Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Int Immunol ; 36(9): 439-450, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38567483

RESUMO

Transforming growth factor-ß-activated kinase 1 (TAK1) plays a pivotal role in innate and adaptive immunity. TAK1 is essential for the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB pathways downstream of diverse immune receptors, including toll-like receptors (TLRs). Upon stimulation with TLR ligands, TAK1 is activated via recruitment to the lysine 63-linked polyubiquitin chain through TAK1-binding protein 2 (TAB2) and TAB3. However, the physiological importance of TAB2 and TAB3 in macrophages is still controversial. A previous study has shown that mouse bone marrow-derived macrophages (BMDMs) isolated from mice double deficient for TAB2 and TAB3 produced tumor necrosis factor (TNF)-α and interleukin (IL)-6 to the similar levels as control wild-type BMDMs in response to TLR ligands such as lipopolysaccharide (LPS) or Pam3CSK4, indicating that TAB2 and TAB3 are dispensable for TLR signaling. In this study, we revisited the role of TAB2 and TAB3 using an improved mouse model. We observed a significant impairment in the production of pro-inflammatory cytokines and chemokine in LPS- or Pam3CSK4-treated BMDMs deficient for both TAB2 and TAB3. Double deficiency of TAB2 and TAB3 resulted in the decreased activation of NF-κB and MAPK pathways as well as the slight decrease in TAK1 activation in response to LPS or Pam3CSK4. Notably, the TLR-mediated expression of inhibitor of NF-κB (IκB)ζ was severely compromised at the protein and messenger RNA (mRNA) levels in the TAB2/TAB3 double-deficient BMDMs, thereby impeding IL-6 production. Our results suggest that TAB2 and TAB3 play a redundant and indispensable role in the TLR signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Citocinas , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Toll-Like , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Citocinas/metabolismo , Transdução de Sinais/imunologia , NF-kappa B/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/imunologia , MAP Quinase Quinase Quinases/genética , Células Cultivadas
2.
Nat Commun ; 13(1): 716, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132090

RESUMO

Mitogen-activated protein kinase (MAPK) cascades play an important role in innate immunity against various pathogens in plants and animals. However, we know very little about the importance of MAPK cascades in plant defense against viral pathogens. Here, we used a positive-strand RNA necrovirus, beet black scorch virus (BBSV), as a model to investigate the relationship between MAPK signaling and virus infection. Our findings showed that BBSV infection activates MAPK signaling, whereas viral coat protein (CP) counteracts MAPKKKα-mediated antiviral defense. CP does not directly target MAPKKKα, instead it competitively interferes with the binding of 14-3-3a to MAPKKKα in a dose-dependent manner. This results in the instability of MAPKKKα and subversion of MAPKKKα-mediated antiviral defense. Considering the conservation of 14-3-3-binding sites in the CPs of diverse plant viruses, we provide evidence that 14-3-3-MAPKKKα defense signaling module is a target of viral effectors in the ongoing arms race of defense and viral counter-defense.


Assuntos
Proteínas 14-3-3/imunologia , Proteínas do Capsídeo/imunologia , MAP Quinase Quinase Quinases/imunologia , Imunidade Vegetal/genética , Tombusviridae/patogenicidade , Proteínas 14-3-3/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Ligação Proteica , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Tombusviridae/classificação , Tombusviridae/metabolismo
3.
J Immunol ; 207(9): 2310-2324, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34551966

RESUMO

IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed macrophages or M1 macrophages with agonists for TLR-2, TLR-3, or TLR-4 significantly enhanced IFN-γ production in contrast to the similarly stimulated M0, M2a, M2b, and M2c macrophages. Similarly, M1 macrophages generated from COVID-19-infected patients' macrophages produced IFN-γ that was enhanced following LPS stimulation. The inhibition of M1 differentiation by Jak inhibitors reversed LPS-induced IFN-γ production, suggesting that differentiation with IFN-γ plays a key role in IFN-γ induction. We subsequently investigated the signaling pathway(s) responsible for TLR-4-induced IFN-γ production in M1 macrophages. Our results show that TLR-4-induced IFN-γ production is regulated by the ribosomal protein S6 kinase (p70S6K) through the activation of PI3K, the mammalian target of rapamycin complex 1/2 (mTORC1/2), and the JNK MAPK pathways. These results suggest that M1-derived IFN-γ may play a key role in inflammation that may be augmented following bacterial/viral infections. Moreover, blocking the mTORC1/2, PI3K, and JNK MAPKs in macrophages may be of potential translational significance in preventing macrophage-mediated inflammatory diseases.


Assuntos
Interferon gama/biossíntese , Macrófagos/efeitos dos fármacos , Poli I-C/farmacologia , COVID-19/imunologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/imunologia , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/imunologia , Receptor 4 Toll-Like/agonistas
4.
Mol Cell Biochem ; 476(10): 3655-3670, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34052945

RESUMO

As a response to pro-inflammatory signals mesenchymal stem cells (MSCs) secrete agents and factors leading to lymphocyte recruitment, counteracting inflammation, and stimulating immunosuppression. On a molecular level, the signalling mediator TGF-ß-activated kinase 1 (TAK1) is activated by many pro-inflammatory signals, plays a critical role in inflammation and regulates innate and adaptive immune responses as well. While the role of TAK1 as a signalling factor promoting inflammation is well documented, we also considered a role for TAK1 in anti-inflammatory actions exerted by activated MSCs. We, therefore, investigated the capacity of lipopolysaccharide (LPS)-treated murine MSCs with lentivirally modulated TAK1 expression levels to recruit lymphocytes. TAK1 downregulated by lentiviral vectors expressing TAK1 shRNA in murine MSCs interfered with the capacity of murine MSCs to chemoattract lymphocytes, indeed. Analysing a pool of 84 secreted factors we found that among 26 secreted cytokines/factors TAK1 regulated expression of one cytokine in LPS-activated murine MSCs in particular: interleukin-6 (IL-6). IL-6 in LPS-treated MSCs was responsible for lymphocyte recruitment as substantiated by neutralizing antibodies. Our studies, therefore, suggest that in LPS-treated murine MSCs the inflammatory signalling mediator TAK1 may exert anti-inflammatory properties via IL-6.


Assuntos
Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Linfócitos/imunologia , MAP Quinase Quinase Quinases/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Animais , Células HEK293 , Humanos , Interleucina-6/genética , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos
5.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431678

RESUMO

Nuclear factor κB (NF-κB)-mediated signaling pathway plays a crucial role in the regulation of inflammatory process, innate and adaptive immune responses. The hyperactivation of inflammatory response causes host cell death, tissue damage, and autoinflammatory disorders, such as sepsis and inflammatory bowel disease. However, how these processes are precisely controlled is still poorly understood. In this study, we demonstrated that ankyrin repeat and suppressor of cytokine signaling box containing 1 (ASB1) is involved in the positive regulation of inflammatory responses by enhancing the stability of TAB2 and its downstream signaling pathways, including NF-κB and mitogen-activated protein kinase pathways. Mechanistically, unlike other members of the ASB family that induce ubiquitination-mediated degradation of their target proteins, ASB1 associates with TAB2 to inhibit K48-linked polyubiquitination and thereby promote the stability of TAB2 upon stimulation of cytokines and lipopolysaccharide (LPS), which indicates that ASB1 plays a noncanonical role to further stabilize the target protein rather than induce its degradation. The deficiency of Asb1 protects mice from Salmonella typhimurium- or LPS-induced septic shock and increases the survival of mice. Moreover, Asb1-deficient mice exhibited less severe colitis and intestinal inflammation induced by dextran sodium sulfate. Given the crucial role of ASB proteins in inflammatory signaling pathways, our study offers insights into the immune regulation in pathogen infection and inflammatory disorders with therapeutic implications.


Assuntos
Colite/imunologia , NF-kappa B/imunologia , Processamento de Proteína Pós-Traducional , Infecções por Salmonella/imunologia , Choque Séptico/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Colite/induzido quimicamente , Colite/genética , Colite/mortalidade , Sulfato de Dextrana , Genes Reporter , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos , Luciferases/genética , Luciferases/imunologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Ligação Proteica , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/mortalidade , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Choque Séptico/induzido quimicamente , Choque Séptico/genética , Choque Séptico/mortalidade , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Análise de Sobrevida , Ubiquitinação
6.
J Allergy Clin Immunol ; 148(1): 209-224.e9, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33309741

RESUMO

BACKGROUND: Type 2 immunity can be modulated by regulatory T (Treg) cell activity. It has been suggested that the deubiquitinase cylindromatosis (CYLD) plays a role in the development or function of Treg cells, implying that it could be important for normal protective immunity, where type 2 responses are prevalent. OBJECTIVE: We sought to investigate the role of CYLD in Treg cell function and TH2 cell immune responses under steady-state conditions and during helminth infection. METHODS: Foxp3-restricted CYLD conditional knockout (KO) mice were examined in mouse models of allergen-induced airway inflammation and Nippostrongylus brasiliensis infection. We performed multiplex magnetic bead assays, flow cytometry, and quantitative PCR to understand how a lack of CYLD affected cytokine production, homing, and suppression in Treg cells. Target genes regulated by CYLD were identified and validated by microarray analysis, coimmunoprecipitation, short hairpin RNA knockdown, and transfection assays. RESULTS: Treg cell-specific CYLD KO mice showed severe spontaneous pulmonary inflammation with increased migration of Treg cells into the lung. CYLD-deficient Treg cells furthermore produced high levels of IL-4 and failed to suppress allergen-induced lung inflammation. Supporting this, the conditional KO mice displayed enhanced protection against N brasiliensis infection by contributing to type 2 immunity. Treg cell conversion into IL-4-producing cells was due to augmented mitogen-activated protein kinase and nuclear factor κB signaling. Moreover, Scinderin, a member of the actin-binding gelsolin family, was highly upregulated in CYLD-deficient Treg cells, and controlled IL-4 production through forming complexes with mitogen-activated protein kinase kinase/extracellular receptor kinase. Correspondingly, both excessive IL-4 production in vivo and the protective role of CYLD-deficient Treg cells against N brasiliensis were reversed by Scinderin ablation. CONCLUSIONS: Our findings indicate that CYLD controls type 2 immune responses by regulating Treg cell conversion into TH2 cell-like effector cells, which potentiates parasite resistance.


Assuntos
Plasticidade Celular/imunologia , Enzima Desubiquitinante CYLD/imunologia , Helmintíase/imunologia , Helmintos/imunologia , Imunidade/imunologia , Linfócitos T Reguladores/imunologia , Animais , Inflamação/imunologia , Interleucina-4/imunologia , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/imunologia , Nippostrongylus/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Regulação para Cima/imunologia
7.
J Clin Invest ; 130(9): 4771-4790, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573499

RESUMO

NF-κB transcription factors, driven by the IRAK/IKK cascade, confer treatment resistance in pancreatic ductal adenocarcinoma (PDAC), a cancer characterized by near-universal KRAS mutation. Through reverse-phase protein array and RNA sequencing we discovered that IRAK4 also contributes substantially to MAPK activation in KRAS-mutant PDAC. IRAK4 ablation completely blocked RAS-induced transformation of human and murine cells. Mechanistically, expression of mutant KRAS stimulated an inflammatory, autocrine IL-1ß signaling loop that activated IRAK4 and the MAPK pathway. Downstream of IRAK4, we uncovered TPL2 (also known as MAP3K8 or COT) as the essential kinase that propels both MAPK and NF-κB cascades. Inhibition of TPL2 blocked both MAPK and NF-κB signaling, and suppressed KRAS-mutant cell growth. To counter chemotherapy-induced genotoxic stress, PDAC cells upregulated TLR9, which activated prosurvival IRAK4/TPL2 signaling. Accordingly, a TPL2 inhibitor synergized with chemotherapy to curb PDAC growth in vivo. Finally, from TCGA we characterized 2 MAP3K8 point mutations that hyperactivate MAPK and NF-κB cascades by impeding TPL2 protein degradation. Cancer cell lines naturally harboring these MAP3K8 mutations are strikingly sensitive to TPL2 inhibition, underscoring the need to identify these potentially targetable mutations in patients. Overall, our study establishes TPL2 as a promising therapeutic target in RAS- and MAP3K8-mutant cancers and strongly prompts development of TPL2 inhibitors for preclinical and clinical studies.


Assuntos
MAP Quinase Quinase Quinases/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Neoplasias/imunologia , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Proteínas Proto-Oncogênicas/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/imunologia , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
J Agric Food Chem ; 68(22): 6132-6141, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32383875

RESUMO

Excessive bone resorption, because of increased osteoclastic activity, is a key underlying cause of osteolytic disorders. Lipopolysaccharide (LPS) is a potent factor to stimulate osteoclastic activity by inducing inflammatory stress. An egg-derived tripeptide IRW (Ile-Arg-Trp) was previously shown to exert anti-inflammatory activity. The overall objective of this study was to investigate the effect of IRW on inhibiting LPS-induced osteoclastogenesis and inflammatory bone resorption in the mouse macrophage RAW 264.7 cells. IRW (25 and 50 µM) significantly inhibited the LPS-induced osteoclast formation and resorptive activity. Meanwhile, IRW significantly suppressed the LPS-induced expression of TNF-α, IL-6, iNOS, COXII, NO, and PGE2. Furthermore, IRW regulated a group of osteoclastogenesis-associated factors (TRAF6, c-Fos, NFATc1, and cathepsin K) because of the inhibition of LPS-activated NF-κB and MAPK pathways. In conclusion, our study suggested the ability of IRW to prevent LPS-induced inflammatory bone resorption activity via the inhibition of inflammatory responses and the activation of osteoclastogenesis-associated signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Ovos/análise , Macrófagos/efeitos dos fármacos , NF-kappa B/imunologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Galinhas , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Macrófagos/imunologia , Camundongos , NF-kappa B/genética , Osteoclastos/citologia , Osteoclastos/imunologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
9.
J Biol Chem ; 295(6): 1565-1574, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914413

RESUMO

Interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-4, as well as transforming growth factor ß-activated kinase 1 (TAK1), are protein kinases essential for transducing inflammatory signals from interleukin receptors. IRAK family proteins and TAK1 have high sequence identity within the ATP-binding pocket, limiting the development of highly selective IRAK-1/4 or TAK1 inhibitors. Beyond kinase activity, IRAKs and TAK1 act as molecular scaffolds along with other signaling proteins, complicating the interpretation of experiments involving knockin or knockout approaches. In contrast, pharmacological manipulation offers the promise of targeting catalysis-mediated signaling without grossly disrupting the cellular architecture. Recently, we reported the discovery of takinib, a potent and highly selective TAK1 inhibitor that has only marginal activity against IRAK-4. On the basis of the TAK1-takinib complex structure and the structure of IRAK-1/4, here we defined critical contact sites of the takinib scaffold within the nucleotide-binding sites of each respective kinase. Kinase activity testing of takinib analogs against IRAK-4 identified a highly potent IRAK-4 inhibitor (HS-243). In a kinome-wide screen of 468 protein kinases, HS-243 had exquisite selectivity toward both IRAK-1 (IC50 = 24 nm) and IRAK-4 (IC50 = 20 nm), with only minimal TAK1-inhibiting activity (IC50 = 0.5 µm). Using HS-243 and takinib, we evaluated the consequences of cytokine/chemokine responses after selective inhibition of IRAK-1/4 or TAK1 in response to lipopolysaccharide challenge in human rheumatoid arthritis fibroblast-like synoviocytes. Our results indicate that HS-243 specifically inhibits intracellular IRAKs without TAK1 inhibition and that these kinases have distinct, nonredundant signaling roles.


Assuntos
Benzamidas/farmacologia , Benzimidazóis/farmacologia , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Humanos , Quinases Associadas a Receptores de Interleucina-1/imunologia , Lipopolissacarídeos/imunologia , MAP Quinase Quinase Quinases/imunologia , Modelos Moleculares , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia , Células THP-1
10.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869420

RESUMO

RIPK1 kinase activity has been shown to be essential to driving pyroptosis, apoptosis, and necroptosis. However, here we show a kinase activity-independent role for RIPK1 in these processes using a model of TLR priming in a TAK1-deficient setting to mimic pathogen-induced priming and inhibition. TLR priming of TAK1-deficient macrophages triggered inflammasome activation, including the activation of caspase-8 and gasdermin D, and the recruitment of NLRP3 and ASC into a novel RIPK1 kinase activity-independent cell death complex to drive pyroptosis and apoptosis. Furthermore, we found fully functional RIPK1 kinase activity-independent necroptosis driven by the RIPK3-MLKL pathway in TAK1-deficient macrophages. In vivo, TAK1 inactivation resulted in RIPK3-caspase-8 signaling axis-driven myeloid proliferation and a severe sepsis-like syndrome. Overall, our study highlights a previously unknown mechanism for RIPK1 kinase activity-independent inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) that could be targeted for treatment of TAK1-associated myeloid proliferation and sepsis.


Assuntos
Apoptose/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , MAP Quinase Quinase Quinases/imunologia , Necroptose/imunologia , Piroptose/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Caspase 8/imunologia , Feminino , Inflamassomos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia
11.
J Clin Invest ; 130(3): 1315-1329, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846439

RESUMO

Acute graft-versus-host disease (GVHD) can affect the central nervous system (CNS). The role of microglia in CNS-GVHD remains undefined. In agreement with microglia activation, we found that profound morphological changes and MHC-II and CD80 upregulation occurred upon GVHD induction. RNA sequencing-based analysis of purified microglia obtained from mice with CNS-GVHD revealed TNF upregulation. Selective TNF gene deletion in microglia of Cx3cr1creER Tnffl/- mice reduced MHC-II expression and decreased CNS T cell infiltrates and VCAM-1+ endothelial cells. GVHD increased microglia TGF-ß-activated kinase-1 (TAK1) activation and NF-κB/p38 MAPK signaling. Selective Tak1 deletion in microglia using Cx3cr1creER Tak1fl/fl mice resulted in reduced TNF production and microglial MHC-II and improved neurocognitive activity. Pharmacological TAK1 inhibition reduced TNF production and MHC-II expression by microglia, Th1 and Th17 T cell infiltrates, and VCAM-1+ endothelial cells and improved neurocognitive activity, without blocking graft-versus-leukemia effects. Consistent with these findings in mice, we observed increased activation and TNF production of microglia in the CNS of GVHD patients. In summary, we prove a role for microglia in CNS-GVHD, identify the TAK1/TNF/MHC-II axis as a mediator of CNS-GVHD, and provide a TAK1 inhibitor-based approach against GVHD-induced neurotoxicity.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Doença Enxerto-Hospedeiro/imunologia , Microglia/imunologia , Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima/imunologia , Doença Aguda , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microglia/patologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
12.
Trends Immunol ; 40(9): 799-808, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31401161

RESUMO

Mammalian TPL-2 kinase (MAP3K8) mediates Toll-like receptor activation of ERK1/2 and p38α MAP kinases and is critical for regulating immune responses to pathogens. TPL-2 also has an important adaptor function, maintaining stability of associated ABIN-2 ubiquitin-binding protein. Consequently, phenotypes detected in Map3k8-/- mice can be caused by lack of TPL-2, ABIN-2, or both proteins. Recent studies show that increased inflammation of Map3k8-/- mice in allergic airway inflammation and colitis results from reduced ABIN-2 signaling, rather than blocked TPL-2 signaling. However, Map3k8-/- mice have been employed extensively to evaluate the potential of TPL-2 as an anti-inflammatory drug target. We posit that Map3k8D270A/D270A mice, expressing catalytically inactive TPL-2 and physiologic ABIN-2, should be used to evaluate the potential effects of TPL-2 inhibitors in disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Inflamação/imunologia , MAP Quinase Quinase Quinases/imunologia , Proteínas Proto-Oncogênicas/imunologia , Transdução de Sinais/imunologia , Animais , Humanos , MAP Quinase Quinase Quinases/deficiência , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/deficiência
13.
J Immunol ; 203(4): 783-788, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243089

RESUMO

TGF-ß-activated kinase 1 (TAK1) is known to play vital roles for innate and adaptive immunity; however, little is known about its potential role in limiting biological responses such as inflammation. In this study, we report that macrophage TAK1 participates in negatively regulating inflammation by restraining proinflammatory cell death. Macrophages from TAK1-deficient mice underwent cell death in response to LPS and poly(I:C), which took place in a manner dependent on TLR/TRIF-induced active Caspase8-mediated cleavage of gasdermin D, known as an executioner of pyroptosis. Likewise, TNF-α induced Caspase8-dependent gasdermin D processing following cell death in TAK1-deficient macrophages. Importantly, we demonstrated that this type of proinflammatory macrophage death is linked to susceptibility to septic shock in mice lacking TAK1 in macrophages in a TNF-α-independent fashion. Taken together, our data revealed that TAK1 acts as a signaling checkpoint to protect macrophages from unique proinflammatory cell death, ensuring the maintenance of innate immune homeostasis.


Assuntos
Inflamação/imunologia , MAP Quinase Quinase Quinases/imunologia , Macrófagos/imunologia , Animais , Morte Celular/imunologia , Imunidade Inata/fisiologia , Inflamação/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Nat Microbiol ; 4(3): 429-437, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617349

RESUMO

Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV), listed in the World Health Organization Prioritized Pathogens, is an emerging phlebovirus with a high fatality1-4. Owing to the lack of therapies and vaccines5,6, there is a pressing need to understand SFTSV pathogenesis. SFSTV non-structural protein (NSs) has been shown to block type I interferon induction7-11 and facilitate disease progression12,13. Here, we report that SFTSV-NSs targets the tumour progression locus 2 (TPL2)-A20-binding inhibitor of NF-κB activation 2 (ABIN2)-p105 complex to induce the expression of interleukin-10 (IL-10) for viral pathogenesis. Using a combination of reverse genetics, a TPL2 kinase inhibitor and Tpl2-/- mice showed that NSs interacted with ABIN2 and promoted TPL2 complex formation and signalling activity, resulting in the marked upregulation of Il10 expression. Whereas SFTSV infection of wild-type mice led to rapid weight loss and death, Tpl2-/- mice or Il10-/- mice survived an infection. Furthermore, SFTSV-NSs P102A and SFTSV-NSs K211R that lost the ability to induce TPL2 signalling and IL-10 production showed drastically reduced pathogenesis. Remarkably, the exogenous administration of recombinant IL-10 effectively rescued the attenuated pathogenic activity of SFTSV-NSs P102A, resulting in a lethal infection. Our study demonstrates that SFTSV-NSs targets the TPL2 signalling pathway to induce immune-suppressive IL-10 cytokine production as a means to dampen the host defence and promote viral pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno , MAP Quinase Quinase Quinases/metabolismo , Phlebovirus/patogenicidade , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/patologia , Feminino , Células HEK293 , Células HeLa , Humanos , Interleucina-10/administração & dosagem , Interleucina-10/genética , MAP Quinase Quinase Quinases/imunologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Phlebovirus/efeitos dos fármacos , Proteínas Proto-Oncogênicas/imunologia , Células RAW 264.7 , Genética Reversa
15.
Proc Natl Acad Sci U S A ; 115(52): E12313-E12322, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30541887

RESUMO

Dendritic cells (DCs) play pivotal roles in maintaining intestinal homeostasis, but how the DCs regulate diverse immune networks on homeostasis breakdown remains largely unknown. Here, we report that, in response to epithelial barrier disruption, colonic DCs regulate the differentiation of type 1 regulatory T (Tr1) cells through p38α-dependent IL-27 production to initiate an effective immune response. Deletion of p38α in DCs, but not in T cells, led to increased Tr1 and protected mice from dextran sodium sulfate-induced acute colitis and chronic colitis-associated colorectal cancer. We show that higher levels of IL-27 in p38α-deficient colonic cDC1s, but not cDC2s, were responsible for the increase of Tr1 cells. Moreover, p38α-dependent IL-27 enhanced IL-22 secretion from intestinal group 3 innate lymphoid cells and protected epithelial barrier function. In p38α-deficient DCs, the TAK1-MKK4/7-JNK-c-Jun axis was hyperactivated, leading to high IL-27 levels, and inhibition of the JNK-c-Jun axis suppressed IL-27 expression. ChIP assay revealed direct binding of c-Jun to the promoter of Il27p28, which was further enhanced in p38α-deficient DCs. In summary, here we identify a key role for p38α signaling in DCs in regulating intestinal inflammatory response and tumorigenesis, and our finding may provide targets for the treatment of inflammatory intestinal diseases.


Assuntos
Colite/enzimologia , Colo/imunologia , Neoplasias Colorretais/enzimologia , Células Dendríticas/enzimologia , Proteína Quinase 14 Ativada por Mitógeno/imunologia , Animais , Carcinogênese , Colite/genética , Colite/imunologia , Colite/patologia , Colo/enzimologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Células Dendríticas/imunologia , Feminino , Humanos , Interleucina-27/genética , Interleucina-27/imunologia , Intestinos/imunologia , Intestinos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 14 Ativada por Mitógeno/genética , Linfócitos T Reguladores/imunologia
16.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463908

RESUMO

Dendritic cells (DCs) constantly sample peripheral tissues for antigens, which are subsequently ingested to derive peptides for presentation to T cells in lymph nodes. To do so, DCs have to traverse many different tissues with varying oxygen tensions. Additionally, DCs are often exposed to low oxygen tensions in tumors, where vascularization is lacking, as well as in inflammatory foci, where oxygen is rapidly consumed by inflammatory cells during the respiratory burst. DCs respond to oxygen levels to tailor immune responses to such low-oxygen environments. In the present study, we identified a mechanism of hypoxia-mediated potentiation of release of tumor necrosis factor α (TNF-α), a pro-inflammatory cytokine with important roles in both anti-cancer immunity and autoimmune disease. We show in human monocyte-derived DCs (moDCs) that this potentiation is controlled exclusively via the p38/mitogen-activated protein kinase (MAPK) pathway. We identified MAPK kinase kinase 8 (MAP3K8) as a target gene of hypoxia-induced factor (HIF), a transcription factor controlled by oxygen tension, upstream of the p38/MAPK pathway. Hypoxia increased expression of MAP3K8 concomitant with the potentiation of TNF-α secretion. This potentiation was no longer observed upon siRNA silencing of MAP3K8 or with a small molecule inhibitor of this kinase, and this also decreased p38/MAPK phosphorylation. However, expression of DC maturation markers CD83, CD86, and HLA-DR were not changed by hypoxia. Since DCs play an important role in controlling T-cell activation and differentiation, our results provide novel insight in understanding T-cell responses in inflammation, cancer, autoimmune disease and other diseases where hypoxia is involved.


Assuntos
Células Dendríticas/imunologia , Hipóxia/imunologia , Inflamação/imunologia , MAP Quinase Quinase Quinases/imunologia , Proteínas Proto-Oncogênicas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Hipóxia Celular , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Hipóxia/genética , Inflamação/genética , MAP Quinase Quinase Quinases/genética , Monócitos/citologia , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor 4 Toll-Like/imunologia , Regulação para Cima
17.
J Exp Med ; 215(11): 2737-2747, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30337469

RESUMO

TPL-2 MAP 3-kinase promotes inflammation in numerous mouse disease models and is an attractive anti-inflammatory drug target. However, TPL-2-deficient (Map3k8 -/-) mice develop exacerbated allergic airway inflammation to house dust mite (HDM) compared with wild type controls. Here, we show that Map3k8D270A/D270A mice expressing kinase dead TPL-2 had an unaltered response to HDM, indicating that the severe airway inflammation observed in Map3k8 -/- mice is not due to blockade of TPL-2 signaling and rather reflects a TPL-2 adaptor function. Severe allergic inflammation in TPL-2-deficient mice was likely due to reduced levels of ABIN-2 (TNIP2), whose stability depends on TPL-2 expression. Tnip2E256K knock-in mutation, which reduced ABIN-2 binding to A20, augmented the HDM-induced airway inflammation, but did not affect TPL-2 expression or signaling. These results identify ABIN-2 as a novel negative regulator of allergic airway responses and importantly indicate that TPL-2 inhibitors would not have unwanted allergic comorbidities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Hipersensibilidade/imunologia , MAP Quinase Quinase Quinases/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Proto-Oncogênicas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Hipersensibilidade/genética , Hipersensibilidade/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia
18.
Int J Mol Sci ; 19(7)2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29933606

RESUMO

8-Hydroxydaidzein (8-HD) is a daidzein metabolite isolated from soybeans. This compound has been studied for its anti-proliferation, depigmentation, and antioxidant activities. However, the anti-inflammatory activities of 8-HD are not well-understood. Through its antioxidant effects in ABTS and DPPH assays, 8-HD reduces the production of sodium nitroprusside (SNP)-induced radical oxygen species (ROS). By triggering various Toll-like receptors (TLRs), 8-HD suppresses the inflammatory mediator nitric oxide (NO) without cytotoxicity. We examined the regulatory mechanism of 8-HD in lipopolysaccharide (LPS)-induced conditions. We found that 8-HD diminishes inflammatory gene expression (e.g., inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-α) by regulating the transcriptional activities of nuclear factor (NF)-κB and activator protein 1 (AP-1). To find the potential targets of 8-HD, signaling pathways were investigated by immunoblotting analyses. These analyses revealed that 8-HD inhibits the activation of TAK1 and that phosphorylated levels of downstream molecules decrease in sequence. Together, our results demonstrate the antioxidant and anti-inflammatory actions of 8-HD and suggest its potential use in cosmetics or anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Isoflavonas/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Isoflavonas/isolamento & purificação , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/imunologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Células RAW 264.7 , Transdução de Sinais , Glycine max/química , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
19.
BMC Cancer ; 18(1): 663, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914415

RESUMO

BACKGROUND: Deletions of 6q15-16.1 are recurrently found in pediatric T-cell acute lymphoblastic leukemia (T-ALL). This chromosomal region includes the mitogen-activated protein kinase kinase kinase 7 (MAP3K7) gene which has a crucial role in innate immune signaling and was observed to be functionally and prognostically relevant in different cancer entities. Therefore, we correlated the presence of MAP3K7 deletions with clinical parameters in a cohort of 327 pediatric T-ALL patients and investigated the function of MAP3K7 in the T-ALL cell lines CCRF-CEM, Jurkat and MOLT-4. METHODS: MAP3K7 deletions were detected by multiplex ligation-dependent probe amplification (MLPA). T-ALL cell lines were transduced with adeno-associated virus (AAV) vectors expressing anti-MAP3K7 shRNA or a non-silencing shRNA together with a GFP reporter. Transduction efficiency was measured by flow cytometry and depletion efficiency by RT-PCR and Western blots. Induction of apoptosis was measured by flow cytometry after staining with PE-conjugated Annexin V. In order to assess the contribution of NF-κB signaling to the effects of MAP3K7 depletion, cells were treated with TNF-α and cell lysates analyzed for components of the NF-κB pathway by Western blotting and for expression of the NF-κB target genes BCL2, CMYC, FAS, PTEN and TNF-α by RT-PCR. RESULTS: MAP3K7 is deleted in approximately 10% and point-mutated in approximately 1% of children with T-ALL. In 32 of 33 leukemias the deletion of MAP3K7 also included the adjacent CASP8AP2 gene. MAP3K7 deletions were associated with the occurrence of SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and outcome. Depletion of MAP3K7 expression in T-ALL cell lines by shRNAs slowed down proliferation and induced apoptosis, but neither changed protein levels of components of NF-κB signaling nor NF-κB target gene expression after stimulation with TNF-α. CONCLUSIONS: This study revealed that the recurrent deletion of MAP3K7/CASP8AP2 is associated with SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and risk of relapse. Homozygous deletions of MAP3K7 were not observed, and efficient depletion of MAP3K7 interfered with viability of T-ALL cells, indicating that a residual expression of MAP3K7 is indispensable for T-lymphoblasts.


Assuntos
MAP Quinase Quinase Quinases/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células/fisiologia , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Estimativa de Kaplan-Meier , MAP Quinase Quinase Quinases/imunologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , NF-kappa B/metabolismo , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Modelos de Riscos Proporcionais , Resultado do Tratamento
20.
J Clin Invest ; 128(5): 2042-2047, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29629899

RESUMO

Mice homozygous for the Tyr208Asn amino acid substitution in the carboxy terminus of Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1) (referred to as Ptpn6spin mice) spontaneously develop a severe inflammatory disease resembling neutrophilic dermatosis in humans. Disease in Ptpn6spin mice is characterized by persistent footpad swelling and suppurative inflammation. Recently, in addition to IL-1α and IL-1R signaling, we demonstrated a pivotal role for several kinases such as SYK, RIPK1, and TAK1 in promoting inflammatory disease in Ptpn6spin mice. In order to identify new kinases involved in SHP-1-mediated inflammation, we took a genetic approach and discovered apoptosis signal-regulating kinases 1 and 2 (ASK1 and ASK2) as novel kinases regulating Ptpn6-mediated footpad inflammation. Double deletion of ASK1 and ASK2 abrogated cutaneous inflammatory disease in Ptpn6spin mice. This double deletion further rescued the splenomegaly and lymphomegaly caused by excessive neutrophil infiltration in Ptpn6spin mice. Mechanistically, ASK regulates Ptpn6spin-mediated disease by controlling proinflammatory signaling in the neutrophils. Collectively, the present study identifies SHP-1 and ASK signaling crosstalk as a critical regulator of IL-1α-driven inflammation and opens future avenues for finding novel drug targets to treat neutrophilic dermatosis in humans.


Assuntos
MAP Quinase Quinase Quinase 5/imunologia , MAP Quinase Quinase Quinases/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Síndrome de Sweet/imunologia , Animais , Modelos Animais de Doenças , Inflamação/enzimologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Transdução de Sinais/genética , Síndrome de Sweet/enzimologia , Síndrome de Sweet/genética , Síndrome de Sweet/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA