Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36265756

RESUMO

The Great Pond snail Lymnaea stagnalis (Gastropoda, Hygrophila) is a wide-spread freshwater gastropod, being considered as a model organism for research in many fields of biology, including ecotoxicology. The aim of the present study was to explore the Cd sensitivity of L. stagnalis through the measurement of a biomarker battery for oxidative, toxic and cellular stress. The interpretation of biomarker parameters occurred against the background of a truncated metallothionein protein with a limited Cd-binding capacity. Individuals of L. stagnalis were exposed through 14 days to uncontaminated water (controls) or to low (30 µg · L-1) or high (50 µg · L-1) Cd concentrations. The digestive gland of control and low-Cd exposed snails was processed for transcriptional analysis of the Metallothionein (MT) gene expression, and for determination of biomarkers for oxidative stress, toxicity and cellular stress. Digestive gland supernatants of high-Cd exposed snails were subjected to chromatography and subsequent analysis by spectrophotometry. It was shown that the MT system of L. stagnalis is functionally deficient, with a poor Cd responsiveness at both, the transcriptional and the protein expression levels. Instead, L. stagnalis appears to rely on alternative detoxification mechanisms such as Cd binding by phytochelatins and metal inactivation by compartmentalization within the lysosomal system. In spite of this, however, traces of Cd apparently leak out of the pre-determined detoxification pathways, leading to adverse effects, which is clearly indicated by biomarkers of oxidative and cellular stress.


Assuntos
Lymnaea , Metalotioneína , Humanos , Animais , Lymnaea/genética , Lymnaea/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Água Doce/química , Estresse Oxidativo , Biomarcadores/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 981564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157463

RESUMO

Experiments were carried out to determine whether, as with other mollusks that have been studied, the snail, Lymnaea stagnalis, can absorb, esterify and store vertebrate steroids that are present in the water. We also carried out experiments to determine whether neural tissues of the snail could be immunohistochemically stained with an antibody to human aromatase (a key enzyme that catalyzes the conversion of testosterone [T] to 17ß-estradiol [E2]); and, if so, to determine the significance of such staining. Previous studies on other mollusks have reported such staining and have proposed this as decisive evidence that mollusks have the same steroid synthesis pathway as vertebrates. We found that snails absorb, esterify and retain esterified T, E2, progesterone and ethinyl-estradiol (albeit with an absorption rate about four times slower, on a weight basis, than the mussel, Mytilus edulis). We also found that not only anti-human aromatase, but also anti-human nuclear progesterone receptor (nPR) and anti-human gonadotropin-releasing hormone antibodies immunohistochemically stained snail neural cells. However, further experiments, involving gel electrophoretic separation, followed by immunostaining, of proteins extracted from the neural tissue, found at least two positively-stained bands for each antibody, none of which had masses matching the human proteins to which the antibodies had been raised. The anti-aromatase antibody even stained the 140 kDA ladder protein used as a molecular weight marker on the gels. Mass spectrometric analysis of the bands did not find any peptide sequences that corresponded to the human proteins. Our findings confirm that the presence of vertebrate-like sex steroids in molluscan tissues is not necessarily evidence of endogenous origin. The results also show that immunohistochemical studies using antibodies against human proteins are grossly non-specific and likely to have little or no value in studying steroid synthesis or activity in mollusks. Our conclusions are consistent with the fact that genes for aromatase and nPR have not been found in the genome of the snail or of any other mollusk. Our overarching conclusion, from this and our previous studies, is that the endocrinology of mollusks is not the same as that of humans or any other vertebrates and that continuing to carry out physiological and ecotoxicological studies on mollusks on the basis of this false assumption, is an unconscionable waste of resources.


Assuntos
Lymnaea , Receptores de Progesterona , Animais , Estradiol , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Lymnaea/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Reprodução/fisiologia , Caramujos/metabolismo , Esteroides , Testosterona/metabolismo , Vertebrados/metabolismo , Água/metabolismo
3.
Gen Comp Endocrinol ; 299: 113621, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966777

RESUMO

In the last years, our interpretation of the origin and function of the gonadotropin-releasing hormone (GnRH) neuropeptide superfamily has changed substantially. A main driver for these conceptual changes came from increased investigations into functions and evolutionary lineage of previously identified molluscan GnRH molecules. Emerging evidence suggests not only reproductive, but also diverse biological effects of these molecules and proposes they should most likely be called corazonin (CRZ). Clearly, a more global understanding requires further exploration of species-specific functions and structure of invGnRH/CRZ peptides. Towards this goal, we have identified the full-length cDNA of invGnRH/CRZ peptide in an invertebrate model species, the great pond snail Lymnaea stagnalis, termed ly-GnRH/CRZ, and characterized the transcript and peptide distribution in the central nervous system (CNS) and peripheral organs. Our results are consistent with previous data that molluscan GnRHs are more related to CRZs and serve diverse functions. Hence, our findings support the notion that peptides originally termed molluscan GnRH are multifunctional modulators and that nomenclature change should be taken into consideration.


Assuntos
Sistema Nervoso Central/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Insetos/metabolismo , Lymnaea/metabolismo , Neuropeptídeos/metabolismo , Reprodução , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Hormônio Liberador de Gonadotropina/genética , Proteínas de Insetos/genética , Lymnaea/genética , Neuropeptídeos/genética
4.
Environ Toxicol Pharmacol ; 78: 103403, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32485659

RESUMO

Toxic metal ions are an important stress factor for a living organism. In this study, accumulation and histopathological changes in foot, mantle and hepatopancreas of great pond snail, Lymnaea stagnalis exposed to different Cadmium (Cd) concentrations in laboratory conditions were investigated. Great pond snails were exposed to sublethal concentrations of 7.92 µg/L, 15.85 µg/L, 31.7 µg/L and 63.4 µg/L Cd. At the end of 7, 14, 21 and 28 days, snail foot, mantle and hepatopancreas were removed to investigate and determine Cd accumulation and histopathological alterations by light microscopy. Cd levels determined in hepatopancreas were higher than those measured from the foot and the mantle of studied specimens. A positive correlation was found between Cd levels in tissues and exposure days. As a result of Cd application, we observed increase in the number of mucosit, pigment and protein cells and desquamation in the epithelium in the foot, atrophy in muscle fibrils, connective tissue cells and increase in the lipid vacuoles in the mantle, increase in the lipid vacuoles and amoebocyte in the hepatopancreas. The severity of the alterations resulting from Cd increased with dose-time dependent.


Assuntos
Cádmio/toxicidade , Lymnaea/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bioacumulação , Relação Dose-Resposta a Droga , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/patologia , Lymnaea/metabolismo , Músculos/efeitos dos fármacos , Músculos/patologia
5.
Arch Environ Contam Toxicol ; 79(1): 89-100, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32274555

RESUMO

Gastropod mollusks have achieved an eminent importance as biological indicators of environmental quality. In the present study, we applied a multibiomarker approach to evaluate its applicability for the pond snail Lymnaea stagnalis, exposed to common industrial and agricultural pollutants at environmentally relevant concentrations. The snails were exposed to copper (Cu2+, 10 µg L-1), zinc (Zn2+, 130 µg L-1), cadmium (Cd2+, 15 µg L-1), or the thiocarbamate fungicide "Tattoo" (91 µg L-1) during 14 days. Metal treatment and exposure to "Tattoo" caused variable patterns of increase or decrease of metal levels in the digestive gland, with a clear accumulation of only Cd and Zn after respective metal exposure. Treatment with Cu and "Tattoo" caused an increase of cytochrome P450-related EROD activity. Glutathione S-transferase was inhibited by exposure to Cu, Zn, and "Tattoo." Treatment with the "Tattoo" led to an inhibition of cholinesterase activity, whereas Cu and Cd increased its activity. Caspase-3 activity was enhanced by up to 3.3 times in all treatments. A nearly uniform inhibitory effect for oxidative stress response parameters was observed in all kinds of exposure, revealing an inhibition of superoxide dismutase (Mn-SOD) activity, a depression of glutathione (GSH and GSSG) and of protein carbonyl levels. Pollutant-specific effects were observed for the catalase activity, superoxide anion production, and lipid peroxidation levels. Due to the high response sensitivity of Lymnaea stagnalis to chemical impacts, we suggest our study as a contribution for biomarker studies with this species under field conditions.


Assuntos
Fungicidas Industriais/toxicidade , Lymnaea/efeitos dos fármacos , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tiocarbamatos/toxicidade , Oligoelementos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental/métodos , Fungicidas Industriais/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lymnaea/metabolismo , Metais Pesados/metabolismo , Lagoas/química , Superóxido Dismutase/metabolismo , Tiocarbamatos/metabolismo , Oligoelementos/metabolismo , Ucrânia , Poluentes Químicos da Água/metabolismo
6.
Biomolecules ; 10(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059521

RESUMO

Cholines acylated with unsaturated fatty acids are a recently discovered family of endogenous lipids. However, the data on the biological activity of acylcholines remain very limited. We hypothesized that acylcholines containing residues of arachidonic (AA-CHOL), oleic (Ol-CHOL), linoleic (Ln-CHOL), and docosahexaenoic (DHA-CHOL) acids act as modulators of the acetylcholine signaling system. In the radioligand binding assay, acylcholines showed inhibition in the micromolar range of both α7 neuronal nAChR overexpressed in GH4C1 cells and muscle type nAChR from Torpedo californica, as well as Lymnaea stagnalis acetylcholine binding protein. Functional response was checked in two cell lines endogenously expressing α7 nAChR. In SH-SY5Y cells, these compounds did not induce Ca2+ rise, but inhibited the acetylcholine-evoked Ca2+ rise with IC50 9 to 12 µM. In the A549 lung cancer cells, where α7 nAChR activation stimulates proliferation, Ol-CHOL, Ln-CHOL, and AA-CHOL dose-dependently decreased cell viability by up to 45%. AA-CHOL inhibited human erythrocyte acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BChE) by a mixed type mechanism with Ki = 16.7 ± 1.5 µM and αKi = 51.4 ± 4.1 µM for AChE and Ki = 70.5 ± 6.3 µM and αKi = 214 ± 17 µM for BChE, being a weak substrate of the last enzyme only, agrees with molecular docking results. Thus, long-chain unsaturated acylcholines could be viewed as endogenous modulators of the acetylcholine signaling system.


Assuntos
Acetilcolina/farmacologia , Ácidos Araquidônicos/farmacologia , Colina/farmacologia , Inibidores da Colinesterase/farmacologia , Células A549 , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Butirilcolinesterase/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colina/metabolismo , Eritrócitos/enzimologia , Feminino , Cavalos , Humanos , Concentração Inibidora 50 , Cinética , Lymnaea/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Ligação Proteica , Transdução de Sinais , Torpedo/metabolismo , Xenopus
7.
Sci Rep ; 8(1): 12227, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111831

RESUMO

Single cell mass spectrometry (MS) is uniquely positioned for the sequencing and identification of peptides in rare cells. Small peptides can take on different roles in subcellular compartments. Whereas some peptides serve as neurotransmitters in the cytoplasm, they can also function as transcription factors in the nucleus. Thus, there is a need to analyze the subcellular peptide compositions in identified single cells. Here, we apply capillary microsampling MS with ion mobility separation for the sequencing of peptides in single neurons of the mollusk Lymnaea stagnalis, and the analysis of peptide distributions between the cytoplasm and nucleus of identified single neurons that are known to express cardioactive Phe-Met-Arg-Phe amide-like (FMRFamide-like) neuropeptides. Nuclei and cytoplasm of Type 1 and Type 2 F group (Fgp) neurons were analyzed for neuropeptides cleaved from the protein precursors encoded by alternative splicing products of the FMRFamide gene. Relative abundances of nine neuropeptides were determined in the cytoplasm. The nuclei contained six of these peptides at different abundances. Enabled by its relative enrichment in Fgp neurons, a new 28-residue neuropeptide was sequenced by tandem MS.


Assuntos
Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Sequência de Aminoácidos , Animais , FMRFamida/metabolismo , Interneurônios/metabolismo , Espaço Intracelular , Lymnaea/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Frações Subcelulares/metabolismo
8.
Sci Rep ; 6: 31779, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27538741

RESUMO

Synapse formation and plasticity depend on nuclear transcription and site-specific protein targeting, but the molecular mechanisms that coordinate these steps have not been well defined. The MEN1 tumor suppressor gene, which encodes the protein menin, is known to induce synapse formation and plasticity in the CNS. This synaptogenic function has been conserved across evolution, however the underlying molecular mechanisms remain unidentified. Here, using central neurons from the invertebrate Lymnaea stagnalis, we demonstrate that menin coordinates subunit-specific transcriptional regulation and synaptic clustering of nicotinic acetylcholine receptors (nAChR) during neurotrophic factor (NTF)-dependent excitatory synaptogenesis, via two proteolytic fragments generated by calpain cleavage. Whereas menin is largely regarded as a nuclear protein, our data demonstrate a novel cytoplasmic function at central synapses. Furthermore, this study identifies a novel synaptogenic mechanism in which a single gene product coordinates the nuclear transcription and postsynaptic targeting of neurotransmitter receptors through distinct molecular functions of differentially localized proteolytic fragments.


Assuntos
Lymnaea/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Neurotransmissores/biossíntese , Sinapses/metabolismo , Transcrição Gênica/fisiologia , Animais , Lymnaea/genética , Neurônios/citologia , Proteínas Proto-Oncogênicas/genética , Receptores de Neurotransmissores/genética
9.
Sci Total Environ ; 568: 1054-1058, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27358197

RESUMO

Phytochelatins are metal-binding metabolites found in almost all plant species and some animal groups, including nematodes and annelids, where they can play an important role in detoxifying metals such as cadmium. Species from several other taxa contain a phytochelatin synthase (PCS) gene orthologue, including molluscs, indicating they may have the potential to synthesize phytochelatins. However, the presence of a gene alone does not demonstrate that it plays a functional role in metal detoxification. In the present study, we show that the aquatic snail Lymnaea stagnalis produced both penta- and heptapeptide phytochelatins (i.e. phytochelatin-2 and phytochelatin-3), and their levels increased in response to sub-lethal levels of cadmium.


Assuntos
Aminoaciltransferases/genética , Cádmio/toxicidade , Lymnaea/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Animais , Lymnaea/metabolismo , Filogenia , Fitoquelatinas/biossíntese , Fitoquelatinas/metabolismo , Alinhamento de Sequência
10.
Mem. Inst. Oswaldo Cruz ; 111(7): 475-483, tab, graf
Artigo em Inglês | LILACS | ID: lil-787555

RESUMO

The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed.


Assuntos
Animais , Carboidratos/fisiologia , Fasciola hepatica/metabolismo , Fasciolíase/metabolismo , Lectinas/metabolismo , Lymnaea/metabolismo , Arachis , Fasciola hepatica/parasitologia , Fasciolíase/parasitologia , Glicosilação , Larva/metabolismo , Larva/parasitologia , Lymnaea/parasitologia , Microscopia de Fluorescência , Oocistos/parasitologia , Valores de Referência , Coloração e Rotulagem , Triticum/parasitologia
11.
Aquat Toxicol ; 176: 38-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27108202

RESUMO

The response of enzymatic (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX and glutathione reductase, GR) and non-enzymatic responses (glutathione, GSH, oxidized glutathione, GSSG and GSH/GSSG) against acute Cu toxicity (2-90µg/mL for 48h) in different tissues of Lymnaea stagnalis were measured. Incubation conditions for enzymatic activity measurements were optimized for L. stagnalis tissues. Three examined tissues, the hepatopancreas, the foot muscle and the mantle, exhibited variable responses in antioxidant parameters as a function of Cu concentrations. The most responsive antioxidant enzymes were GPX and CAT while GR appeared less sensitive. In general antioxidant enzymes at higher Cu concentrations though GSH levels at lower Cu concentrations exhibited the greatest changes in hepatopancreas and foot muscle, respectively. All antioxidant enzymes except GR increased after exposure to the highest Cu concentration in mantle. Total and reduced GSH increased in hepatopancreas but decreased with GSH/GSSG ratios at all Cu concentrations in foot muscle. The present results show that antioxidants respond to acute Cu exposure at concentrations as low as 2µg Cu/L in adult L. stagnalis with variable responses in different tissues. Antioxidants both including enzymatic and non-enzymatic parameters may account, in part, for the high tolerance to acute metal exposure observed in adult L. stagnalis and could form suited biomarkers to evaluate the metal exposure and toxicity in aquatic environment even at relatively low level short term exposure.


Assuntos
Antioxidantes/metabolismo , Cobre/toxicidade , Lymnaea/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Lymnaea/metabolismo , Músculo Esquelético/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/química
12.
Toxicol Ind Health ; 32(1): 143-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24081640

RESUMO

Paraquat has been shown to be a highly toxic compound for humans and animals, and many cases of acute poisoning and death have been reported over the past few decades. The present study was undertaken to evaluate comprehensively herbicides (Paraquat) and some plant extracts to biochemical aspects of Lymnaea natalensis snails. It was found that the exposure of L. natalensis to Paraquat and plant extracts led to a significant reduction in the infectivity of Fasciola gigantica miracidia to the snail. The glucose level in hemolymph of exposed snails was elevated, while the glycogen showed a decrease in soft tissues when compared with the control group. In addition, the activity level of some enzymes representing glycolytic enzymes as hexokinase (HK), pyruvate kinase (PK), phosphofructokinase (PFK), lactate dehydrogenase (LDH), and glucose phosphate isomerase (GPI) in snail's tissues were reduced in response to the treatment. It was concluded that the pollution of the aquatic environment by herbicide would adversely affect the metabolism of the L. natalensis snails. Snails treated with Agave attenuate, Ammi visnaga, and Canna iridiflora plant had less toxic effect compared to snails treated with Paraquat.


Assuntos
Herbicidas/toxicidade , Lymnaea/efeitos dos fármacos , Paraquat/toxicidade , Extratos Vegetais/toxicidade , Animais , Fasciola/crescimento & desenvolvimento , Glucose-6-Fosfato Isomerase/metabolismo , Hexoquinase/metabolismo , L-Lactato Desidrogenase/metabolismo , Dose Letal Mediana , Lymnaea/metabolismo , Lymnaea/parasitologia , Fosfofrutoquinases/metabolismo , Compostos Fitoquímicos/toxicidade , Piruvato Quinase/metabolismo
13.
Nanotoxicology ; 9(7): 918-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25676617

RESUMO

The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO(3) and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO(3). Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (k(uw), l g(-1) d(-1) ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.


Assuntos
Dureza , Lymnaea/metabolismo , Nanopartículas Metálicas/química , Nitrato de Prata/química , Nitrato de Prata/farmacocinética , Prata/química , Prata/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Disponibilidade Biológica , Cátions Bivalentes/química , Cátions Bivalentes/farmacocinética , Água Doce , Lymnaea/efeitos dos fármacos , Polietilenoglicóis/química , Povidona/química , Água , Poluentes Químicos da Água/química
14.
Zh Obshch Biol ; 75(6): 466-77, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25782279

RESUMO

The research of hemocytes of laboratory cultivated pond snails Lymnaea stagnalis originating from two areas near Chernobyl with different radiation load has been carried out by means of comet assay. Significant interpopulation distinctions in parameters of DNA-comets have been revealed by means of the software analysis of hemocyte DNA-comet images: hemocytes of mollusks from radiationally unfavourable "Perstok" population have contained a twice DNA quantity in comparison with "Pripyat" population, and also have been statistically more resistant to the influence of strontium. Strontium reduces the amount of DNA in hemocytes, at that strontium dose of 0.5 MPC is already substantial (i.e., causes a negative impact).for snail Lymnaea stagnalis. According to a RAPD-analysis previously conducted, the snails of two populations are characterized by high genetic similarity, on the basis of which a hypothesis is suggested that the observed differences in the DNA content of hemocytes and resistance to strontium are inherited as prolonged adaptive modification (epigenetic change) in response to the intensive damaging impact of environment. Comet assay can be its indicator while carrying out the environmental monitoring.


Assuntos
Acidente Nuclear de Chernobyl , DNA/genética , DNA/metabolismo , Raios gama/efeitos adversos , Hemócitos/metabolismo , Lymnaea/genética , Lymnaea/metabolismo , Animais , Estrôncio/efeitos adversos
15.
Artigo em Inglês | MEDLINE | ID: mdl-23570754

RESUMO

We investigated the bioaccumulation and acute toxicity (48 h or 96 h) of Ni in four freshwater invertebrate species in two waters with hardness of 40 (soft water) and 140 mg L(-1) as CaCO(3) (hard water). Sensitivity order (most to least) was Lymnaea stagnalis > Daphnia pulex > Lumbriculus variegatus > Chironomus riparius. In all cases water hardness was protective against acute Ni toxicity with LC(50) values 3-3.5× higher in the hard water vs. soft water. In addition, higher water hardness significantly reduced Ni bioaccumulation in these organisms suggesting that competition by Ca and Mg for uptake at the biotic ligand may contribute to higher metal resistance. CBR50 values (Critical Body Residues) were less dependent on water chemistry (i.e. more consistent) than LC(50) values within and across species by ~2 fold. These data support one of the main advantages of the Tissue Residue Approach (TRA) where tissue concentrations are generally less variable than exposure concentrations with respect to toxicity. Whole body Ni bioaccumulation followed Michaelis-Menten kinetics in all organisms, with greater hardness tending to decrease B(max) with no consistent effect on K(d). Across species, acute Ni LC(50) values tended to increase with both K(d) and B(max) values - i.e. more sensitive species exhibited higher binding affinity and lower binding capacity for Ni, but there was no correlation with body size. With respect to biotic ligand modeling, log K(NiBL) values derived from Ni bioaccumulation correlated well with log K(NiBL) values derived from toxicity testing. Both whole body Na and Mg levels were disturbed, suggesting that disruption of ionoregulatory homeostasis is a mechanism of acute Ni toxicity. In L. stagnalis, Na depletion was a more sensitive endpoint than mortality, however, the opposite was true for the other organisms. This is the first study to show the relationship between Na and Ni.


Assuntos
Chironomidae/metabolismo , Daphnia/metabolismo , Lymnaea/metabolismo , Níquel/toxicidade , Oligoquetos/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Água Doce/análise , Dose Letal Mediana , Magnésio/metabolismo , Níquel/farmacocinética , Sódio/metabolismo , Testes de Toxicidade/métodos
16.
PLoS One ; 7(11): e50487, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209755

RESUMO

P2X receptors are membrane ion channels gated by extracellular ATP. Mammals possess seven distinct P2X subtypes (P2X1-7) that have important functions in a wide array of physiological processes including roles in the central nervous system (CNS) where they have been linked to modulation of neurotransmitter release. We report here the cloning and functional characterization of a P2X receptor from the mollusc Lymnaea stagnalis. This model organism has a relatively simple CNS consisting of large readily identifiable neurones, a feature which together with a well characterized neuronal circuitry for important physiological processes such as feeding and respiration makes it an attractive potential model to examine P2X function. Using CODEHOP PCR we identified a single P2X receptor (LymP2X) in Lymnaea CNS which was subsequently cloned by RT-PCR. When heterologously expressed in Xenopus oocytes, LymP2X exhibited ATP evoked inward currents (EC(50) 6.2 µM) which decayed during the continued presence of agonist. UTP and ADP did not activate the receptor whereas αßmeATP was a weak agonist. BzATP was a partial agonist with an EC(50) of 2.4 µM and a maximal response 33% smaller than that of ATP. The general P2 receptor antagonists PPADS and suramin both inhibited LymP2X currents with IC(50) values of 8.1 and 27.4 µM respectively. LymP2X is inhibited by acidic pH whereas Zn(2+) and Cu(2+) ions exhibited a biphasic effect, potentiating currents up to 100 µM and inhibiting at higher concentrations. Quantitative RT-PCR and in situ hybridization detected expression of LymP2X mRNA in neurones of all CNS ganglia suggesting this ion channel may have widespread roles in Lymnaea CNS function.


Assuntos
Sistema Nervoso Central/metabolismo , Lymnaea/metabolismo , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Hibridização In Situ , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2X2/efeitos dos fármacos , Receptores Purinérgicos P2X2/genética , Uridina Trifosfato/metabolismo , Zinco/metabolismo
17.
Biochemistry ; 49(37): 8143-54, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20701394

RESUMO

The mechanism of agonist interactions with Cys-loop ligand-gated ion channels has been studied using the acetylcholine-binding protein (AChBP) from Lymnaea stagnalis as a model protein and acetylcholine, nicotine, epibatidine, and a series of substituted quinuclidines as ligands. A biosensor-based assay for direct interaction studies of immobilized AChBP and small molecule ligands was developed. It allowed the characterization of the interaction kinetics of the ligands and the structural dynamics of the protein. The interactions with AChBP were very sensitive to variations in the experimental conditions and showed several types of complexities. These could be resolved into two types of ligand-induced secondary effects with different kinetics, representing fast and slow conformational changes. The data could be rationalized in a mechanistic model, and a structural interpretation of the interaction was obtained by molecular modeling involving induced fit and loop flexibility simulations. The data suggest that AChBP exhibits ligand-induced structural dynamics, as expected for the ligand gating mechanism of Cys-loop receptors. It shows that the formation of the initial encounter complex between AChBP and ligands is very rapid, in accordance with the functional characteristics required of neurotransmission. These developed procedures will enable further exploration of the mechanism of Cys-loop receptor function and the identification of specific ligands suitable for pharmacological use.


Assuntos
Acetilcolina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Animais , Fenômenos Biofísicos , Ligantes , Lymnaea/metabolismo , Nicotina , Proteínas/metabolismo , Transmissão Sináptica/fisiologia
18.
J Hazard Mater ; 182(1-3): 763-70, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20655142

RESUMO

Effects of dissolved cadmium exposure on the survival, feeding, growth rates and accumulation in Indian pond snails Lymnaea luteola L. were examined for a period of 7 weeks. The concentrations of cadmium tested were 0, 10, 32, 100, 320, 560, and 1000 microg l(-1). Cadmium exposure significantly inhibited the feeding and growth rates. At higher Cd concentrations snails refused to consume food offered as plant Marsilia sp. leaves. Cadmium mainly accumulated in soft tissues in a dose-dependent manner. After 4 and 7 weeks of exposure, the no observed effect concentration (NOEC) of Cd was 10 microg l(-1) and the lowest observed effect concentration (LOEC) was 32 microg l(-1). Reduction of growth (decrease in wet weight) was noticed followed by a high mortality in higher Cd concentrations. Significant reduction in food consumption and growth rates was found at 32 microg l(-1) and above Cd concentration. A significant relationship between Cd exposure and growth and feeding rates was noticed. The results obtained with these key aquatic organisms in the food chains complement those obtained with other aquatic organisms and gastropod snails. The findings of the present study and those of earlier studies suggested that Indian pond snail L. luteola are useful test organisms for ecotoxicology bioassays.


Assuntos
Cádmio/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Lymnaea/metabolismo , Animais , Relação Dose-Resposta a Droga , Lymnaea/crescimento & desenvolvimento , Lymnaea/fisiologia
19.
J Mol Neurosci ; 42(3): 464-71, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20396976

RESUMO

PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.


Assuntos
Sistema Nervoso Central/anatomia & histologia , Lymnaea/anatomia & histologia , Lymnaea/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Animais , Sistema Nervoso Central/metabolismo , AMP Cíclico/metabolismo , Transdução de Sinais/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Biometals ; 23(2): 221-30, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19937462

RESUMO

Aluminum is a toxic metal whose complex aquatic chemistry, mechanisms of toxicity and trophic transfer are not fully understood. The only isotope of Al suitable for tracing experiments in organisms-(26)Al-is a rare, costly radioisotope with a low emission energy, making its use difficult. Gallium shares a similar chemistry with Al and was therefore investigated as a potential substitute for Al for use in aquatic organisms. The freshwater snail, Lymnaea stagnalis was exposed to either Al or Ga (0.0135 mM) under identical conditions for up to 40 days. Behavioural toxicity, metal accumulation in the tissues, and sub-cellular partitioning of the metals were determined. Al was more toxic than Ga and accumulated to significantly higher levels in the soft tissues (P < 0.05). The proportion of Al in the digestive gland (DG; detoxificatory organ) relative to other tissues was significantly lower than that of Ga (P < 0.05) from day 14 onwards. There were also differences in the proportions of Al and Ga associated with heat stable proteins (HSPs) in the digestive gland, with significantly more HSP present in the DGs of snails exposed to Al, but significantly less Al than Ga associated with the HSP per unit mass protein present. From this evidence, we conclude that Ga may be of limited use as a tracer for Al in animal systems.


Assuntos
Alumínio/metabolismo , Gálio/metabolismo , Indicadores e Reagentes/metabolismo , Coloração e Rotulagem , Alumínio/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Água Doce , Gálio/toxicidade , Indicadores e Reagentes/química , Lymnaea/anatomia & histologia , Lymnaea/efeitos dos fármacos , Lymnaea/metabolismo , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodos , Frações Subcelulares/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA