of endocrine-disrupting chemicals (EDCs) on human granulosa HGrC1 cells. The EDC mixture directly increased progesterone secretion by upregulating 3ß-hydroxysteroid dehydrogenase (3ßHSD) expression. Furthermore, the EDC mixture increased activity of mitochondria, which are the central sites for steroid hormone biosynthesis, and the ATP content. Unexpectedly, the EDC mixture reduced glucose transporter 4 (GLUT4) expression and perturbed glucose uptake; however, this did not affect the glycolytic rate. Moreover, inhibition of GLUT1 by STF-31 did not alter the effects of the EDC mixture on steroid secretion but decreased basal estradiol secretion. Taken together, our results demonstrate that the mixture of EDCs present in FF can alter the functions of human GCs by disrupting steroidogenesis and may thus adversely affect female reproductive health. This study highlights that the EDC mixture elicits its effects by targeting mitochondria and increases mitochondrial network formation, mitochondrial activity, and expression of 3ßHSD, which is associated with the inner mitochondrial membrane.
Assuntos
Líquido Folicular/metabolismo , Poluentes Orgânicos Persistentes/metabolismo , Progesterona/metabolismo , Disruptores Endócrinos/metabolismo , Estradiol/metabolismo , Feminino , Líquido Folicular/química , Células da Granulosa/efeitos dos fármacos , Humanos , Luteinização/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias Ovarianas , Poluentes Orgânicos Persistentes/toxicidade , Esteroides/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Cancer therapy has priority over fertility preservation. The time available for fertility preservation in patients with cancer is often very limited and depends on the condition of the underlying disease. This case report presents the results of two rounds of controlled ovarian stimulations (COSs) performed after an induced abortion. The patient had mixed phenotype acute leukemia diagnosed during early pregnancy and underwent a surgical abortion, followed by ovarian stimulation using urinary follicle-stimulating hormone (uFSH) and gonadotropin-releasing hormone (GnRH) agonists. Oocyte retrieval was subsequently performed for oocyte cryopreservation. Despite good hormonal and ultrasonic follicular growth, no oocytes were obtained. During a second COS performed at a low human chorionic gonadotropin (hCG) level (less than 100 IU/L), several mature oocytes were obtained, suggesting that higher hCG levels during COS induce the absence of mature oocytes during normal follicular growth. It is recommended to start COS post-abortion after confirming a low hCG level while considering the timing of cancer treatment.
Assuntos
Aborto Induzido , Preservação da Fertilidade , Recuperação de Oócitos , Indução da Ovulação , Feminino , Humanos , Luteinização , Gravidez , Adulto JovemRESUMO
Although prostaglandins are important in the ovulation process, a precise role for prostaglandin F2α (PGF) has not been elucidated. This study aimed to evaluate the regulation of PGF receptor mRNA (PTGFR) in granulosa cells and the local effect of PGF on ovulation and luteinization. In Experiment 1, using samples collected in vivo before (Day 2), during (Day 3) and after (Day 4) follicular deviation, expression of PTGFR in bovine granulosa cells was more abundant in the dominant follicle after deviation than in subordinates (P < 0.05). However, the expression of PTGFR was not regulated (P = 0.1) in preovulatory follicles at different time-points (0, 3, 6, 12 and 24 h) after ovulation induction with GnRH. In Experiment 2, to assess the role of systemic PGF treatment on luteinization and vascularization of preovulatory follicles, flunixin meglumine (FM), a nonsteroidal anti-inflammatory drug, was used to inhibit endogenous prostaglandin synthesis. Cows with preovulatory follicles were induced to ovulate with GnRH (0 h) and allocated to three groups: Control, with no further treatment; FM, treated with 2.2 mg/kg FM im 17 h after GnRH treatment; and FM + PGF, treated with FM 17 h after GnRH, followed by 25 mg dinoprost tromethamine (PGF) 23 h after GnRH treatment. FM injection was able to reduce the concentration of PGF in the follicular fluid (FF) (P < 0.001). However, contrary to our hypothesis, color Doppler ultrasound evaluations revealed decreased vascular flow in FM + PGF group (P < 0.05), and no effect of the treatments on intrafollicular P4 and E2 concentrations 24 h after GnRH. The prostaglandin metabolite (PGFM) concentrations in the FF were greater in cows receiving systemic PGF (P < 0.001), which prompted us to further check its role on ovulation. Therefore, in Experiment 3, in a final attempt to demonstrate the local effect of PGF on ovulation, cows with preovulatory follicles received an intrafollicular injection (IFI) of PBS (Control) or 100 ng/mL purified PGF (PGF group). PGF treatment did not affect the time of ovulation after IFI (66 ± 6.4 and 63 ± 8.5 h for control and PGF, respectively; P > 0.05), further suggesting that it has no direct effect in the ovulatory process. Based on our findings, we concluded that FM decreased PGF synthesis within the follicle, whereas PGF treatment decreased follicular vascularization. In addition, the in vivo model of intrafollicular injection evidenced that PGF alone is not able to locally induce ovulation.
Assuntos
Dinoprosta , Progesterona , Animais , Bovinos , Dinoprosta/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Luteinização , Folículo Ovariano , OvulaçãoRESUMO
To study the role of orexin A in the reproductive regulation of Mongolian sheep, ovine ovarian granulosa cells were cultured in vitro. The cells were divided into groups after luteinization, the experimental group was given orexin A and the transcriptome was sequenced together with that of the control group. The different genes related to reproduction were screened out. qRT-PCR, western blot and enzyme-linked immunosorbent assay (ELISA) were used to verify the selected genes and detect the effect on progesterone secretion. In total, 123 differentially expressed genes were obtained by sequencing. Six genes with high expression related to reproduction (PRRT2, ABCG1, SOX4, TBX3, ID1 and ATP8) were screened. The results of qRT-PCR were consistent with those of sequencing; western blot and ELISA were used to verify the protein levels of steroidogenic acute regulatory protein (StAR) and its related PRRT2 and ABCG1, and to detect their effect on progesterone secretion. Validation results were consistent with those of qRT-PCR and sequencing. The experimental group was given orexin A and compared with the control group. Expression of PRRT2 protein was significantly increased (P < 0.05), ABCG1 protein expression was significantly decreased (P < 0.05), StAR expression was significantly increased (P < 0.05), and progesterone secretion was significantly increased (P < 0.05). The results showed that orexin A promoted the expression of StAR by upregulating PRRT2 and downregulating ABCG1, therefore affecting secretion of progesterone. Gene expression characteristics of orexin A affecting progesterone secretion were preliminarily explored; this study provides a theoretical basis for further study on signalling pathways and reproductive regulation in Mongolian sheep.
Assuntos
Ovário , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Células Cultivadas , Feminino , Células da Granulosa , Luteinização , Proteínas do Tecido Nervoso , Orexinas , Polissacarídeos , Progesterona , Ovinos , Carneiro DomésticoRESUMO
The common ovarian follicle cyst is typically straightforward from both clinical and pathologic perspectives, but may have a variety of unusual features from both aspects at various stages of life. Lack of familiarity with these may lead to diagnostic quandaries, the most common of which is distinguishing between a follicle cyst and cystic granulosa cell tumor of either adult or juvenile type. We reviewed 30 cases of follicle cysts, all sent in consultation, to highlight unusual aspects of a common lesion. Patients ranged from 3 d to 47 yr old. Clinical presentations included precocious puberty, pelvic pain, or an incidentally discovered pelvic mass, including those occurring in neonates and in 2 adults with pituitary adenomas, one of which was diagnosed 3 yr after presentation with the ovarian cyst. Size ranged from 0.5 cm (deflated) to 18.5 cm, with 7 exceeding 8 cm in greatest dimension. Twelve cases demonstrated small satellite cystic follicles in the wall of the dominant cyst. The granulosa cell layer varied in thickness and mitotic activity (which ranged from 1 to 36 per 10 HPF), but uniformly displayed round nuclei that lacked nuclear grooves. Luteinization of the granulosa cell layer, theca layer, or both was seen across all clinical scenarios, with unluteinized cysts being most common in precocious puberty patients. This series documents that although typically smaller, a subset of follicle cysts are the same size as cystic granulosa cell tumors and the 2 entities may be grossly indistinguishable. Helpful clues to the diagnosis of follicle cyst are the lack of nuclear grooves (vs. adult granulosa cell tumor) and lack of invagination of granulosa cells into the cyst wall (vs. both forms of granulosa cell tumor). Mitoses in the granulosa cells are of no aid in the differential with either form of granulosa cell tumor as follicle cysts may exhibit brisk mitotic activity. Our series highlights some of the unusual clinical aspects, one relatively well known-an association with isosexual precocity, but 2 not as widely known, those occurring in neonates and those due to a pituitary adenoma, the latter sometimes not being discovered until a few years after presentation with a follicle cyst.
Assuntos
Tumor de Células da Granulosa/patologia , Cistos Ovarianos/patologia , Neoplasias Ovarianas/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Células da Granulosa/patologia , Humanos , Lactente , Recém-Nascido , Luteinização , Pessoa de Meia-Idade , Folículo Ovariano/patologia , Adulto JovemRESUMO
Mitochondria are known to play a key role in the regulation of reproductive capacity. Senescence is known to impair mitochondrial function and, ultimately, cellular energetic metabolism. Therefore, as women age, a deficient energy supply is likely to affect oocyte quality. The analysis of granulosa cells is considered a valuable noninvasive strategy to assess factors implicated in oocyte competence. Thus, we conducted an observational prospective cohort to evaluate the impact of aging on energy production by luteinized granulosa cells (LGCs). The control group comprised 13 young oocyte donors, whereas the comparison group included 13 infertile women over 38 years of age undergoing in vitro fertilization. Women with diseases that could potentially impact mitochondrial function were excluded. No differences were detected in the ATP levels in LGCs from young donors and infertile patients of advanced reproductive age (1.9 ± 0.99 picomoles in the control group vs. 2.1 ± 0.59 picomoles; p-value = .139). Likewise, the ATP levels in our series did not correlate with either oocyte number or maturity. Despite the similar ATP levels in LGCs, an age effect on the bioenergetic status cannot be excluded. Energy metabolism is very complex, and ATP does not seem to be the most important and reliable parameter.
Assuntos
Trifosfato de Adenosina/metabolismo , Senescência Celular/fisiologia , Metabolismo Energético/fisiologia , Células da Granulosa/fisiologia , Trifosfato de Adenosina/fisiologia , Adulto , Envelhecimento/fisiologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Fertilização in vitro , Células da Granulosa/metabolismo , Humanos , Infertilidade Feminina/etiologia , Luteinização/fisiologia , Idade Materna , Doação de Oócitos , Projetos Piloto , Adulto JovemRESUMO
RESEARCH QUESTION: Can premature luteinization of granulosa cells (PLGC) act as a novel parameter of premature luteinization and affect IVF outcomes? STUDY DESIGN: In this retrospective cohort study, infertile patients undergoing fresh IVF cycles between January 2006 and December 2016 at the Reproductive Medicine Center in Tongji Hospital were included. A total of 42,468 cycles were conducted. Propensity score matching was carried out to match the baseline characteristics, and participants were assigned to the PLGC group and control group. The main outcomes were pregnancy rate and live birth rate. RESULTS: Patient characteristics and clinical outcomes were compared before and after matching. In general, the fate of oocytes in the PLGC group was much worse than those in the control group after matching, including metaphase II rate, two-pronuclei rate, available embryo rate, blastocyst formation rate, high-quality blastocyst rate, pregnancy rate, implantation rate and live birth rate. Among those potential risk factors, gonadotrophin duration, oestradiol and progesterone on HCG day were positively associated with the occurrence of PLGC in the multivariate logistic regression model, with gonadotrophin dosage negatively related. Moreover, cumulus-oocyte complexes with PLGC showed a high correlation with elevated progesterone levels over 1.5 ng/ml. CONCLUSIONS: Our findings demonstrated the adverse effect of PLGC on oocyte competency. In evaluating cumulus-oocyte complexes, PLGC provide an available novel parameter for premature luteinization judgement in clinical and individualized precise treatment. Close monitoring of progesterone level as well as critical analysis of progesterone elevation can reduce the occurrence of premature luteinization.
Assuntos
Fertilização in vitro/estatística & dados numéricos , Luteinização , Oócitos/crescimento & desenvolvimento , Progesterona/sangue , Adulto , Feminino , Humanos , Gravidez , Estudos RetrospectivosRESUMO
The present study was designed to evaluate luteinization rates subsequent to aspiration of dominant follicles (≥25 mm) in the absence of a functional CL (progesterone <1 ng/mL) and characterize the temporal changes in plasma concentrations of progesterone following aspiration-induced luteinization during the estrous cycle in mares. A total of 29 estrous cycles involving 15 mares in a cross-over design were randomly assigned to five groups: 1) ASP-F≥25 mm (n = 6; follicle aspiration 25-29 mm), 2) ASP-F≥30 mm (n = 6; follicle aspiration 30-34 mm), 3) ASP-F≥35 mm (n = 6; follicle aspiration 35-40 mm), 4) ASP-F≥40 (n = 6; follicle aspiration ≥40), and 5) Control (n = 5; spontaneous ovulation or no follicle aspiration). Subsequent to ovulation (Day 0), PGF was administered to all groups on Day 5, blood samples were collected daily and aspiration of the dominant follicle was done using ultrasound-guided transvaginal follicle needle puncture. Among the follicle aspirations groups 25-29, 30-34, 35-39, and ≥40 mm, the luteinization rates were not different (P > 0.05) at 83, 67, 83, and 100%, respectively. Correspondingly, progesterone concentrations increased (>2 ng/mL) by approximately 6, 7, 5, and 4 d after aspiration, respectively, which were delayed (P < 0.05) in the 25-29 and 30-34 mm follicle aspiration groups compared to 2 d after ovulation in the control group. Thereafter, progesterone reached maximal concentrations (10-11 ng/mL) as averaged over all aspiration groups but were lower (P < 0.05) compared to the mean maximal concentration (18 ng/mL) in the control group. Subsequently, there was a decrease in progesterone concentrations (<2 ng/mL) in response to luteolysis, which was delayed (P < 0.05) in the aspiration groups over Days 16-20 compared to Day 15 in the control group. Despite this discrepancy, the mean length of the interovulatory intervals were not different (P > 0.05) among groups on Day 23. Thus, the present study provided novel information that the luteinization rate is relatively high (83%) and consistent following aspiration of dominant follicles (≥25 mm) in the absence of a functional CL and that the increase in progesterone reaches sustainable progestational concentrations (≥2 ng/mL) in accord with the length of the estrous cycle that may potentially support development and maintenance of early pregnancy in recipient mares involved in an embryo transfer program.
Assuntos
Luteinização , Progesterona , Animais , Ciclo Estral , Feminino , Cavalos , Ovulação , Gravidez , Ultrassonografia de Intervenção/veterináriaRESUMO
During obesity, excess body weight is not only associated with an increased risk of type 2-diabetes, but also several other pathological processes, such as infertility. Adipose tissue is the largest endocrine organ of the body that produces adipokines, including adiponectin. Adiponectin has been reported to control fertility through the hypothalamic-pituitary-gonadal axis, and folliculogenesis in the ovaries. In this study, we focused on a recent adiponectin-like synthetic agonist called AdipoRon, and its action in human luteinized granulosa cells. We demonstrated that AdipoRon activated the adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor alpha (PPAR) signalling pathways in human luteinized granulosa cells. A 25 µM AdipoRon stimulation reduced granulosa cell proliferation by inducing cell cycle arrest in G1, associated with PTEN and p53 pathway activation. In addition, AdipoRon perturbed cell metabolism by decreasing mitochondrial activity and ATP production. In human luteinized granulosa cells, AdipoRon increased phosphodiesterase activity, leading to a drop in cyclic adenosine monophosphate (cAMP) production, aromatase expression and oestrogens secretion. In conclusion, AdipoRon impacted folliculogenesis by altering human luteinized granulosa cell function, via steroid production and cell proliferation. This agonist may have applications for improving ovarian function in metabolic disorders or granulosa cancers.
Assuntos
Adiponectina/agonistas , Células da Granulosa/metabolismo , Luteinização/metabolismo , Piperidinas/farmacologia , Esteroides/biossíntese , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Feminino , Células da Granulosa/efeitos dos fármacos , Humanos , Luteinização/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , PTEN Fosfo-Hidrolase/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Piperidinas/química , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
WNT proteins are widely expressed in the murine ovaries. WNTLESS is a regulator essential for all WNTs secretion. However, the complexity and overlapping expression of WNT signaling cascades have prevented researchers from elucidating their function in the ovary. Therefore, to determine the overall effect of WNT on ovarian development, we depleted the Wntless gene in oocytes and granulosa cells. Our results indicated no apparent defect in fertility in oocyte-specific Wntless knockout mice. However, granulosa cell (GC) specific Wntless deletion mice were subfertile and recurred miscarriages. Further analysis found that GC-specific Wntless knockout mice had noticeably smaller corpus luteum (CL) in the ovaries than control mice, which is consistent with a significant reduction in luteal cell marker gene expression and a noticeable increase in apoptotic gene expression. Also, the deletion of Wntless in GCs led to a significant decrease in ovarian HCGR and ß-Catenin protein levels. In conclusion, Wntless deficient oocytes had no discernible impact on mouse fertility. In contrast, the loss of Wntless in GCs caused subfertility and impaired CL formation due to reduced LHCGR and ß-Catenin protein levels, triggering GC apoptosis.
Assuntos
Aborto Espontâneo/genética , Corpo Lúteo/metabolismo , Células da Granulosa/metabolismo , Infertilidade Feminina/genética , Luteinização/genética , Oócitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Aborto Espontâneo/metabolismo , Animais , Apoptose/genética , Corpo Lúteo/patologia , Feminino , Infertilidade Feminina/metabolismo , Células Lúteas/metabolismo , Células Lúteas/patologia , Camundongos , Camundongos Knockout , Ovário/metabolismo , Progesterona/metabolismo , Receptores do LH/metabolismo , beta Catenina/metabolismoRESUMO
Luteinization is the event of corpus luteum formation, a way of follicle cells transformation and a process of steroidogenesis alteration. As the core clock gene, Bmal1 was involved in the regulation of ovulation process and luteal function afterwards. Till now, the underlying roles of luteinization played by Bmal1 remain unknown. To explore the unique role of Bmal1 in luteal steroidogenesis and its underlying pathway, we investigated the luteal hormone synthesis profile in Bmal1 knockout female mice. We found that luteal hormone synthesis was notably impaired, and phosphorylation of PI3K/NfκB pathway was significantly activated. Then, the results were verified in in vitro cultured cells, including isolated Bmal1 interference granulosa cells (GCs) and theca cells (TCs), respectively. Hormones levels of supernatant culture media and mRNA expressions of steroidogenesis-associated genes (star, Hsd3ß2, cyp19a1 in GCs, Lhcgr, star, Hsd3ß2, cyp17a1 in TCs) were mutually decreased, while the phosphorylation of PI3K/NfκB was promoted during in vitro luteinization. After PI3K specific-inhibitor LY294002 intervention, mRNA expressions of Lhcgr and Hsd3ß2 were partially rescued in Bmal1 interference TCs, together with significantly increased androstenedione and T synthesis. Further exploration in TCs demonstrated BMAL1 interacted directly but negatively with NfκB p65 (RelA), a subunit which was supposed as a mediator in Bmal1-governed PI3K signaling regulation. Taken together, we verified the novel role of Bmal1 in luteal steroidogenesis, achieving by negative interplay with RelA-mediated PI3K/NfκB pathway.
Assuntos
Fatores de Transcrição ARNTL/fisiologia , Hormônios Esteroides Gonadais/biossíntese , Células da Granulosa/metabolismo , Luteinização , Folículo Ovariano/metabolismo , Células Tecais/metabolismo , Androstenodiona/biossíntese , Animais , Estradiol/biossíntese , Feminino , Células da Granulosa/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Folículo Ovariano/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Progesterona/biossíntese , Testosterona/biossíntese , Células Tecais/patologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismoRESUMO
Krüppel-like factor 4 (Klf4) plays an important role in the transition from proliferation to differentiation in a wide variety of cells. Previous studies demonstrated its critical role in the luteal transition of preovulatory granulosa cells (GCs). This study used cultured rat preovulatory GCs to investigate the mechanism by which luteinizing hormone (LH) regulates Klf4 gene expression. Klf4 mRNA and protein were rapidly and transiently induced by LH treatment, reaching peak levels after 45 min and declining to basal levels by 3 h. Pretreatment with the protein synthesis inhibitor cycloheximide had no effect on LH-stimulated Klf4 expression, indicating that Klf4 is an immediate early gene in response to LH. To investigate the signaling pathway involved in LH-induced Klf4 regulation, the protein kinase A (PKA) and protein kinase C (PKC) pathways were evaluated. A-kinase agonists, but not a C-kinase agonist, mimicked LH in inducing Klf4 transcription. In addition, specific inhibitors of A-kinase abolished the stimulatory effect of LH on Klf4 expression. Truncation of a Klf4 expression construct to -715 bp (pKlf4-715/luc) had no effect on transcriptional activity, whereas deletion to -402 bp (pKlf4-402/luc) dramatically reduced it. ChIP analysis revealed in vivo binding of endogenous Sp1 to the -715/-500 bp region and maximal transcriptional responsiveness to LH required the Sp1 binding element at -698/-688 bp, which is highly conserved in mice, rats, and humans. These findings demonstrate that Klf4 is activated by LH via the cAMP/PKA pathway and a putative Sp1 binding element at -698/-688 bp is indispensable for activation and suggest that Klf4 could be a target for strategies for treating luteal phase insufficiency induced by an aberrant response to the LH surge.
Assuntos
Células da Granulosa/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Luteinização/metabolismo , Hormônio Luteinizante/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Regulação da Expressão Gênica , Fator 4 Semelhante a Kruppel , Luteinização/genética , Hormônio Luteinizante/fisiologia , RatosRESUMO
The pathophysiology of polycystic ovary syndrome (PCOS) is characterized by granulosa cell (GC) dysfunction. m6 A modification affects GC function in patients with premature ovarian insufficiency (POI), but the role of m6 A modification in PCOS is unknown. The purpose of the prospective comparative study was to analyse the m6 A profile of the luteinized GCs from normovulatory women and non-obese PCOS patients following controlled ovarian hyperstimulation. RNA m6 A methylation levels were measured by m6 A quantification assay in the luteinized GCs of the controls and PCOS patients. Then, m6 A profiles were analysed by methylated RNA immunoprecipitation sequencing (MeRIP-seq). We reported that the m6 A level was increased in the luteinized GCs of PCOS patients. Comparative analysis revealed differences between the m6 A profiles from the luteinized GC of the controls and PCOS patients. We identified FOXO3 mRNA with reduced m6 A modification in the luteinized GCs of PCOS patients. Selectively knocking down m6 A methyltransferases or demethylases altered expression of FOXO3 in the luteinized GCs from the controls, but did not in PCOS patients. These suggested an absence of m6 A-mediated transcription of FOXO3 in the luteinized GCs of PCOS patients. Furthermore, we demonstrated that the involvement of m6 A in the stability of the FOXO3 mRNA that is regulated via a putative methylation site in the 3'-UTR only in the luteinized GCs of the controls. In summary, our findings showed that altered m6 A modification was involved in up-regulated expression of FOXO3 mRNA in the luteinized GCs from non-obese PCOS patients following controlled ovarian hyperstimulation.