Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 532(7597): 122-6, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027284

RESUMO

Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause strokes and seizures in younger individuals. CCMs arise from endothelial cell loss of KRIT1, CCM2 or PDCD10, non-homologous proteins that form an adaptor complex. How disruption of the CCM complex results in disease remains controversial, with numerous signalling pathways (including Rho, SMAD and Wnt/ß-catenin) and processes such as endothelial-mesenchymal transition (EndMT) proposed to have causal roles. CCM2 binds to MEKK3 (refs 7, 8, 9, 10, 11), and we have recently shown that CCM complex regulation of MEKK3 is essential during vertebrate heart development. Here we investigate this mechanism in CCM disease pathogenesis. Using a neonatal mouse model of CCM disease, we show that expression of the MEKK3 target genes Klf2 and Klf4, as well as Rho and ADAMTS protease activity, are increased in the endothelial cells of early CCM lesions. By contrast, we find no evidence of EndMT or increased SMAD or Wnt signalling during early CCM formation. Endothelial-specific loss of Map3k3 (also known as Mekk3), Klf2 or Klf4 markedly prevents lesion formation, reverses the increase in Rho activity, and rescues lethality. Consistent with these findings in mice, we show that endothelial expression of KLF2 and KLF4 is increased in human familial and sporadic CCM lesions, and that a disease-causing human CCM2 mutation abrogates the MEKK3 interaction without affecting CCM complex formation. These studies identify gain of MEKK3 signalling and KLF2/4 function as causal mechanisms for CCM pathogenesis that may be targeted to develop new CCM therapeutics.


Assuntos
Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas ADAM/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/deficiência , MAP Quinase Quinase Quinase 3/deficiência , Masculino , Camundongos , Ligação Proteica , Proteínas rho de Ligação ao GTP/metabolismo
2.
Immunity ; 34(2): 201-12, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21333552

RESUMO

Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-ß (TGF-ß)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-ß stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-ß responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-ß signaling pathways is important in regulating Th cell differentiation.


Assuntos
MAP Quinase Quinase Quinase 2/fisiologia , MAP Quinase Quinase Quinase 3/fisiologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Transplante de Medula Óssea , Diferenciação Celular , Ativação Enzimática , Fatores de Transcrição Forkhead/análise , Contagem de Linfócitos , Linfopenia/enzimologia , Linfopenia/genética , Linfopenia/patologia , MAP Quinase Quinase Quinase 2/deficiência , MAP Quinase Quinase Quinase 2/genética , MAP Quinase Quinase Quinase 3/deficiência , MAP Quinase Quinase Quinase 3/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/fisiologia , Proteína Smad2/química , Proteína Smad3/química , Organismos Livres de Patógenos Específicos , Linfócitos T Auxiliares-Indutores/patologia , Linfócitos T Reguladores/química , Linfócitos T Reguladores/patologia , Células Th17/patologia
3.
Sci Signal ; 2(93): ra66, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19843958

RESUMO

The cytokine interleukin-1 (IL-1) mediates immune and inflammatory responses by activating the transcription factor nuclear factor kappaB (NF-kappaB). Although transforming growth factor-beta-activated kinase 1 (TAK1) and mitogen-activated protein kinase (MAPK) kinase kinase 3 (MEKK3) are both crucial for IL-1-dependent activation of NF-kappaB, their potential functional and physical interactions remain unclear. Here, we showed that TAK1-mediated activation of NF-kappaB required the transient formation of a signaling complex that included tumor necrosis factor receptor-associated factor 6 (TRAF6), MEKK3, and TAK1. Site-specific, lysine 63-linked polyubiquitination of TAK1 at lysine 209, likely catalyzed by TRAF6 and Ubc13, was required for the formation of this complex. After TAK1-mediated activation of NF-kappaB, TRAF6 subsequently activated NF-kappaB through MEKK3 independently of TAK1, thereby establishing continuous activation of NF-kappaB, which was required for the production of sufficient cytokines. Therefore, we propose that the cooperative activation of NF-kappaB by two mechanistically and temporally distinct MEKK3-dependent pathways that diverge at TRAF6 critically contributes to immune and inflammatory systems.


Assuntos
Interleucina-1/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Humanos , MAP Quinase Quinase Quinase 3/deficiência , MAP Quinase Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Ligação Proteica , Fator 6 Associado a Receptor de TNF/deficiência , Fator 6 Associado a Receptor de TNF/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
4.
Cell Signal ; 21(10): 1488-94, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19465115

RESUMO

Lysophosphatidic acid (LPA) is a potent agonist that exerts various cellular functions on many cell types through binding to its cognate G protein-coupled receptors (GPCRs). Although LPA induces NF-kappaB activation by acting on its GPCR receptor, the molecular mechanism of LPA receptor-mediated NF-kappaB activation remains to be well defined. In the present study, by using MEKK3-, TAK1-, and IKKbeta-deficient murine embryonic fibroblasts (MEFs), we found that MEKK3 but not TAK1 deficiency impairs LPA and protein kinase C (PKC)-induced IkappaB kinase (IKK)-NF-kappaB activation, and IKKbeta is required for PKC-induced NF-kappaB activation. In addition, we demonstrate that LPA and PKC-induced IL-6 and MIP-2 production are abolished in the absence of MEKK3 but not TAK1. Together, our results provide the genetic evidence that MEKK3 but not TAK1 is required for LPA receptor-mediated IKK-NF-kappaB activation.


Assuntos
Lisofosfolipídeos/farmacologia , MAP Quinase Quinase Quinase 3/metabolismo , NF-kappa B/metabolismo , Animais , Quimiocina CXCL2/metabolismo , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Interleucina-6/metabolismo , MAP Quinase Quinase Quinase 3/deficiência , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
5.
Circ Res ; 103(12): 1430-40, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19008476

RESUMO

Congenital heart defects occur at a rate of 5% and are the most prevalent birth defects. A better understanding of the complex signaling networks regulating heart development is necessary to improve repair strategies for congenital heart defects. The mitogen-activated protein 3 kinase (MEKK3) is important to early embryogenesis, but developmental processes affected by MEKK3 during heart morphogenesis have not been fully examined. We identify MEKK3 as a critical signaling molecule during endocardial cushion development. We report the detection of MEKK3 transcripts to embryonic hearts before, during, and after cardiac cushion cells have executed epithelial-to-mesenchymal transition (EMT). MEKK3 is observed to endocardial cells of the cardiac cushions with a diminishing gradient of expression into the cushions. These observations suggest that MEKK3 may function during production of cushion mesenchyme as required for valvular development and septation of the heart. We used a kinase inactive form of MEKK3 (MEKK3(KI)) in an in vitro assay that recapitulates in vivo EMT and show that MEKK3(KI) attenuates mesenchyme formation. Conversely, constitutively active MEKK3 (ca-MEKK3) triggers mesenchyme production in ventricular endocardium, a tissue that does not normally undergo EMT. MEKK3-driven mesenchyme production is further substantiated by increased expression of EMT-relevant genes, including TGFbeta(2), Has2, and periostin. Furthermore, we show that MEKK3 stimulates EMT via a TGFbeta(2)-dependent mechanism. Thus, the activity of MEKK3 is sufficient for developmental EMT in the heart. This knowledge provides a basis to understand how MEKK3 integrates signaling cascades activating endocardial cushion EMT.


Assuntos
Coxins Endocárdicos/embriologia , Coxins Endocárdicos/enzimologia , Células Epiteliais/citologia , Células Epiteliais/enzimologia , MAP Quinase Quinase Quinase 3/fisiologia , Mesoderma/embriologia , Morfogênese/fisiologia , Fator de Crescimento Transformador beta2/fisiologia , Animais , Diferenciação Celular/fisiologia , Coxins Endocárdicos/citologia , Coxins Endocárdicos/metabolismo , Células Epiteliais/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , MAP Quinase Quinase Quinase 3/deficiência , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos
6.
Am J Physiol Cell Physiol ; 293(4): C1404-11, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17687003

RESUMO

Mitogen-activated protein kinase kinase kinase 3 (MEKK3) plays an essential role in embryonic angiogenesis, but its role in tumor growth and angiogenesis is unknown. In this study, we further investigated the role of MEKK3 in embryonic angiogenesis, tumor angiogenesis, and angiogenic factor production. We found that endothelial cells from Mekk3-deficient embryos showed defects in cell proliferation, apoptosis, and interactions with myocardium in the heart. We also found that MEKK3 is required for angiopoietin-1 (Ang1)-induced p38 and ERK5 activation. To study the role of MEKK3 in tumor growth and angiogenesis, we established both wild-type and Mekk3-deficient tumor-like embryonic stem cell lines and transplanted them subcutaneously into nude mice to assess their ability to grow and induce tumor angiogenesis. Mekk3-deficient tumors developed and grew similarly as control Mekk3 wild-type tumors and were also capable of inducing tumor angiogenesis. In addition, we found no differences in the production of VEGF in Mekk3-deficient tumors or embryos. Taken together, our results suggest that MEKK3 plays a critical role in Ang1/Tie2 signaling to control endothelial cell proliferation and survival and is required for endothelial cells to interact with the myocardium during early embryonic development. However, MEKK3 is not essential for tumor growth and angiogenesis.


Assuntos
Endotélio Vascular/fisiologia , MAP Quinase Quinase Quinase 3/fisiologia , Neoplasias Experimentais/metabolismo , Neovascularização Patológica/metabolismo , Angiopoietina-1/farmacologia , Animais , Aorta/metabolismo , Aorta/patologia , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Endocárdio/metabolismo , Endocárdio/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , MAP Quinase Quinase Quinase 3/deficiência , MAP Quinase Quinase Quinase 3/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fosforilação/efeitos dos fármacos , Receptor TIE-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA