Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 101: 102-115, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27717867

RESUMO

Cigarette smoking is the primary risk factor for COPD which is characterized by excessive inflammation and airflow obstruction of the lung. While inflammation is causally related to initiation and progression of COPD, the mitochondrial mechanisms that underlie the associated inflammatory responses are poorly understood. In this context, we have studied the role played by Mitogen activated protein (MAP) kinase kinase 3 (MKK3), a dual-specificity protein kinase, in cigarette smoke induced-inflammation and mitochondrial dysfunction. Serum pro-inflammatory cytokines were significantly elevated in WT but not in MKK3-/- mice exposed to Cigarette smoke (CS) for 2 months. To study the cellular mechanisms of inflammation, bone marrow derived macrophages (BMDMs), wild type (WT) and MKK3-/-, were exposed to cigarette smoke extract (CSE) and inflammatory cytokine production and mitochondrial function assessed. The levels of IL-1ß, IL-6, and TNFα were increased along with higher reactive oxygen species (ROS) and P-NFκB after CSE treatment in WT but not in MKK3-/- BMDMs. CSE treatment adversely affected basal mitochondrial respiration, ATP production, maximum respiratory capacity, and spare respiratory capacity in WT BMDMs only. Mitophagy, clearance of dysfunctional mitochondria, was up regulated in CS exposed WT mice lung tissue and CSE exposed WT BMDMs, respectively. The proteomic analysis of BMDMs by iTRAQ (isobaric tags for relative and absolute quantitation) showed up regulation of mitochondrial dysfunction associated proteins in WT and higher OXPHOS (Oxidative phosphorylation) and IL-10 signaling proteins in MKK3-/- BMDMs after CSE exposure, confirming the critical role of mitochondrial homeostasis. Interestingly, we found increased levels of p-MKK3 by immunohistochemistry in COPD patient lung tissues that could be responsible for insufficient mitophagy and disease progression. This study identifies MKK3 as a negative regulator of mitochondrial function and inflammatory responses to CS and suggests that MKK3 could be a therapeutic target.


Assuntos
Fumar Cigarros/genética , MAP Quinase Quinase 3/genética , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Nicotiana/química , Doença Pulmonar Obstrutiva Crônica/genética , Trifosfato de Adenosina/biossíntese , Animais , Fumar Cigarros/metabolismo , Fumar Cigarros/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , MAP Quinase Quinase 3/deficiência , MAP Quinase Quinase 3/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Cultura Primária de Células , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Am J Physiol Cell Physiol ; 310(4): C270-83, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26739490

RESUMO

We have demonstrated that glucagon like peptide-1 (GLP-1) protects the heart against ischemic injury. However, the physiological mechanism by which GLP-1 receptor (GLP-1R) initiates cardioprotection remains to be determined. The objective of this study is to elucidate the functional roles of MAPK kinase 3 (MKK3) and Akt-1 in mediating exendin-4-elicited protection in the infarcted hearts. Adult mouse myocardial infarction (MI) was created by ligation of the left descending artery. Wild-type, MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice were divided into one of several groups: 1) sham: animals underwent thoracotomy without ligation; 2) MI: animals underwent MI and received a daily dose of intraperitoneal injection of vehicle (saline); 3) MI + exendin-4: infarcted mice received daily injections of exendin-4, a GLP-1R agonist (0.1 mg/kg, ip). Echocardiographic measurements indicate that exendin-4 treatment resulted in the preservation of ventricular function and increases in the survival rate, but these effects were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. Exendin-4 treatments suppressed cardiac hypotrophy and reduced scar size and cardiac interstitial fibrosis, respectively, but these beneficial effects were lost in genetic elimination of MKK3, Akt-1, or Akt-1(-/-);MKK3(-/-) mice. GLP-1R stimulation stimulated angiogenic responses, which were also mitigated by deletion of MKK3 and Akt-1. Exendin-4 treatment increased phosphorylation of MKK3, p38, and Akt-1 at Ser129 but decreased levels of active caspase-3 and cleaved poly (ADP-ribose) polymerase; these proteins were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. These results reveal that exendin-4 treatment improves cardiac function, attenuates cardiac remodeling, and promotes angiogenesis in the infarcted myocardium through MKK3 and Akt-1 pathway.


Assuntos
Cardiotônicos/farmacologia , MAP Quinase Quinase 3/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/enzimologia , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peçonhas/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Ativação Enzimática , Exenatida , Fibrose , MAP Quinase Quinase 3/deficiência , MAP Quinase Quinase 3/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Fatores de Tempo , Remodelação Ventricular/efeitos dos fármacos
3.
J Mol Endocrinol ; 53(1): 1-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24780837

RESUMO

STAR/StarD1, part of a protein complex, mediates the transport of cholesterol from the outer to inner mitochondrial membrane, which is the rate-limiting step for steroidogenesis, and where steroid hormone synthesis begins. Herein, we examined the role of oxidant-sensitive p38 MAPKs in the regulation of STAR gene transcription, using model steroidogenic cell lines. Our data indicate that oxidant activation of p38 MAPK exhibits a negative regulatory role in the induction of functional expression of STAR, as evidenced by enhanced induction of STAR (mRNA/protein) expression and increased steroidogenesis during pharmacological inhibition of p38 MAPK or in cells with increased transient overexpression of a dominant-negative (dn) form of p38 MAPKα or p38 MAPKß. Studies with rat Star-promoter demonstrated that overexpression of p38 MAPKα-wt, -ß, or -γ significantly reduced both basal and cAMP-sensitive promoter activity. In contrast, overexpression of p38 MAPKα-dn, -ß, or -γ enhanced the Star promoter activity under basal conditions and in response to cAMP stimulation. Use of various constitutively active and dn constructs and designer knock-out cell lines demonstrated that MKK3 and MKK6, the upstream activators of p38 MAPKs, play a role in p38 MAPKα-mediated inhibition of Star promoter activity. In addition, our studies raised the possibility of CREB being a potential target of the p38 MAPK inhibitory effect on Star promoter activity. Collectively, these data provide novel mechanistic information about how oxidant-sensitive p38 MAPKs, particularly p38 MAPKα, contribute to the negative regulation of Star gene expression and inhibit steroidogenesis.


Assuntos
Fosfoproteínas/genética , Esteroides/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Bucladesina/farmacologia , Linhagem Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células HEK293 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , MAP Quinase Quinase 3/deficiência , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/deficiência , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Camundongos , Camundongos Knockout , Oxidantes/farmacologia , Progesterona/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 306(7): L604-19, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487387

RESUMO

Sepsis is a systemic inflammatory response to infection and a major cause of death worldwide. Because specific therapies to treat sepsis are limited, and underlying pathogenesis is unclear, current medical care remains purely supportive. Therefore targeted therapies to treat sepsis need to be developed. Although an important mediator of sepsis is thought to be mitochondrial dysfunction, the underlying molecular mechanism is unclear. Modulation of mitochondrial processes may be an effective therapeutic strategy in sepsis. Here, we investigated the role of the kinase MKK3 in regulation of mitochondrial function in sepsis. Using clinically relevant animal models, we examined mitochondrial function in primary mouse lung endothelial cells exposed to LPS. MKK3 deficiency reduces lethality of sepsis in mice and by lowering levels of lung and mitochondrial injury as well as reactive oxygen species. Furthermore, MKK3 deficiency appeared to simultaneously increase mitochondrial biogenesis and mitophagy through the actions of Sirt1, Pink1, and Parkin. This led to a more robust mitochondrial network, which we propose provides protection against sepsis. We also detected higher MKK3 activation in isolated peripheral blood mononuclear cells from septic patients compared with nonseptic controls. Our findings demonstrate a critical role for mitochondria in the pathogenesis of sepsis that involves a previously unrecognized function of MKK3 in mitochondrial quality control. This mitochondrial pathway may help reveal new diagnostic markers and therapeutic targets against sepsis.


Assuntos
Lesão Pulmonar/etiologia , MAP Quinase Quinase 3/sangue , MAP Quinase Quinase 3/deficiência , Mitocôndrias/fisiologia , Mitofagia , Sepse/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Animais , Células Endoteliais/metabolismo , Feminino , Humanos , Lipopolissacarídeos , Pulmão/metabolismo , MAP Quinase Quinase 3/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Sepse/complicações , Sirtuína 1/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
5.
PLoS One ; 9(1): e84818, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24400116

RESUMO

Bone mass is maintained by osteoclasts that resorb bone and osteoblasts that promote matrix deposition and mineralization. Bone homeostasis is altered in chronic inflammation as well as in post-menopausal loss of estrogen, which favors osteoclast activity that leads to osteoporosis. The MAPK p38α is a key regulator of bone loss and p38 inhibitors preserve bone mass by inhibiting osteoclastogenesis. p38 function is regulated by two upstream MAPK kinases, namely MKK3 and MKK6. The goal of this study was to assess the effect of MKK3- or MKK6-deficiency on osteoclastogenesis in vitro and on bone loss in ovariectomy-induced osteoporosis in mice. We demonstrated that MKK3 but not MKK6, regulates osteoclast differentiation from bone marrow cells in vitro. Expression of NFATc1, a master transcription factor in osteoclastogenesis, is decreased in cells lacking MKK3 but not MKK6. Expression of osteoclast-specific genes Cathepsin K, osteoclast-associated receptor and MMP9, was inhibited in MKK3-/- cells. The effect of MKK-deficiency on ovariectomy-induced bone loss was then evaluated in female WT, MKK3-/- and MKK6-/- mice by micro-CT analysis. Bone loss was partially inhibited in MKK3-/- as well as MKK6-/- mice, despite normal osteoclastogenesis in MKK6-/- cells. This correlated with the lower osteoclast numbers in the MKK-deficient ovariectomized mice. These studies suggest that MKK3 and MKK6 differentially regulate bone loss due to estrogen withdrawal. MKK3 directly mediates osteoclastogenesis while MKK6 likely contributes to pro-inflammatory cytokine production that promotes osteoclast formation.


Assuntos
Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/genética , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Feminino , Expressão Gênica , MAP Quinase Quinase 3/deficiência , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/deficiência , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Camundongos , Camundongos Knockout , Ovariectomia
6.
J Immunol ; 190(3): 1264-75, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275604

RESUMO

Sepsis is a leading cause of intensive care unit admissions, with high mortality and morbidity. Although outcomes have improved with better supportive care, specific therapies are limited. Endothelial activation and oxidant injury are key events in the pathogenesis of sepsis-induced lung injury. The signaling pathways leading to these events remain poorly defined. We sought to determine the role of MAPK kinase 3 (MKK3), a kinase of the p38 group, in the pathogenesis of sepsis. We used a murine i.p. LPS model of systemic inflammation to mimic sepsis. Lung injury parameters were assessed in lung tissue and bronchoalveolar lavage specimens. Primary lung endothelial cells were cultured and assessed for mediators of inflammation and injury, such as ICAM-1, AP-1, NF-κB, and mitochondrial reactive oxygen species. Our studies demonstrate that MKK3 deficiency confers virtually complete protection against organ injury after i.p. LPS. Specifically, MKK3(-/-) mice were protected against acute lung injury, as assessed by reduced inflammation, mitochondrial reactive oxygen species generation, endothelial injury, and ICAM-1 expression after LPS administration. Our results show that endothelial MKK3 is required for inflammatory cell recruitment to the lungs, mitochondrial oxidant-mediated AP-1, NF-κB activation, and ICAM-1 expression during LPS challenge. Collectively, these studies identify a novel role for MKK3 in lethal LPS responses and provide new therapeutic targets against sepsis and acute lung injury.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Células Endoteliais/enzimologia , Endotoxemia/enzimologia , MAP Quinase Quinase 3/fisiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Apoptose , Líquido da Lavagem Broncoalveolar , Quimiotaxia de Leucócito/fisiologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotoxemia/patologia , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Lipopolissacarídeos/toxicidade , Pulmão/patologia , MAP Quinase Quinase 3/antagonistas & inibidores , MAP Quinase Quinase 3/deficiência , MAP Quinase Quinase 3/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Ativação de Neutrófilo , Peritonite/induzido quimicamente , Peritonite/enzimologia , RNA Interferente Pequeno/farmacologia , Quimera por Radiação , Espécies Reativas de Oxigênio/metabolismo , Sepse/enzimologia , Fator de Transcrição AP-1/metabolismo
7.
Diabetologia ; 52(2): 347-58, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19066844

RESUMO

AIMS/HYPOTHESIS: Obesity and diabetes are associated with increased intracellular p38 mitogen-activated protein kinase (MAPK) signalling, which may promote tissue inflammation and injury. Activation of p38 MAPK can be induced by either of the immediate upstream kinases, MAP kinase kinase (MKK)3 or MKK6, and recent evidence suggests that MKK3 has non-redundant roles in the pathology attributed to p38 MAPK activation. Therefore, this study examined whether MKK3 signalling influences the development of obesity, type 2 diabetes and diabetic nephropathy. METHODS: Wild-type and Mkk3 (also known as Map2k3) gene-deficient db/db mice were assessed for the development of obesity, type 2 diabetes and renal injury from 8 to 32 weeks of age. RESULTS: Mkk3 (+/+) db/db and Mkk3 (-/-) db/db mice developed comparable obesity and were similar in terms of incidence and severity of type 2 diabetes. At 32 weeks, diabetic Mkk3 (+/+) db/db mice had increased kidney levels of phospho-p38 and MKK3 protein. In comparison, kidney levels of phospho-p38 in diabetic Mkk3 ( -/- ) db/db mice remained normal, despite a fourfold compensatory increase in MKK6 protein levels. The reduced levels of p38 MAPK signalling in the diabetic kidneys of Mkk3 ( -/- ) db/db mice was associated with protection against the following: declining renal function, increasing albuminuria, renal hypertrophy, podocyte loss, mesangial cell activation and glomerular fibrosis. Diabetic Mkk3 ( -/- ) db/db mice were also significantly protected from tubular injury and interstitial fibrosis, which was associated with reduced Ccl2 mRNA expression and interstitial macrophage accumulation. CONCLUSIONS/INTERPRETATION: MKK3-p38 MAPK signalling is not required for the development of obesity or type 2 diabetes, but plays a distinct pathogenic role in the progression of diabetic nephropathy in db/db mice.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Rim/fisiopatologia , MAP Quinase Quinase 3/deficiência , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Sondas de DNA , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/epidemiologia , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Hipertrofia , Rim/lesões , Rim/patologia , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Obesos , Receptores para Leptina/genética , Fator de Necrose Tumoral alfa/genética
8.
J Am Coll Cardiol ; 48(3): 545-55, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16875982

RESUMO

OBJECTIVES: The purpose of this study was to determine whether p38 mitogen-activated protein kinase (p38-MAPK) contributes to tumor necrosis factor-alpha (TNFalpha)-induced contractile depression. BACKGROUND: Tumor necrosis factor has both beneficial and detrimental consequences that may result from the activation of different downstream pathways. Tumor necrosis factor activates p38-MAPK, a stress-responsive kinase implicated in contractile depression and cardiac injury. METHODS: In isolated hearts from mice lacking the p38-MAPK activator, MAPK kinase 3 (MKK3), perfused at constant coronary pressure or flow, we measured the left ventricular developed pressure (LVDP) and the relationship between end-diastolic volume and LVDP in the presence and absence of 10 ng/ml TNFalpha. RESULTS: Within 15 min at constant pressure, TNFalpha significantly reduced LVDP and coronary flow in outbred and mkk3(+/+) mice. This early negative inotropic effect was associated with a marked phosphorylation of both p38-MAPK and its indirect substrate, HSP27. In hearts lacking MKK3, TNFalpha failed to activate p38-MAPK or to cause significant contractile dysfunction. The actions of TNFalpha were similarly attenuated in MAPK-activated protein kinase 2 (MK2)-deficient hearts, which have a marked reduction in myocardial p38-MAPK protein content, and by the p38-MAPK catalytic site inhibitor SB203580 (1 micromol/l). Under conditions of constant coronary flow, the p38-MAPK activation and contractile depression induced by TNFalpha, though attenuated, remained sensitive to the absence of MKK3 or the presence of SB203580. The role of p38-MAPK in TNFalpha-induced contractile depression was confirmed in isolated murine cardiac myocytes exposed to SB203580 or lacking MKK3. CONCLUSIONS: Tumor necrosis factor activates p38-MAPK in the intact heart and in isolated cardiac myocytes through MKK3. This activation likely contributes to the early cardiodepressant action of TNFalpha.


Assuntos
Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase 3/deficiência , Masculino , Camundongos , Camundongos Knockout , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Proteínas Quinases/deficiência , Proteínas Serina-Treonina Quinases , Piridinas/farmacologia , Volume Sistólico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA