Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34470822

RESUMO

The RAF/MEK/ERK pathway is central to the control of cell physiology, and its dysregulation is associated with many cancers. Accordingly, the proteins constituting this pathway, including MEK1/2 (MEK), have been subject to intense drug discovery and development efforts. Allosteric MEK inhibitors (MEKi) exert complex effects on RAF/MEK/ERK pathway signaling and are employed clinically in combination with BRAF inhibitors in malignant melanoma. Although mechanisms and structures of MEKi bound to MEK have been described for many of these compounds, recent studies suggest that RAF/MEK complexes, rather than free MEK, should be evaluated as the target of MEKi. Here, we describe structural and biochemical studies of eight structurally diverse, clinical-stage MEKi to better understand their mechanism of action on BRAF/MEK complexes. We find that all of these agents bind in the MEK allosteric site in BRAF/MEK complexes, in which they stabilize the MEK activation loop in a conformation that is resistant to BRAF-mediated dual phosphorylation required for full activation of MEK. We also show that allosteric MEK inhibitors act most potently on BRAF/MEK complexes rather than on free active MEK, further supporting the notion that a BRAF/MEK complex is the physiologically relevant pharmacologic target for this class of compounds. Our findings provide a conceptual and structural framework for rational development of RAF-selective MEK inhibitors as an avenue to more effective and better-tolerated agents targeting this pathway.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Regulação Alostérica , Ativação Enzimática , Estabilidade Enzimática , Humanos , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Fosforilação , Conformação Proteica , Transdução de Sinais
2.
Nat Commun ; 12(1): 1353, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649309

RESUMO

Cells are under threat of osmotic perturbation; cell volume maintenance is critical in cerebral edema, inflammation and aging, in which prominent changes in intracellular or extracellular osmolality emerge. After osmotic stress-enforced cell swelling or shrinkage, the cells regulate intracellular osmolality to recover their volume. However, the mechanisms recognizing osmotic stress remain obscured. We previously clarified that apoptosis signal-regulating kinase 3 (ASK3) bidirectionally responds to osmotic stress and regulates cell volume recovery. Here, we show that macromolecular crowding induces liquid-demixing condensates of ASK3 under hyperosmotic stress, which transduce osmosensing signal into ASK3 inactivation. A genome-wide small interfering RNA (siRNA) screen identifies an ASK3 inactivation regulator, nicotinamide phosphoribosyltransferase (NAMPT), related to poly(ADP-ribose) signaling. Furthermore, we clarify that poly(ADP-ribose) keeps ASK3 condensates in the liquid phase and enables ASK3 to become inactivated under hyperosmotic stress. Our findings demonstrate that cells rationally incorporate physicochemical phase separation into their osmosensing systems.


Assuntos
Lubrificação , Pressão Osmótica , Poli Adenosina Difosfato Ribose/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Citocinas/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/ultraestrutura , Modelos Moleculares , Mutação/genética , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Domínios Proteicos
3.
Org Biomol Chem ; 19(6): 1412-1425, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33501482

RESUMO

TAK1 is a serine/threonine kinase which is involved in the moderation of cell survival and death via the TNFα signalling pathway. It is also implicated in a range of cancer and anti-inflammatory diseases. Drug discovery efforts on this target have focused on both traditional reversible ATP-binding site inhibitors and increasingly popular irreversible covalent binding inhibitors. Irreversible inhibitors can offer benefits in terms of potency, selectivity and PK/PD meaning they are increasingly pursued where the strategy exists. TAK1 kinase differs from the better-known kinase EGFR in that the reactive cysteine nucleophile targeted by electrophilic inhibitors is located towards the back of the ATP binding site, not at its mouth. While a wealth of structural and computational effort has been spent exploring EGFR, only limited studies on TAK1 have been reported. In this work we report the first QM/MM study on TAK1 aiming to better understand aspects of covalent adduct formation. Our goal is to identify the general base in the catalytic reaction, whether the process proceeds via a stepwise or concerted pathway, and how the highly flexible G-loop and A-loop affect the catalytic cysteine located nearby.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Domínio Catalítico , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/química , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Teoria Quântica
4.
Open Biol ; 10(9): 200099, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873150

RESUMO

Aberrant tumour necrosis factor (TNF) signalling is a hallmark of many inflammatory diseases including rheumatoid arthritis (RA), irritable bowel disease and lupus. Maladaptive TNF signalling can lead to hyper active downstream nuclear factor (NF)-κß signalling in turn amplifying a cell's inflammatory response and exacerbating disease. Within the TNF intracellular inflammatory signalling cascade, transforming growth factor-ß-activated kinase 1 (TAK1) has been shown to play a critical role in mediating signal transduction and downstream NF-κß activation. Owing to its role in TNF inflammatory signalling, TAK1 has become a potential therapeutic target for the treatment of inflammatory diseases such as RA. This review highlights the current development of targeting the TNF-TAK1 signalling axis as a novel therapeutic strategy for the treatment of inflammatory diseases.


Assuntos
Inflamação/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Mediadores da Inflamação/metabolismo , MAP Quinase Quinase Quinases/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores do Fator de Necrose Tumoral/química , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/química
5.
Biomed Pharmacother ; 126: 110084, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32171166

RESUMO

Sepsis is a main reason for death in intensive care units, inflammation is closely related to sepsis. Anti-inflammation plays an important role in treating of sepsis. ZT01 is a triptolide derivative with strong anti-inflammatory activity and low toxicity. The purpose of this study is to evaluate the anti-inflammatory activity of ZT01 under the sepsis condition and explore the underlying molecular mechanisms. Two in vivo model of sepsis, caecal ligation and puncture or intraperitoneal injection of LPS in C57BL/6, were used to evaluate the therapeutic effects of ZT01. In vitro, the anti-inflammatory properties of ZT01 were assessed in IFN-γ or LPS-induced macrophages by ELISA, RT-PCR, western blotting and co-immunoprecipitation. Macrophages were used to investigate the polarization phenotype by flow cytometry. The results showed, ZT01 significantly attenuated inflammatory response of sepsis in serum or lung tissue by inhibiting production of pro-inflammatory factors and improved the survival rate of septic mice in vivo. In cultured macrophages, ZT01 not only decreased the levels of TNF-α and IL-6 but also prevented the TKA1-TAB1 complex formation, thereby inhibiting the phosphorylation expression of MKK4 and JNK, which were all stimulated by LPS. Moreover, ZT01 inhibited the LPS-induced polarization of macrophages into pro-inflammatory phenotype. Adoptive transfer ZT01 pretreated bone marrow-derived macrophages obviously reduced the pro-inflammatory factors in mice after LPS challenge. Our findings suggested that ZT01 exhibited anti-inflammation activity via preventing the pro-inflammatory phenotype of macrophages by blocking the formation of the TAK1-TAB1 complex and subsequently phosphorylation of MKK4 and JNK.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fenantrenos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Anti-Inflamatórios/química , Células Cultivadas , Citocinas/metabolismo , Diterpenos/química , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , MAP Quinase Quinase Quinases/química , Macrófagos/metabolismo , Masculino , Camundongos , Modelos Biológicos , Modelos Moleculares , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Fenantrenos/química , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/química , Células RAW 264.7 , Sepse/tratamento farmacológico , Sepse/etiologia , Sepse/metabolismo , Sepse/mortalidade , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
J Biol Chem ; 293(35): 13553-13565, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29980598

RESUMO

Mixed-lineage kinase 3 (MLK3; also known as MAP3K11) is a Ser/Thr protein kinase widely expressed in normal and cancerous tissues, including brain, lung, liver, heart, and skeletal muscle tissues. Its Src homology 3 (SH3) domain has been implicated in MLK3 autoinhibition and interactions with other proteins, including those from viruses. The MLK3 SH3 domain contains a six-amino-acid insert corresponding to the n-Src insert, suggesting that MLK3 may bind additional peptides. Here, affinity selection of a phage-displayed combinatorial peptide library for MLK3's SH3 domain yielded a 13-mer peptide, designated "MLK3 SH3-interacting peptide" (MIP). Unlike most SH3 domain peptide ligands, MIP contained a single proline. The 1.2-Å crystal structure of the MIP-bound SH3 domain revealed that the peptide adopts a ß-hairpin shape, and comparison with a 1.5-Å apo SH3 domain structure disclosed that the n-Src loop in SH3 undergoes an MIP-induced conformational change. A 1.5-Å structure of the MLK3 SH3 domain bound to a canonical proline-rich peptide from hepatitis C virus nonstructural 5A (NS5A) protein revealed that it and MIP bind the SH3 domain at two distinct sites, but biophysical analyses suggested that the two peptides compete with each other for SH3 binding. Moreover, SH3 domains of MLK1 and MLK4, but not MLK2, also bound MIP, suggesting that the MLK1-4 family may be differentially regulated through their SH3 domains. In summary, we have identified two distinct peptide-binding sites in the SH3 domain of MLK3, providing critical insights into mechanisms of ligand binding by the MLK family of kinases.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , MAP Quinase Quinase Quinases/química , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/química , Ligação Proteica , Domínios de Homologia de src , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
7.
Nat Med ; 24(2): 213-223, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291351

RESUMO

Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. Lack of effective pharmacotherapies for NASH is largely attributable to an incomplete understanding of its pathogenesis. The deubiquitinase cylindromatosis (CYLD) plays key roles in inflammation and cancer. Here we identified CYLD as a suppressor of NASH in mice and in monkeys. CYLD is progressively degraded upon interaction with the E3 ligase TRIM47 in proportion to NASH severity. We observed that overexpression of Cyld in hepatocytes concomitantly inhibits lipid accumulation, insulin resistance, inflammation and fibrosis in mice with NASH induced in an experimental setting. Mechanistically, CYLD interacts directly with the kinase TAK1 and removes its K63-linked polyubiquitin chain, which blocks downstream activation of the JNK-p38 cascades. Notably, reconstitution of hepatic CYLD expression effectively reverses disease progression in mice with dietary or genetically induced NASH and in high-fat diet-fed monkeys predisposed to metabolic syndrome. Collectively, our findings demonstrate that CYLD mitigates NASH severity and identify the CYLD-TAK1 axis as a promising therapeutic target for management of the disease.


Assuntos
Cisteína Endopeptidases/genética , Inflamação/genética , MAP Quinase Quinase Quinases/genética , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Proteínas de Transporte/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Enzima Desubiquitinante CYLD , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Haplorrinos , Humanos , Inflamação/fisiopatologia , Fígado/metabolismo , Fígado/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Proteínas de Neoplasias/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Proteínas Nucleares/genética , Ligação Proteica/genética , Índice de Gravidade de Doença , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
8.
Pharmacol Res ; 129: 188-193, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29183769

RESUMO

Tumor progression locus 2 (TPL2, also known as COT or MAP3K8) is a mitogen-activated protein kinase kinase (MAP3K) activated downstream of TNFαR, IL1R, TLR, CD40, IL17R, and some GPCRs. TPL2 regulates the MEK1/2 and ERK1/2 pathways to regulate a cascade of inflammatory responses. In parallel to this, TPL2 also activates p38α and p38δ to drive the production of various inflammatory mediators in neutrophils. We discuss the implications of this finding in the context of various inflammatory diseases.


Assuntos
Inflamação/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Autoimunidade , Humanos , MAP Quinase Quinase Quinases/química , Proteínas Proto-Oncogênicas/química
9.
Exp Mol Med ; 49(11): e392, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29147012

RESUMO

Mice deficient in the toll-like receptor (TLR) or the myeloid differentiation factor 88 (MyD88) are resistant to acute liver failure (ALF) with sudden death of hepatocytes. Chalcone derivatives from medicinal plants protect from hepatic damages including ALF, but their mechanisms remain to be clarified. Here, we focused on molecular basis of piperidylmethyloxychalcone (PMOC) in the treatment of TLR/MyD88-associated ALF. C57BL/6J mice were sensitized with D-galactosamine (GalN) and challenged with Escherichia coli lipopolysaccharide (LPS, TLR4 agonist) or oligodeoxynucleotide containing unmethylated CpG motif (CpG ODN, TLR9 agonist) for induction of ALF. Post treatment with PMOC sequentially ameliorated hepatic inflammation, apoptosis of hepatocytes, severe liver injury and shock-mediated death in ALF-induced mice. As a mechanism, PMOC inhibited the catalytic activity of TGF-ß-activated kinase 1 (TAK1) in a competitive manner with respect to ATP, displaced fluorescent ATP probe from the complex with TAK1, and docked at the ATP-binding active site on the crystal structure of TAK1. Moreover, PMOC inhibited TAK1 auto-phosphorylation, which is an axis in the activating pathways of nuclear factor-κB (NF-κB) or activating protein 1 (AP1), in the liver with ALF in vivo or in primary liver cells stimulated with TLR agonists in vitro. PMOC consequently suppressed TAK1-inducible NF-κB or AP1 activity in the inflammatory injury, an early pathogenesis leading to ALF. The results suggested that PMOC could contribute to the treatment of TLR/MyD88-associated ALF with the ATP-binding site of TAK1 as a potential therapeutic target.


Assuntos
Chalcona/farmacologia , Doenças do Sistema Imunitário/complicações , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Animais , Chalcona/análogos & derivados , Chalcona/química , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/patologia , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Modelos Moleculares , Conformação Molecular , NF-kappa B/metabolismo , Fosforilação , Substâncias Protetoras/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
10.
Free Radic Biol Med ; 112: 109-120, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28739530

RESUMO

Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1µM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier.


Assuntos
Movimento Celular/efeitos dos fármacos , Curcumina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fenômenos Biomecânicos , Adesão Celular/efeitos dos fármacos , Técnicas de Cocultura , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Cultura em Câmaras de Difusão , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , Análise em Microsséries , Simulação de Acoplamento Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/química , NF-kappa B/genética , Permeabilidade/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Reologia , Transdução de Sinais , Células THP-1 , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
11.
Toxicol Appl Pharmacol ; 329: 112-120, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28532672

RESUMO

In this study, we found that catechins found in green tea (EGCG, EGC, and EC) differentially interfere with the IL-1ß signaling pathway which regulates the expression of pro-inflammatory mediators (IL-6 and IL-8) and Cox-2 in primary human rheumatoid arthritis synovial fibroblasts (RASFs). EGCG and EGC inhibited IL-6, IL-8, and MMP-2 production and selectively inhibited Cox-2 expression. EC did not exhibit any inhibitory effects. When we looked at the expression of key signaling proteins in the IL-1ß signaling pathway, we found all the tested catechins could inhibit TAK-1 activity. Therefore, the consumption of green tea offers an overall anti-inflammatory effect. Molecular docking analysis confirms that EGCG, EGC, and EC all occupy the active site of the TAK1 kinase domain. However, EGCG occupies the majority of the TAK1 active site. In addition to TAK1 inhibition, EGCG can also inhibit P38 and nuclear NF-κB expression whereas EC and EGC were not effective inhibitors. Our findings suggest one of the main health benefits associated with the consumption of green tea are due to the activity of EGCG and EGC which are both present at higher amounts. Although EGCG is the most effective catechin at inhibiting downstream inflammatory signaling, its effectiveness could be hindered by the presence of EC. Therefore, varying EC content in green tea may reduce the anti-inflammatory effects of other potential catechins in green tea.


Assuntos
Anti-Inflamatórios/farmacologia , Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Catequina/análogos & derivados , Fibroblastos/efeitos dos fármacos , Interleucina-1beta/farmacologia , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Chá/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antirreumáticos/química , Antirreumáticos/isolamento & purificação , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Domínio Catalítico , Catequina/química , Catequina/isolamento & purificação , Catequina/farmacologia , Células Cultivadas , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Inibidores de Ciclo-Oxigenase 2/farmacologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosforilação , Fitoterapia , Plantas Medicinais , Ligação Proteica , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Phys Chem Chem Phys ; 19(9): 6470-6480, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28197608

RESUMO

As a tumor suppressor, RASSF5 (NORE1A) activates MST1/2 thereby modulating the Hippo pathway. Structurally, activation involves RASSF5 and MST1/2 swapping their SARAH domains to form a SARAH heterodimer. This exposes the MST1/2 kinase domain which homodimerizes, leading to trans-autophosphorylation. The SARAH-SARAH interaction shifts RASSF5 away from its autoinhibited state and relieves MST1/2 autoinhibition. Separate crystal structures are available for the RA (Ras association) domain and SARAH dimer, where SARAH is a long straight α-helix. Using all-atom molecular dynamics simulations, we modeled the RASSF5 RA with a covalently connected SARAH to elucidate the dynamic mechanism of how SARAH mediates between autoinhibition and Ras triggered-activation. Our results show that in inactive RASSF5 the RA domain retains SARAH, yielding a self-associated conformation in which SARAH is in a kinked α-helical motif that increases the binding interface. When RASSF5 binds K-Ras4B-GTP, the equilibrium shifts toward SARAH's interacting with MST. Since the RA/SARAH affinity is relatively low, whereas that of the SARAH heterodimer is in the nM range, we suggest that RASSF5 exerts its tumor suppressor action through competition with other Ras effectors for Ras effector binding site, as well as coincidentally its recruitment to the membrane to help MST activation. Thus, SARAH plays a key role in RASSF5's tumor suppression action by linking the two major pathways in tumor cell proliferation: Ras and the MAPK (tumor cell proliferation-promoting) pathway, and the Hippo (tumor cell proliferation-suppressing) pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Modelos Moleculares , Proteínas ras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas Reguladoras de Apoptose , Ativação Enzimática/genética , MAP Quinase Quinase Quinases/química , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas ras/química
13.
Gen Physiol Biophys ; 36(1): 91-98, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27787230

RESUMO

The human pituitary tumor-transforming gene-1 (hPTTG1) has been found to be overexpressed in various cancers. Accumulated evidences implicate that some of protein kinases can specifically recognize two PXXP motifs at hPTTG1 C-terminus through their Src homology (SH3) domain and then phosphorylate the protein by their catalytic domain. Here, we integrate in silico analysis and in vitro assay to characterize the intermolecular interaction between the two hPTTG1 motif peptides 161LGPPSPVK168 (M1P) and 168KMPSPPWE175 (M2P) and the SH3 domains of Ser/Thr-specific protein kinases MAP3K and PI3K. It is identified that the two peptides bind to MAP3K SH3 domain with a moderate affinity, but cannot form stable complexes with PI3K SH3 domain. Long time scale molecular dynamics (MD) simulations reveal that the M1P peptide can fold into a standard poly-proline II helix that is bound in the peptide-binding pocket of MAP3K SH3 domain, while the M2P peptide gradually moves out of the pocket during the simulations and finally forms a weak, transient encounter complex with the domain. All these suggest that the MAP3K M1P site is a potential interacting partner of MAP3K SH3 domain, which may mediate the intermolecular recognition between hPTTG1 and MAP3K.


Assuntos
MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/ultraestrutura , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/ultraestrutura , Securina/química , Securina/ultraestrutura , Sítios de Ligação , Ativação Enzimática , Humanos , Modelos Químicos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Domínios de Homologia de src
14.
Curr Med Chem ; 23(33): 3801-3812, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27655071

RESUMO

Leucine-zipper and sterile-α motif kinase (ZAK) is a member of mixed-lineage kinase family (MLKs), which is considered as a new potential target for different physiological disorders, including myocardial hypertrophy and cardiac fibrosis, inflammation and cancer. However, the progress on its biological functions and small molecule inhibitors is limited. Only several multi-kinases inhibitors are reported to non-selectively bind with ZAK with various potencies. Herein, we provide an updated overview on the biological functions and small molecular inhibitors of ZAKs.


Assuntos
Descoberta de Drogas , Proteínas Quinases Ativadas por Mitógeno/química , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/terapia , Humanos , Zíper de Leucina , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Interferência de RNA , Motivo Estéril alfa
15.
Biochim Biophys Acta ; 1862(9): 1581-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27259981

RESUMO

Mixed lineage kinases, or MLKs, are members of the MAP kinase kinase kinase (MAP3K) family, which were originally identified among the activators of the major stress-dependent mitogen activated protein kinases (MAPKs), JNK and p38. During stress, the activation of JNK and p38 kinases targets several essential downstream substrates that react in a specific manner to the unique stressor and thus determine the fate of the cell in response to a particular challenge. Recently, the MLK family was identified as a specific modulator of JNK and p38 signaling in metabolic syndrome. Moreover, the MLK family of kinases appears to be involved in a very wide spectrum of disorders. This review discusses the newly identified functions of MLKs in multiple diseases including metabolic disorders, inflammation, cancer, and neurological diseases.


Assuntos
Inflamação/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Doenças Metabólicas/enzimologia , Animais , Doenças Cardiovasculares/enzimologia , Citocinas/biossíntese , Humanos , Resistência à Insulina/fisiologia , Hepatopatias/enzimologia , MAP Quinase Quinase Quinases/química , Sistema de Sinalização das MAP Quinases , Síndrome Metabólica/enzimologia , Neoplasias/enzimologia , Doenças do Sistema Nervoso/enzimologia , Obesidade/enzimologia , Estresse Fisiológico
16.
Cell Mol Biol (Noisy-le-grand) ; 62(2): 87-93, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26950457

RESUMO

Pulmonary tuberculosis is one of the deadliest human diseases and mainly occurs when the immune system is impaired. MicroRNAs (miRNAs) have a critical role in regulating innate and adaptive immunity. Based on previous reports that Mycobacterium tuberculosis (M.tb) can modulate host cell miRNA expression, this study aimed to investigate expression changes in miR-144 and miR-144 regulate macrophage function via targeting of tumor progression locus 2 (Tpl2, also named MAP3K8) and extracellular signal-regulated kinase (ERK) signaling. I examined the miRNA expression profile of M.tb-infected monocyte-derived macrophages (MDMs) by gene expression profiling and quantitative real-time PCR (qRT-PCR). miR-144 is obviously down-regulated in MDMs infected with M.tb and directly binds to the 3'-UTR of Tpl2, acting as a negative regulator. Moreover, inhibiting miR-144 or over-expression of Tpl2 can activate the ERK signaling pathway by inducing ERK1/2 phosphorylation. At the same time, TNF-α, IL-1ß and IL-6 secretion were significantly accelerated. Taken together, these results suggest that miR-144 is expressed at a low level in M.tb-infected MDMs and acts as a negative regulator for Tpl2 target, which is closely connected with ERK signaling that regulates inflammatory factor secretion.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MicroRNAs/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Western Blotting , Células Cultivadas , Regulação para Baixo , Genes Reporter , Humanos , Interleucina-1beta/análise , Interleucina-6/análise , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Oligonucleotídeos Antissenso/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Transdução de Sinais , Transfecção , Fator de Necrose Tumoral alfa/análise
17.
J Biol Chem ; 291(17): 9173-80, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26929412

RESUMO

SMYD3 is a SET domain-containing N-lysine methyltransferase associated with multiple cancers. Its reported substrates include histones (H3K4 and H4K5), vascular endothelial growth factor receptor 1 (VEGFR1 Lys(831)) and MAP3 kinase kinase (MAP3K2 Lys(260)). To reveal the structural basis for substrate preference and the catalytic mechanism of SMYD3, we have solved its co-crystal structures with VEGFR1 and MAP3K2 peptides. Our structural and biochemical analyses show that MAP3K2 serves as a robust substrate of SMYD3 because of the presence of a phenylalanine residue at the -2 position. A shallow hydrophobic pocket on SMYD3 accommodates the binding of the phenylalanine and promotes efficient catalytic activities of SMYD3. By contrast, SMYD3 displayed a weak activity toward a VEGFR1 peptide, and the location of the acceptor lysine in the folded kinase domain of VEGFR1 requires drastic conformational rearrangements for juxtaposition of the acceptor lysine with the enzymatic active site. Our results clearly revealed structural determinants for the substrate preference of SMYD3 and provided mechanistic insights into lysine methylation of MAP3K2. The knowledge should be useful for the development of SMYD3 inhibitors in the fight against MAP3K2 and Ras-driven cancer.


Assuntos
Histona-Lisina N-Metiltransferase/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , MAP Quinase Quinase Quinase 2 , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Metilação , Relação Estrutura-Atividade , Especificidade por Substrato , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
J Biol Chem ; 290(24): 15210-8, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918157

RESUMO

Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors.


Assuntos
MAP Quinase Quinase Quinases/química , Dobramento de Proteína , Proteínas Proto-Oncogênicas/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química
19.
Hum Mol Genet ; 23(21): 5793-804, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24925317

RESUMO

Locus mapping has uncovered diverse etiologies for familial atrial fibrillation (AF), dilated cardiomyopathy (DCM), and mixed cardiac phenotype syndromes, yet the molecular basis for these disorders remains idiopathic in most cases. Whole-exome sequencing (WES) provides a powerful new tool for familial disease gene discovery. Here, synergistic application of these genomic strategies identified the pathogenic mutation in a familial syndrome of atrial tachyarrhythmia, conduction system disease (CSD), and DCM vulnerability. Seven members of a three-generation family exhibited the variably expressed phenotype, three of whom manifested CSD and clinically significant arrhythmia in childhood. Genome-wide linkage analysis mapped two equally plausible loci to chromosomes 1p3 and 13q12. Variants from WES of two affected cousins were filtered for rare, predicted-deleterious, positional variants, revealing an unreported heterozygous missense mutation disrupting the highly conserved kinase domain in TNNI3K. The G526D substitution in troponin I interacting kinase, with the most deleterious SIFT and Polyphen2 scores possible, resulted in abnormal peptide aggregation in vitro and in silico docking models predicted altered yet energetically favorable wild-type mutant dimerization. Ventricular tissue from a mutation carrier displayed histopathological hallmarks of DCM and reduced TNNI3K protein staining with unique amorphous nuclear and sarcoplasmic inclusions. In conclusion, mutation of TNNI3K, encoding a heart-specific kinase previously shown to modulate cardiac conduction and myocardial function in mice, underlies a familial syndrome of electrical and myopathic heart disease. The identified substitution causes a TNNI3K aggregation defect and protein deficiency, implicating a dominant-negative loss of function disease mechanism.


Assuntos
Arritmias Cardíacas/genética , Cardiomiopatia Dilatada/genética , Estudos de Associação Genética , Sistema de Condução Cardíaco/anormalidades , MAP Quinase Quinase Quinases/genética , Mutação , Taquicardia Atrial Ectópica/genética , Adulto , Sequência de Aminoácidos , Arritmias Cardíacas/diagnóstico , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/metabolismo , Criança , Mapeamento Cromossômico , Cromossomos Humanos Par 1 , Sequência Conservada , Exoma , Feminino , Loci Gênicos , Variação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Compostos Orgânicos , Linhagem , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases , Alinhamento de Sequência , Síndrome , Taquicardia Atrial Ectópica/diagnóstico
20.
Nature ; 510(7504): 283-7, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24847881

RESUMO

Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.


Assuntos
Transformação Celular Neoplásica/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , MAP Quinase Quinase Quinase 2/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinase 2/química , MAP Quinase Quinase Quinases/química , Metilação , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Oncogênica p21(ras)/genética , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas A-raf/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA