RESUMO
Background and Objectives: Radiofrequency catheter ablation (RFCA) is a highly successful intervention. By comparing the lesion changes in prostate parenchymal and striated muscle tissues after RFCA with and without cooling, it was possible to assess the correlation between the shape regularity, area, and perimeter of the thermal lesion, and to predict the geometric shape changes of the lesions. Materials and Methods: A standard prostate and striated muscle RFCA procedure was performed on 13 non-purebred dogs in two sessions: no cooling and cooling with 0.1% NaCl solution. Microtome-cut 2-3 µm sections of tissue samples were stained with haematoxylin and eosin and further examined. The quotient formula was employed to evaluate the geometric shape of the damage zones at the ablation site. Results: The extent of injury following RFCA in striated muscle tissue was comparable to that in prostate parenchymal tissue. Regression analysis indicated a strong and positive relationship between area and perimeter in all experimental groups. In the experimental groups of parenchymal tissues with and without cooling, an increase in the area or perimeter of the damage zone corresponded to an increase in the quotient value. A similar tendency was observed in the striated muscle group with cooling. However, in the striated muscle group without cooling, an increase in lesion area or perimeter lowered the quotient value. Standardised regression coefficients demonstrated that in the striated muscle with cooling, the damage zone shape was more determined by area than perimeter. However, in the parenchymal tissue, the perimeter had a more substantial impact on the damage zone shape than the area. Conclusions: The damage area and perimeter have predictive power on the overall shape regularity of damage zone geometry in both striated muscles and parenchymal tissue. This approach is employed to achieve a balance between the need for tumour eradication and the minimisation of ablation-induced complications to healthy tissue.
Assuntos
Ablação por Cateter , Músculo Estriado , Animais , Masculino , Ablação por Cateter/métodos , Ablação por Cateter/efeitos adversos , Cães , Tecido Parenquimatoso , Próstata/cirurgia , Próstata/patologia , Músculo Esquelético/lesõesRESUMO
SUMMARY: The different embryological origins of striated muscle tissue make it an interesting tissue but at the same time difficult to understand, this is how the musculature of the face comes from the first pharyngeal arch, on the other hand. The muscles of the tongue derive from the somites. The muscles of the larynx come from the pharyngeal arches. The muscles of the spine come from the medial or internal myotome of the somite, while the muscles of the limbs and body wall come from the external myotome. The cardiac musculature originates from the lateral splanchnic mesoderm. In this work, the development of myoblasts in human, mouse and chicken fetuses was studied in the facial region, tongue, and spine, limbs, body wall and cardiac muscles using histological histochemical techniques and immunohistochemical technique. The objective of the work is to compare the histogenesis of striated muscle (skeletal, visceral and cardiac), indicating the differences in origin, evolution of the morphological characteristics in each of them and the signaling routes that are involved in its development.
Los distintos origenes embriológicos del tejido muscular estriado lo hace un tejido interesante, pero a la vez difícil de entender, es así como la musculatura de la cara proviene del primer arco faríngeo, en cambio, la musculatura de la lengua deriva de los somitos. La musculatura de la laringe proviene de los arcos faríngeos. La musculatura de la columna vertebral proviene del miotomo medial o interno del somito, en cambio la musculatura de los miembros y pared del cuerpo proviene del miotomo externo. La musculatura cardiaca se origina del mesoderma lateral esplácnico. En este trabajo se estudió el desarrollo de mioblastos en fetos humanos, de ratón y pollo, en la región facial, lengua, columna vertebral, miembros, pared del cuerpo y musculatura cardíaca mediante técnicas histológicas histoquímicas y técnica inmunohistoquímica. El objetivo del trabajo fue comparar la histogénesis del músculo estriado (esquelético, visceral y cardíaco), indicando las diferencias de origen, evolución de las características morfológicas en cada una de ellas y las rutas de señalización que se ven involucradas en el desarrollo del mismo.
Assuntos
Animais , Desenvolvimento Embrionário , Músculo Estriado/embriologia , GalinhasRESUMO
The tunica muscularis of mammalian esophagi is composed of striated muscle and smooth muscle. Contraction of the esophageal striated muscle portion is mainly controlled by cholinergic neurons. On the other hand, smooth muscle contraction and relaxation are controlled not only by cholinergic components but also by non-cholinergic components in the esophagus. Adenosine triphosphate (ATP) is known to regulate smooth muscle contraction and relaxation in the gastrointestinal tract via purinergic receptors. However, the precise mechanism of purinergic regulation in the esophagus is still unclear. Therefore, the aim of the present study was to clarify the effects of ATP on the mechanical responses of the esophageal muscle in mice. An isolated segment of the mouse esophagus was placed in a Magnus's tube and longitudinal mechanical responses were recorded. Exogenous application of ATP induced contractile responses in the esophageal preparations. Tetrodotoxin, a blocker of voltage-dependent sodium channels in neurons and striated muscle, did not affect the ATP-induced contraction. The ATP-evoked contraction was blocked by pretreatment with suramin, a purinergic receptor antagonist. RT-PCR revealed the expression of mRNA of purinergic receptor genes in the mouse esophageal tissue. The findings suggest that purinergic signaling might regulate the motor activity of mouse esophageal smooth muscle.
Assuntos
Trifosfato de Adenosina , Músculo Estriado , Camundongos , Animais , Trifosfato de Adenosina/farmacologia , Contração Muscular/fisiologia , Esôfago , Músculo Estriado/fisiologia , Receptores Purinérgicos , Músculo Liso , MamíferosRESUMO
Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.
Assuntos
Locusta migratoria , Músculo Estriado , Animais , Locusta migratoria/genética , Locusta migratoria/metabolismo , Sequência de Aminoácidos , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas/genética , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Músculo Estriado/metabolismoRESUMO
Autophagy (cellular self-degradation) plays a major role in maintaining the functional integrity (homeostasis) of essentially all eukaryotic cells. During the process, superfluous and damaged cellular constituents are delivered into the lysosomal compartment for enzymatic degradation. In humans, age-related defects in autophagy have been linked to the incidence of various age-associated degenerative pathologies (e.g., cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency) and accelerated ageing. Muscle mass decreases at detectable levels already in middle-aged patients, and this change can increase up to 30-50% at age 80. AUTEN-67 and -99, two small-molecule enhancers of autophagy with cytoprotective and anti-ageing effects have been previously identified and initially characterized. These compounds can increase the life span in wild-type and neurodegenerative model strains of the fruit fly Drosophila melanogaster. Adult flies were treated with these AUTEN molecules via feeding. Fluorescence and electron microscopy and Western blotting were used to assess the level of autophagy and cellular senescence. Flying tests were used to measure the locomotor ability of the treated animals at different ages. In the current study, the effects of AUTEN-67 and -99 were observed on striated muscle cells using the Drosophila indirect flight muscle (IFM) as a model. The two molecules were capable of inducing autophagy in IFM cells, thereby lowering the accumulation of protein aggregates and damaged mitochondria, both characterizing muscle ageing. Furthermore, the two molecules significantly improved the flying ability of treated animals. AUTEN-67 and -99 decrease the rate at which striated muscle cells age. These results may have a significant medical relevance that could be further examined in mammalian models.
Assuntos
Drosophila , Músculo Estriado , Animais , Humanos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Drosophila melanogaster , Envelhecimento , Autofagia , MamíferosRESUMO
Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new "dual-filament" activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.
Assuntos
Músculo Esquelético , Músculo Estriado , Animais , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Vertebrados/metabolismo , Sarcômeros/metabolismo , Miosinas/metabolismo , Contração Muscular/fisiologiaRESUMO
The Popeye domain-containing protein 3 (POPDC3), a transmembrane protein with a unique cyclic adenosine monophosphate (cAMP) binding site, is widely expressed in mammalian tissues, with the highest levels of expression in skeletal muscle. POPDC3 plays a key role in many physiological and pathological processes and is considered a candidate biomarker and potential therapeutic target of cancer. In addition, POPDC3 gene variants have been associated with limb-girdle muscular dystrophy (LGMD) type 26. However, there are only a few studies on the biological role of POPDC3, interacting proteins, potential downstream targets, and regulated signaling pathways. Therefore, this review focuses on the structure of POPDC3 protein, interacting molecules, and the role and mechanism in cancer, and in cardiac and skeletal muscle, and to review the current research progress of POPDC3 and propose possible future study directions.
Assuntos
Músculo Estriado , Distrofia Muscular do Cíngulo dos Membros , Neoplasias , Animais , Humanos , Moléculas de Adesão Celular/genética , Homeostase , Mamíferos/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismoRESUMO
Contraction in striated muscle is initiated by calcium binding to troponin complexes, but it is now understood that dynamic transition of myosin between resting, ordered OFF states on thick filaments and active, disordered ON states that can bind to thin filaments is critical in regulating muscle contractility. These structural OFF to ON transitions of myosin are widely assumed to correspond to transitions from the biochemically defined, energy-sparing, super-relaxed (SRX) state to the higher ATPase disordered-relaxed (DRX) state. Here we examined the effect of 2'-deoxy-ATP (dATP), a naturally occurring energy substrate for myosin, on the structural OFF to ON transitions of myosin motors in porcine cardiac muscle thick filaments. Small-angle X-ray diffraction revealed that titrating dATP in relaxation solutions progressively moves the myosin heads from ordered OFF states on the thick filament backbone to disordered ON states closer to thin filaments. Importantly, we found that the structural OFF to ON transitions are not equivalent to the biochemically defined SRX to DRX transitions and that the dATP-induced structural OFF to ON transitions of myosin motors in relaxed muscle are strongly correlated with submaximal force augmentation by dATP. These results indicate that structural OFF to ON transitions of myosin in relaxed muscle can predict the level of force attained in calcium-activated cardiac muscle. Computational modeling and stiffness measurements suggest a final step in the OFF to ON transition may involve a subset of DRX myosins that form weakly bound cross-bridges prior to becoming active force-producing cross-bridges.
Assuntos
Cálcio , Músculo Estriado , Animais , Suínos , Cálcio/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Cálcio da DietaRESUMO
Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration in flies, mice, and humans. Further, we find myosin filaments near the sarcomere periphery are curved relative to interior filaments with greater curvature for filaments near mitochondria compared to sarcoplasmic reticulum. Finally, we demonstrate variable myosin filament lattice spacing between filament ends and filament centers in a cell type-dependent manner. These data suggest both sarcomere structure and myofilament interactions are influenced by the location and orientation of mitochondria within muscle cells.
Assuntos
Músculo Estriado , Sarcômeros , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Camundongos , Mitocôndrias , Contração Muscular , Músculo Estriado/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismoRESUMO
The biochemical properties and microstructural changes of freeze-dried Japanese scallop (Patinopecten yessoensis) striated muscle during room temperature storage and rehydration were investigated. The results showed that the content of ATP in freeze-dried scallop muscle remained stable with no significant difference (p > 0.05). However, ATP was rapidly decomposed and AMP accumulated within 1.5 min of rehydration, and HxR and Hx were gradually produced from AMP decomposition with the extension of rehydration time. Besides, the results of chymotryptic digestion patterns demonstrated that the rod of myosin was unstable after dehydration, reflecting lower salt solubility than that of frozen-thawed scallop. In contrast, the myosin subfragment-1 (S-1) was stable, as indicated by the constant of Ca2+-ATPase activity of freeze-dried scallops throughout the storage and rehydration (p > 0.05). Furthermore, the microstructural analysis revealed that the Z line of the freeze-dried scallop was broken after dehydration process. This study might be useful for developing high-quality dehydrated scallops in the future.
Assuntos
Músculo Estriado , Pectinidae , Monofosfato de Adenosina/análise , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Animais , Desidratação/metabolismo , Hidratação , Músculo Esquelético/química , Nucleotídeos/análise , Pectinidae/química , Proteínas/análiseRESUMO
Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.
Assuntos
Demência Frontotemporal , Músculo Estriado , Miosite de Corpos de Inclusão , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Mutação , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Proteostase/genética , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
Regulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which enables tropomyosin to expose myosin-binding sites on actin. Myosin binding holds tropomyosin in an open position, exposing more myosin-binding sites on actin, leading to cooperative activation. At lower calcium levels, troponin and tropomyosin turn off the thin filament; however, this is antagonised by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation, we used single-molecule imaging of green fluorescent protein (GFP)-tagged myosin-S1 (S1-GFP) to follow the activation of RTF tightropes. In sub-maximal activation conditions, RTFs are not fully active, enabling direct observation of deactivation in real time. We observed that myosin binding occurs in a stochastic step-wise fashion; however, an unexpectedly large probability of multiple contemporaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated active process.
Assuntos
Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Imagem Individual de Molécula/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Músculo Estriado/metabolismo , Ligação Proteica , Processos Estocásticos , Troponina/metabolismoRESUMO
Chronic glucocorticoid exposure causes insulin resistance and muscle atrophy in skeletal muscle. We previously identified phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1) as a primary target gene of skeletal muscle glucocorticoid receptors involved in the glucocorticoid-mediated suppression of insulin action. However, the in vivo functions of Pik3r1 remain unclear. Here, we generated striated muscle-specific Pik3r1 knockout (MKO) mice and treated them with a dexamethasone (DEX), a synthetic glucocorticoid. Treating wildtype (WT) mice with DEX attenuated insulin activated Akt activity in liver, epididymal white adipose tissue, and gastrocnemius (GA) muscle. This DEX effect was diminished in GA muscle of MKO mice, therefore, resulting in improved glucose and insulin tolerance in DEX-treated MKO mice. Stable isotope labeling techniques revealed that in WT mice, DEX treatment decreased protein fractional synthesis rates in GA muscle. Furthermore, histology showed that in WT mice, DEX treatment reduced GA myotube diameters. In MKO mice, myotube diameters were smaller than in WT mice, and there were more fast oxidative fibers. Importantly, DEX failed to further reduce myotube diameters. Pik3r1 knockout also decreased basal protein synthesis rate (likely caused by lower 4E-BP1 phosphorylation at Thr37/Thr46) and curbed the ability of DEX to attenuate protein synthesis rate. Finally, the ability of DEX to inhibit eIF2α phosphorylation and insulin-induced 4E-BP1 phosphorylation was reduced in MKO mice. Taken together, these results demonstrate the role of Pik3r1 in glucocorticoid-mediated effects on glucose and protein metabolism in skeletal muscle.
Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Glucocorticoides/farmacologia , Glucose/metabolismo , Resistência à Insulina , Músculo Estriado/efeitos dos fármacos , Músculo Estriado/metabolismo , Atrofia Muscular/metabolismo , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Modelos Animais de Doenças , Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Estriado/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de SinaisRESUMO
Smooth muscle hamartoma (SMH) and striated muscle hamartoma (STH) are anomalous proliferations of smooth muscle or striated muscle, respectively, in anatomic sites where these tissues are normally present. To date, only limited cases have been reported describing these lesions. In this study, we sought to characterize the clinicopathologic features of both SMH and STH. A total of 27 cases of SMH and 12 cases of STH from 1990 to 2020 were identified. SMH cases had a slight male predominance (63%) and a mean age of presentation of 20 years (range: 4 months-91 years), with a mean size of 9.3 mm (±13.3). In contrast, STH were equally distributed in gender, with a mean age of presentation of 40 years (range: 3 months-66 years) and a mean size of 5.7 mm (±3.6). SMH were more commonly located in the torso and extremities (70%) and STH in the head and neck area (92%). One case of SMH recurred after 1.1 years and in the initial diagnosis the lesion was present at the tissue edge. None of the cases of STH had a recurrence. We present the largest cohort of SMH and STH, and report the first case of a recurrent SMH, suggesting the importance of obtaining a clean margin for these lesions.
Assuntos
Hamartoma , Neoplasias de Cabeça e Pescoço , Neoplasias Musculares , Músculo Liso , Músculo Estriado , Adolescente , Adulto , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Hamartoma/metabolismo , Hamartoma/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Lactente , Masculino , Neoplasias Musculares/metabolismo , Neoplasias Musculares/patologia , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Estriado/metabolismo , Músculo Estriado/patologiaRESUMO
OBJECTIVE: The aim of the study was to compare levator hiatus (LH) and levator area (LA) on transvaginal 3-dimensional (3D) ultrasound (US) and genital hiatus (GH) size by Pelvic Organ Prolapse Quantification (POP-Q) examination before and after minimally invasive sacrocolpopexy. METHODS: Women with prolapse (POP) beyond the hymen undergoing minimally invasive sacrocolpopexy without concomitant POP repairs completed Pelvic Floor Distress Inventory short form (PFDI), POP-Q, and transvaginal 3D US before and 14 weeks after surgery. Data were analyzed by 2 urogynecologists, blinded to US image sequence and to corresponding POP-Q scores. RESULTS: Forty-three patients were enrolled; 35 with complete data are included. Patients had a mean ± SD age of 55 ± 11 years. Most were white (89%), vaginally parous (94%), postmenopausal (66%), sexually active (63%), and had stage 3 POP (86%). The majority (89%) had concomitant hysterectomy, and 60% had midurethral slings. At baseline, the mean ± SD PFDI and Prolapse subscale of the Pelvic Floor Distress Inventory scores were 98 ± 50 and 42 ± 22. The median (interquartile range) POP-Q stage decreased after surgery from 3 (3) to 0 (0-1, P < 0.001) and the mean ± SD PFDI scores decreased to 55 ± 42 (P = 0.002). At baseline, the mean ± SD GH and perineal body measurements were 3.5 ± 0.7 and 2.4 ± 0.6 cm. Although the GH size decreased by 0.5 cm after surgery, perineal body was unchanged. Levator hiatus remained unchanged between the baseline and 14-week visits (P = 0.07), whereas LA increased by 0.8 cm2 (P = 0.03). At 14 weeks, the change in LA was not correlated with the change in GH (ρ = -0.2, P = 0.2) or POP stage (ρ = -0.2, P = 0.9). CONCLUSIONS: Restoring the apex with sacrocolpopexy alone reduces GH size on clinical examination; however, it does not impact the size of the underlying LH on US.
Assuntos
Músculo Estriado/anatomia & histologia , Prolapso de Órgão Pélvico/cirurgia , Adulto , Idoso , Feminino , Procedimentos Cirúrgicos em Ginecologia/métodos , Humanos , Pessoa de Meia-Idade , Tamanho do Órgão , Pelve , Período Pós-Operatório , Estudos Prospectivos , Sacro/cirurgia , Vagina/cirurgiaRESUMO
INTRODUCTION: The superficial musculoaponeurotic system (SMAS) is a controversial functional fibro-adipose layer that connects the mimic muscles to the skin and is involved in a variety of facial mimic expressions. The presence of muscle fibers within SMAS fibrous septa is hypothetical. The present study analyzed SMAS fibrous septa composition for the existence of striated muscle cells. METHODS: Histological serial sections of the sample borders (n=107) of 19 in sano-resected and diagnosed cutaneous tumors of the midfacial region were investigated. Immunohistochemical (actin and myosin) and hematoxylin and eosin staining were performed to detect striated muscle cells in SMAS fibrous septa. RESULTS: A fibro-neuro-musculo-vascular functional unit within SMAS fibrous septa was demonstrated. SMAS striated muscle cells were morphologically independent from preparotideal and periorbital mimic muscles. Intraseptal blood vessels draining the superficial and deep SMAS vascular system were described. CONCLUSIONS: Striated muscle cells were demonstrated within SMAS fibrous septa. Nerve cells and vascular tissue together with the SMAS fibro-muscular meshwork demonstrated an autonomous operating functional unit that hypothetical modulated individual mimic expression contributing to the diversity of mimic expression. The SMAS develops with mimic muscle contractions as a synergetic effect during facial crease and fold formation processes.
Assuntos
Músculo Estriado , Sistema Musculoaponeurótico Superficial , Tecido Adiposo , Face , Músculos Faciais , Neoplasias Faciais , Humanos , Imuno-HistoquímicaRESUMO
Myosin-binding protein C (MyBP-C) is a critical regulator of muscle performance that was first identified through its strong binding interactions with myosin, the force-generating protein of muscle. Almost simultaneously with its discovery, MyBP-C was soon found to bind to actin, the physiological catalyst for myosin's activity. However, the two observations posed an apparent paradox, in part because interactions of MyBP-C with myosin were on the thick filament, whereas MyBP-C interactions with actin were on the thin filament. Despite the intervening decades since these initial discoveries, it is only recently that the dual binding modes of MyBP-C are becoming reconciled in models that place MyBP-C at a central position between actin and myosin, where MyBP-C alternately stabilizes a newly discovered super-relaxed state (SRX) of myosin on thick filaments in resting muscle and then prolongs the "on" state of actin on thin filaments in active muscle. Recognition of these dual, alternating functions of MyBP-C reveals how it is central to the regulation of both muscle contraction and relaxation. The purpose of this Viewpoint is to briefly summarize the roles of MyBP-C in binding to myosin and actin and then to highlight a possible new role for MyBP-C in inducing and damping oscillatory waves of contraction and relaxation. Because the contractile waves bear similarity to cycles of contraction and relaxation in insect flight muscles, which evolved for fast, energetically efficient contraction, the ability of MyBP-C to damp so-called spontaneous oscillatory contractions (SPOCs) has broad implications for previously unrecognized regulatory mechanisms in vertebrate striated muscle. While the molecular mechanisms by which MyBP-C can function as a wave maker or a wave breaker are just beginning to be explored, it is likely that MyBP-C dual interactions with both myosin and actin will continue to be important for understanding the new functions of this enigmatic protein.
Assuntos
Proteínas de Transporte , Músculo Estriado , Animais , Músculo Estriado/metabolismo , Miosinas/metabolismo , Vertebrados/metabolismoRESUMO
An 82-year-old man was treated with neo-adjuvant nivolumab (programmed cell death protein 1 or PD-1 inhibitor) for local recurrence of melanoma developed myositis, myocarditis and a myasthenic-like syndrome with a fatal outcome. The occurrence of these three conditions may constitute a new immune checkpoint-induced syndrome. The relevance of the clinical features and the immunology is discussed. This case highlights the special role of anti-striated muscle antibodies as a predictor of mortality.