Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Commun ; 15(1): 466, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212321

RESUMO

Approved antibody-drug conjugates (ADCs) for HER2-positive breast cancer include trastuzumab emtansine and trastuzumab deruxtecan. To develop a differentiated HER2 ADC, we chose an antibody that does not compete with trastuzumab or pertuzumab for binding, conjugated to a reduced potency PBD (pyrrolobenzodiazepine) dimer payload. PBDs are potent cytotoxic agents that alkylate and cross-link DNA. In our study, the PBD dimer is modified to alkylate, but not cross-link DNA. This HER2 ADC, DHES0815A, demonstrates in vivo efficacy in models of HER2-positive and HER2-low cancers and is well-tolerated in cynomolgus monkey safety studies. Mechanisms of action include induction of DNA damage and apoptosis, activity in non-dividing cells, and bystander activity. A dose-escalation study (ClinicalTrials.gov: NCT03451162) in patients with HER2-positive metastatic breast cancer, with the primary objective of evaluating the safety and tolerability of DHES0815A and secondary objectives of characterizing the pharmacokinetics, objective response rate, duration of response, and formation of anti-DHES0815A antibodies, is reported herein. Despite early signs of anti-tumor activity, patients at higher doses develop persistent, non-resolvable dermal, ocular, and pulmonary toxicities, which led to early termination of the phase 1 trial.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Benzodiazepinas , Neoplasias da Mama , Imunoconjugados , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Macaca fascicularis/genética , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , DNA
2.
Mol Ther ; 31(10): 2999-3014, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515322

RESUMO

Hepatotoxicity associated with intravenous/intrathecal adeno-associated virus (AAV) gene therapy has been observed in preclinical species and patients. In nonhuman primates, hepatotoxicity following self-complementary AAV9 administration varies from asymptomatic transaminase elevation with minimal to mild microscopic changes to symptomatic elevations of liver function and thromboinflammatory markers with microscopic changes consistent with marked hepatocellular necrosis and deteriorating clinical condition. These transient acute liver injury marker elevations occur from 3-4 days post intravenous administration to ∼2 weeks post intrathecal administration. No transaminase elevation or microscopic changes were observed with intrathecal administration of empty capsids or a "promoterless genome" vector, suggesting that liver injury after cerebrospinal fluid dosing in nonhuman primates is driven by viral transduction and transgene expression. Co-administration of prednisolone after intravenous or intrathecal dosing did not prevent liver enzyme or microscopic changes despite a reduction of T lymphocyte infiltration in liver tissue. Similarly, co-administration of rituximab/everolimus with intrathecal dosing failed to block AAV-driven hepatotoxicity. Self-complementary AAV-induced acute liver injury appears to correlate with high hepatocellular vector load, macrophage activation, and type 1 interferon innate virus-sensing pathway responses. The current work characterizes key aspects pertaining to early AAV-driven hepatotoxicity in cynomolgus macaques, highlighting the usefulness of this nonclinical species in that context.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Terapia Genética , Animais , Humanos , Macaca fascicularis/genética , Administração Intravenosa , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/terapia , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética
3.
Neurobiol Dis ; 184: 106197, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328037

RESUMO

Poly(PR) is a dipeptide repeat protein comprising proline and arginine residues. It is one of the translational product of expanded G4C2 repeats in the C9orf72 gene, and its accumulation is contributing to the neuropathogenesis of C9orf72-associated amyotrophic lateral sclerosis and/or frontotemporal dementia (C9-ALS/FTD). In this study, we demonstrate that poly(PR) protein alone is sufficient to induce neurodegeneration related to ALS/FTD in cynomolgus monkeys. By delivering poly(PR) via AAV, we observed that the PR proteins were located within the nucleus of infected cells. The expression of (PR)50 protein, consisting of 50 PR repeats, led to increased loss of cortical neurons, cytoplasmic lipofuscin, and gliosis in the brain, as well as demyelination and loss of ChAT positive neurons in the spinal cord of monkeys. While, these pathologies were not observed in monkeys expressing (PR)5, a protein comprising only 5 PR repeats. Furthermore, the (PR)50-expressing monkeys exhibited progressive motor deficits, cognitive impairment, muscle atrophy, and abnormal electromyography (EMG) potentials, which closely resemble clinical symptoms seen in C9-ALS/FTD patients. By longitudinally tracking these monkeys, we found that changes in cystatin C and chitinase-1 (CHIT1) levels in the cerebrospinal fluid (CSF) corresponded to the phenotypic progression of (PR)50-induced disease. Proteomic analysis revealed that the major clusters of dysregulated proteins were nuclear-localized, and downregulation of the MECP2 protein was implicated in the toxic process of poly(PR). This research indicates that poly(PR) expression alone induces neurodegeneration and core phenotypes associated with C9-ALS/FTD in monkeys, which may provide insights into the mechanisms of disease pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/metabolismo , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteômica , Proteínas/genética , Expansão das Repetições de DNA , Dipeptídeos/genética
4.
Protein Sci ; 31(12): e4486, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317676

RESUMO

Programmed cell death protein 1 (PD-1) is an immunoregulatory target which is recognized by different monoclonal antibodies, approved for the therapy of multiple types of cancer. Different anti-PD-1 antibodies display different therapeutic properties and there is a pharmaceutical interest to generate and characterize novel anti-PD-1 antibodies. We screened multiple human antibody phage display libraries to target novel epitopes on the PD-1 surface and we discovered a unique and previously undescribed binding specificity (termed D12) from a new antibody library (termed AMG). The library featured antibody fragments in single-chain fragment variable (scFv) format, based on the IGHV3-23*03 (VH ) and IGKV1-39*01 (Vκ) genes. The D12 antibody was characterized by surface plasmon resonance (SPR), cross-reacted with the Cynomolgus monkey antigen and bound to primary human T cells, as shown by flow cytometry. The antibody blocked the PD-1/PD-L1 interaction in vitro with an EC50 value which was comparable to the one of nivolumab, a clinically approved antibody. The fine details of the interaction between D12 and PD-1 were elucidated by x-ray crystallography of the complex at a 3.5 Å resolution, revealing an unprecedented conformational change at the N-terminus of PD-1 following D12 binding, as well as partial overlap with the binding site for the cognate PD-L1 and PD-L2 ligands which prevents their binding. The results of the study suggest that the expansion of antibody library repertoires may facilitate the discovery of novel binding specificities with unique properties that hold promises for the modulation of PD-1 activity in vitro and in vivo.


Assuntos
Antígeno B7-H1 , Bacteriófagos , Animais , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biblioteca de Peptídeos , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Anticorpos Monoclonais/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Especificidade de Anticorpos
5.
Cryobiology ; 108: 51-56, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926569

RESUMO

DNA methylation alters gene expression in numerous biological processes, including embryonic development. It is little known about the effect of cryopreservation on sperm DNA methylation. The present study has investigated whether cryopreservation causes abnormal DNA methylation in cynomolgus macaque sperm for five critical genes that includes the maternally imprinted gene (SNRPN), genes associated with male infertility (HSPA1L, MTHFR) and genes involved in embryonic development (TET3, LZTR1). Our results showed that sperm motility, the percentage of acrosomal integrity, DNA integrity and mitochondrial membrane potential were decreased after cryopreservation either being frozen with penetrating cryoprotectant, glycerol (Gly) or ethylene glycol (EG), compared to fresh sperm (p = 0.000), but the methylation patterns of the five target genes from cynomolgus macaque sperm samples were not affected after cryopreservation as evaluated by the Bisulfite Sequencing PCR (BSP) method. The data indicates that the current protocol for sperm cryopreservation of cynomolgus macaque is safe in terms of DNA methylation levels in these genes related to critical sperm functions.


Assuntos
Criopreservação , Preservação do Sêmen , Animais , Criopreservação/métodos , Metilação de DNA , Desenvolvimento Embrionário , Etilenoglicol , Feminino , Fertilização , Glicerol , Macaca fascicularis/genética , Masculino , Gravidez , Sêmen , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides/genética , Espermatozoides , Proteínas Centrais de snRNP
6.
Toxicol Pathol ; 50(4): 415-431, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658751

RESUMO

Biodistribution of self-complementary adeno-associated virus-9 (scAAV9)-chicken ß-actin promoter-green fluorescent protein (GFP) was assessed in juvenile cynomolgus macaques infused intrathecally via lumbar puncture or the intracisterna magna (1.0×1013 or 3.0×1013 vg/animal), with necropsy 28 days later. Our results characterized central nervous system biodistribution compared with systemic organs/tissues by droplet digital polymerase chain reaction for DNA and in situ hybridization. Green fluorescent protein expression was characterized by Meso Scale Discovery electrochemiluminescence immunosorbent assay and immunohistochemistry (IHC). Biodistribution was widespread but variable, with vector DNA and GFP expression greatest in the spinal cord, dorsal root ganglia (DRG), and certain systemic tissues (e.g., liver), with low concentrations in many brain regions despite direct cerebrospinal fluid administration. Transduction and expression were observed primarily in perivascular astrocytes in the brain, with a paucity in neurons. Greater GFP expression was observed in hepatocytes, striated myocytes, cardiomyocytes, spinal cord lower motor neurons, and DRG sensory neurons by IHC. These results should be considered when evaluating scAAV9-based intrathecal delivery with the current expression cassette as a modality for neurologic diseases that require widespread brain neuronal expression. This capsid/expression cassette combination may be better suited for diseases that express a secreted protein and/or do not require widespread brain neuronal transduction.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Dependovirus/metabolismo , Proteínas de Fluorescência Verde/genética , Macaca fascicularis/genética , Células Receptoras Sensoriais , Distribuição Tecidual
7.
Andrology ; 10(4): 789-799, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35224888

RESUMO

BACKGROUND: Glucose-dependent insulinotropic polypeptide receptor (Gipr) gene expression has been reported in mouse spermatids and Gipr knockout male mice have previously been reported to have decreased in vitro fertilization, although the role of Gipr signaling in male mouse fertility is not well understood. OBJECTIVES: The purposes of these studies were to determine the role of glucose-dependent insulinotropic polypeptide receptor in male fertility using Gipr knockout mice and anti-glucose-dependent insulinotropic polypeptide receptor antibody-treated wild-type mice and to determine if the expression of Gipr in mouse testes is similar in non-human and human primates. METHODS AND MATERIALS: Adiponectin promoter-driven Gipr knockout male mice (GiprAdipo-/- ) were assessed for in vitro and in vivo fertility, sperm parameters, and testicular histology. CD1 male mice were administered an anti-glucose-dependent insulinotropic polypeptide receptor antibody (muGIPR-Ab) prior to and during mating for assessment of in vivo fertility and sperm parameters. Expression of Gipr/GIPR mRNA in the mouse, cynomolgus monkey, and human testes was assessed by in situ hybridization methods using species-specific probes. RESULTS: GiprAdipo-/- male mice are infertile in vitro and in vivo, despite normal testis morphology, sperm counts, and sperm motility. In contrast, administration of muGIPR-Ab to CD1 male mice did not impact fertility. While Gipr mRNA expression is detectable in the mouse testes, GIPR mRNA expression is not detectable in monkey or human testes. DISCUSSION: The infertility of GiprAdipo-/- male mice correlated with the lack of Gipr expression in the testis and/or adipocyte tissue. However, as administration of muGIPR-Ab did not impact the fertility of adult male mice, it is possible that the observations in genetically deficient male mice are related to Gipr deficiency during development. CONCLUSION: Our data support a role for Gipr expression in the mouse testis during the development of sperm fertilization potential, but based on gene expression data, a similar role for glucose-dependent insulinotropic polypeptide receptor in non-human primate or human male fertility is unlikely.


Assuntos
Polipeptídeo Inibidor Gástrico , Testículo , Animais , Feminino , Fertilidade , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Expressão Gênica , Humanos , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais , Motilidade dos Espermatozoides , Testículo/metabolismo
8.
Nat Commun ; 10(1): 5517, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31822676

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) caused by PKD1 mutations is one of the most common hereditary disorders. However, the key pathological processes underlying cyst development and exacerbation in pre-symptomatic stages remain unknown, because rodent models do not recapitulate critical disease phenotypes, including disease onset in heterozygotes. Here, using CRISPR/Cas9, we generate ADPKD models with PKD1 mutations in cynomolgus monkeys. As in humans and mice, near-complete PKD1 depletion induces severe cyst formation mainly in collecting ducts. Importantly, unlike in mice, PKD1 heterozygote monkeys exhibit cyst formation perinatally in distal tubules, possibly reflecting the initial pathology in humans. Many monkeys in these models survive after cyst formation, and cysts progress with age. Furthermore, we succeed in generating selective heterozygous mutations using allele-specific targeting. We propose that our models elucidate the onset and progression of ADPKD, which will serve as a critical basis for establishing new therapeutic strategies, including drug treatments.


Assuntos
Macaca fascicularis , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Rim/metabolismo , Rim/patologia , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Masculino , Mutação , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/metabolismo
9.
Biol Reprod ; 100(6): 1440-1452, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869744

RESUMO

Nonhuman primates (NHPs) are considered to be the most valuable models for human transgenic (Tg) research into disease because human pathology is more closely recapitulated in NHPs than rodents. Previous studies have reported the generation of Tg NHPs that ubiquitously overexpress a transgene using various promoters, but it is not yet clear which promoter is most suitable for the generation of NHPs overexpressing a transgene ubiquitously and persistently in various tissues. To clarify this issue, we evaluated four putative ubiquitous promoters, cytomegalovirus (CMV) immediate-early enhancer and chicken beta-actin (CAG), elongation factor 1α (EF1α), ubiquitin C (UbC), and CMV, using an in vitro differentiation system of cynomolgus monkey embryonic stem cells (ESCs). While the EF1α promoter drove Tg expression more strongly than the other promoters in undifferentiated pluripotent ESCs, the CAG promoter was more effective in differentiated cells such as embryoid bodies and ESC-derived neurons. When the CAG and EF1α promoters were used to generate green fluorescent protein (GFP)-expressing Tg monkeys, the CAG promoter drove GFP expression in skin and hematopoietic tissues more strongly than in ΕF1α-GFP Tg monkeys. Notably, the EF1α promoter underwent more silencing in both ESCs and Tg monkeys. Thus, the CAG promoter appears to be the most suitable for ubiquitous and stable expression of transgenes in the differentiated tissues of Tg cynomolgus monkeys and appropriate for the establishment of human disease models.


Assuntos
Animais Geneticamente Modificados , Vetores Genéticos , Macaca fascicularis/genética , Regiões Promotoras Genéticas , Transgenes , Actinas/genética , Animais , Antígenos Virais/genética , Células Cultivadas , Galinhas/genética , Clonagem de Organismos/métodos , Clonagem de Organismos/normas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Elementos Facilitadores Genéticos/genética , Feminino , Técnicas de Transferência de Genes/normas , Vetores Genéticos/genética , Proteínas Imediatamente Precoces/genética , Masculino , Camundongos , Fator 1 de Elongação de Peptídeos/genética
10.
Xenobiotica ; 49(8): 995-1000, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30216105

RESUMO

Glutathione S-transferase (GST) is a family of enzymes important for conjugation with glutathione of endogenous and exogenous compounds. Human GSTM1 null allele is associated with toxicity and cancers. Cynomolgus and rhesus macaques have molecular and enzymatic similarities of GSTs to humans; however, genetic variants have not been investigated. In macaques, instead of pseudogenized GSTM1, GSTM5 is a predominant GSTM isoform. In this study, re-sequencing of GSTM5 in 64 cynomolgus and 31 rhesus macaques found 6 non-synonymous variants, and 1 variant (IVS5 + 1) causing exon skip. Of these 7 variants, 3 and 1 were found only in Indochinese and Indonesian cynomolgus macaques, respectively. Cynomolgus GSTM5-mediated styrene 7,8-oxide and trans-stilbene oxide conjugation activities correlated with GSTM protein levels immunochemically quantified in cynomolgus liver samples. Using recombinant GSTM5 proteins, 4 of the 6 non-synonymous variants including E29Q, L96R, M166V and S201N showed substantially lower metabolic activities. Moreover, a homozygote for E29Q and heterozygotes for S201N or IVS5 + 1 showed significantly lower conjugation activities in liver cytosolic fractions as compared with wild-type animals. Therefore, the present results suggest that inter-animal variability of GST-dependent drug metabolism is at least partly accounted for by GSTM5 variants in cynomolgus and rhesus macaques as pre-clinical animal models.


Assuntos
Variação Genética , Glutationa Transferase/genética , Macaca fascicularis/genética , Macaca mulatta/genética , Animais , Citosol/metabolismo , Compostos de Epóxi/metabolismo , Glutationa/metabolismo , Cinética , Proteínas Recombinantes/metabolismo
11.
Chem Res Toxicol ; 31(10): 1086-1091, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30169019

RESUMO

Glutathione S-transferase (GST) is a family of important drug-metabolizing enzymes, conjugating endogenous and exogenous compounds. Genetic polymorphisms result in the inter-individual variability of GST activity in humans. Especially, human GSTT1 and GSTT2 null alleles are associated with toxicity and various cancers derived from chemicals. Cynomolgus macaque, a nonhuman primate species widely used in drug metabolism studies, has molecular and enzymatic similarities of GSTs to the human orthologs; however, genetic polymorphisms have not been investigated in this species. In this study, resequencing of GSTT1 and GSTT2 in 64 cynomolgus and 32 rhesus macaques found 15 nonsynonymous variants and 1 nonsense variant for GSTT1 and 15 nonsynonymous variants for GSTT2. Some of these GSTT variants were distributed differently in Indochinese and Indonesian cynomolgus macaques and rhesus macaques. For analysis of functional relevance of the GSTT variants, 1-iodohexane and dibromomethane were determined to be suitable substrates for cynomolgus GSTT1 and GSTT2. However, the conjugation activities were roughly correlated with GSTT protein levels immunochemically quantified in cynomolgus liver samples with no statistical significances, implying the contributions of the GST genetic variants. Among the GSTT1 variants identified, the animals carrying R76C and D125G mutations showed lower conjugation activities toward dibromomethane than those of the wild-type in liver cytosolic fractions. Moreover, the recombinant R76C/D125G and D125G GSTT variant proteins showed significantly lower 1-iodohexane or dibromomethane conjugation activities than those of the wild-type protein. Therefore, inter-animal variability of GSTT-dependent drug metabolism is at least partly accounted for by GSTT1 and possibly GSTT2 variants in cynomolgus and rhesus macaques.


Assuntos
Glutationa Transferase/genética , Macaca fascicularis/genética , Animais , Códon sem Sentido , Glutationa Transferase/metabolismo , Hidrocarbonetos Bromados/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Fígado/enzimologia , Macaca mulatta/genética , Polimorfismo Genético , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
12.
PLoS One ; 13(6): e0199200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912972

RESUMO

The hepatic Na+/taurocholate co-transporting polypeptide (NTCP in man, Ntcp in animals) is the high-affinity receptor for the hepatitis B (HBV) and hepatitis D (HDV) viruses. Species barriers for human HBV/HDV within the order Primates were previously attributed to Ntcp sequence variations that disable virus-receptor interaction. However, only a limited number of primate Ntcps have been analysed so far. In the present study, a total of 11 Ntcps from apes, Old and New World monkeys were cloned and expressed in vitro to characterise their interaction with HBV and HDV. All Ntcps showed intact bile salt transport. Human NTCP as well as the Ntcps from the great apes chimpanzee and orangutan showed transport-competing binding of HBV derived myr-preS1-peptides. In contrast, all six Ntcps from the group of Old World monkeys were insensitive to HBV myr-preS1-peptide binding and HBV/HDV infection. This is basically predetermined by the amino acid arginine at position 158 of all studied Old World monkey Ntcps. An exchange from arginine to glycine (as present in humans and great apes) at this position (R158G) alone was sufficient to achieve full transport-competing HBV myr-preS1-peptide binding and susceptibility for HBV/HDV infection. New World monkey Ntcps showed higher sequence heterogeneity, but in two cases with 158G showed transport-competing HBV myr-preS1-peptide binding, and in one case (Saimiri sciureus) even susceptibility for HBV/HDV infection. In conclusion, amino acid position 158 of NTCP/Ntcp is sufficient to discriminate between the HBV/HDV susceptible group of humans and great apes (158G) and the non-susceptible group of Old World monkeys (158R). In the case of the phylogenetically more distant New World monkey Ntcps amino acid 158 plays a significant, but not exclusive role.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatite B/veterinária , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Animais , Callithrix/genética , Chlorocebus aethiops/genética , Clonagem Molecular , Células HEK293 , Células Hep G2 , Hepatite B/transmissão , Humanos , Macaca/genética , Macaca fascicularis/genética , Macaca mulatta/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Pan troglodytes/genética , Papio anubis/genética , Papio hamadryas/genética , Pongo abelii/genética , Saguinus/genética , Saimiri/genética , Alinhamento de Sequência , Simportadores/genética , Transfecção
13.
Invest Ophthalmol Vis Sci ; 59(2): 826-830, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29411010

RESUMO

Purpose: To accelerate the development of new therapies, an inherited retinal degeneration model in a nonhuman primate would be useful to confirm the efficacy in preclinical studies. In this study, we describe the discovery of retinitis pigmentosa in a cynomolgus monkey (Macaca fascicularis) pedigree. Methods: First, screening with fundus photography was performed on 1443 monkeys at the Tsukuba Primate Research Center. Ophthalmic examinations, such as indirect ophthalmoscopy, ERGs using RETeval, and optic coherent tomography (OCT) measurement, were then performed to confirm diagnosis. Results: Retinal degeneration with cystoid macular edema was observed in both eyes of one 14-year-old female monkey. In her examinations, the full-field ERGs were nonrecordable and the outer layer of the retina in the parafoveal area was not visible on OCT imaging. Moreover, less frequent pigmentary retinal anomalies also were observed in her 3-year-old nephew. His full-field ERGs were almost nonrecordable and the outer layer was not visible in the peripheral retina. His father was her cousin (the son of her mother's older brother) and his mother was her younger half-sibling sister with a different father. Conclusions: The hereditary nature is highly probable (autosomal recessive inheritance suspected). However, whole-exome analysis performed identified no pathogenic mutations in these monkeys.


Assuntos
Modelos Animais de Doenças , Macaca fascicularis/genética , Retinose Pigmentar/genética , Animais , Eletrorretinografia , Feminino , Angiofluoresceinografia , Edema Macular/diagnóstico , Edema Macular/genética , Masculino , Oftalmoscopia , Linhagem , Reação em Cadeia da Polimerase , Retina/fisiopatologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/fisiopatologia , Tomografia de Coerência Óptica , Sequenciamento do Exoma
14.
Nat Commun ; 8(1): 1418, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127275

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is a critically important therapy for hematological malignancies, inborn errors of metabolism, and immunodeficiency disorders, yet complications such as graft-vs.-host disease (GvHD) limit survival. Development of anti-GvHD therapies that do not adversely affect susceptibility to infection or graft-vs.-tumor immunity are hampered by the lack of a physiologically relevant, preclinical model of allogeneic HSCT. Here we show a spectrum of diverse clinical HSCT outcomes including primary and secondary graft failure, lethal GvHD, and stable, disease-free full donor engraftment using reduced intensity conditioning and mobilized peripheral blood HSCT in unrelated, fully MHC-matched Mauritian-origin cynomolgus macaques. Anti-GvHD prophylaxis of tacrolimus, post-transplant cyclophosphamide, and CD28 blockade induces multi-lineage, full donor chimerism and recipient-specific tolerance while maintaining pathogen-specific immunity. These results establish a new preclinical allogeneic HSCT model for evaluation of GvHD prophylaxis and next-generation HSCT-mediated therapies for solid organ tolerance, cure of non-malignant hematological disease, and HIV reservoir clearance.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Macaca fascicularis/imunologia , Complexo Principal de Histocompatibilidade , Animais , Feminino , Doença Enxerto-Hospedeiro/prevenção & controle , Teste de Histocompatibilidade , Humanos , Macaca fascicularis/genética , Masculino , Modelos Animais , Especificidade da Espécie , Quimeras de Transplante/genética , Quimeras de Transplante/imunologia , Tolerância ao Transplante/genética , Tolerância ao Transplante/imunologia , Transplante Homólogo , Resultado do Tratamento
15.
Neuromolecular Med ; 19(2-3): 375-386, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28695462

RESUMO

Exposure to divalent metals such as iron and manganese is thought to increase the risk for Parkinson's disease (PD). Under normal circumstances, cellular iron and manganese uptake is regulated by the divalent metal transporter 1 (DMT1). Accordingly, alterations in DMT1 levels may underlie the abnormal accumulation of metal ions and thereby disease pathogenesis. Here, we have generated transgenic mice overexpressing DMT1 under the direction of a mouse prion promoter and demonstrated its robust expression in several regions of the brain. When fed with iron-supplemented diet, DMT1-expressing mice exhibit rather selective accumulation of iron in the substantia nigra, which is the principal region affected in human PD cases, but otherwise appear normal. Alongside this, the expression of Parkin is also enhanced, likely as a neuroprotective response, which may explain the lack of phenotype in these mice. When DMT1 is overexpressed against a Parkin null background, the double-mutant mice similarly resisted a disease phenotype even when fed with iron- or manganese-supplemented diet. However, these mice exhibit greater vulnerability toward 6-hydroxydopamine-induced neurotoxicity. Taken together, our results suggest that iron accumulation alone is not sufficient to cause neurodegeneration and that multiple hits are required to promote PD.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Ferro/metabolismo , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica , Ferro/toxicidade , Macaca fascicularis/genética , Manganês/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Príons/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Teste de Desempenho do Rota-Rod , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
16.
Immunogenetics ; 69(4): 241-253, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28154890

RESUMO

Phenotypic variability is often observed in cynomolgus monkeys on preclinical studies and may, in part, be driven by genetic variability. However, the role of monkey genetic variation remains largely unexplored in the context of drug response. This study evaluated genetic variation in cynomolgus monkey FcγR3A and TAP1 genes and the potential impact of identified polymorphisms on antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro. Studies in humans have demonstrated that a single nucleotide polymorphism (SNP), F158V, in FcγR3A can influence response to rituximab through altered ADCC and that SNPs in TAP1/2 decrease natural killer (NK) cell activity against major histocompatibility complex (MHC) class I deficient cells, potentially through altered ADCC. Monkeys were genotyped for FcγR3A and TAP1 SNPs, and ADCC was assessed in vitro using peripheral blood mononuclear cells (PBMCs) treated with trastuzumab in the presence of NCI-N87 cells. FcγR3A g.1134A>C (exonic S42R), FcγR3A g.5027A>G (intronic), and TAP1 g.1A>G (start codon loss) SNPs were all significantly associated with decreased ADCC for at least one trastuzumab concentration ≥0.0001 µM when compared with wild type (WT). Regression analysis demonstrated significant association of the SNP-SNP pairs FcγR3A g.1134A>C/TAP1 g.1A>G and FcγR3A g.5027A>G/TAP1 g.1A>G with a combinatorial decrease on ADCC. Mechanisms underlying the decreased ADCC were investigated by measuring FcγR3A/IgG binding affinity and expression of FcγR3A and TAP1 in PBMCs; however, no functional associations were observed. These data demonstrate that genetic variation in cynomolgus monkeys is reflective of known human genetic variation and may potentially contribute to variable drug response in preclinical studies.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Citotoxicidade Celular Dependente de Anticorpos/genética , Macaca fascicularis/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de IgG/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Genótipo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo
17.
Mol Cells ; 40(2): 100-108, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28196413

RESUMO

Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element-AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crab-eating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3' splice site. Six transcript variants (V1-V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5' splice sites in the 5' and 3' flanking regions of CTSF_AluYRa1. Among them, V3-V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification.


Assuntos
Elementos Alu , Catepsina F/genética , Macaca fascicularis/genética , Macaca mulatta/genética , Processamento Alternativo , Animais , Evolução Biológica , Humanos , Masculino
18.
Zhonghua Fu Chan Ke Za Zhi ; 50(1): 48-53, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-25877425

RESUMO

OBJECTIVE: To observe the therapeutic effect of NF-κB gene short hairpin RNA (shRNA) on endometriosis and identify the function of NF-κB on the maintenance and development of endometriosis in Macaca fascicularis. METHODS: The Macaca fascicularis model of endometriosis was developed, which divided into experimental group, negative control group and simple model group. The high specificity adenovirus vector mediated shRNA targeting NF-κB gene and negative control shRNA adenovirus with no-load NF-κB gene were synthesised. The experimental group injected the adenovirus which carried the NF-κB shRNA into the endometriosis lesions under laparoscopy surgery, the negative control group with no-load shRNA adenovirus and the simple models group injected with normal saline. Four weeks later after the injection, an observed operation was performed through laparoscopy and some lesions were collected. The CD34 immunohistochemistry of these lesions were done to detect the microvessel density, then the variation of the microvessel density among each group were observed. The expression of the NF-κB and proliferating cell nuclear antigen (PCNA) were detected through western blot. RESULTS: First, the Macaca fascicularis model of endometriosis was successful developed, and the experimental group has an evident atrophy in ectopic lesions compared with the previous. The lesions' microvessel density in experimental group decreased evidently compared with the negative control group and simple model group (0.002 0±0.000 3 versus 0.021 9±0.002 6 versus 0.024 5±0.003 3), and the differences was statistically significant (P < 0.01). The expression of PCNA (0.37±0.17 versus 0.57±0.26 versus 0.57±0.28) and NF-κB (0.338±0.174 versus 0.678±0.021 versus 0.645±0.098) in experiment group was lower than the negative control group and simple model group, the differences were statistically significant (all P < 0.01). CONCLUSION: Through targeting suppressed the NF-κB gene expression by NF-κB shRNA, we can inhibit the development of endometriosis through reducing the ability of angiogenesis and cell proliferation of ectopic endometrial cells.


Assuntos
Endometriose/genética , Endometriose/metabolismo , Macaca fascicularis/genética , NF-kappa B/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Interferente Pequeno , Animais , Proliferação de Células , Feminino , Expressão Gênica , Vetores Genéticos , Humanos , NF-kappa B/genética , Neovascularização Patológica , Antígeno Nuclear de Célula em Proliferação/genética
20.
J Hum Genet ; 59(9): 504-11, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25102097

RESUMO

CXCL14 is a chemokine that has previously been implicated in insulin resistance in mice. In humans, the role of CXCL14 in metabolic processes is not well established, and we sought to determine whether CXCL14 is a risk susceptibility gene important in fetal programming of metabolic disease. For this purpose, we investigated whether CXCL14 is differentially regulated in human umbilical cords of infants with varying birth weights. We found an elevated expression of CXCL14 in human low birth weight (LBW) cords, as well as in cords from nutritionally restricted Macaca fascicularis macaques. To further analyze the regulatory mechanisms underlying the expression of CXCL14, we examined CXCL14 in umbilical cord-derived mesenchymal stem cells (MSCs) that provide an in vitro cell-based system amenable to experimental manipulation. Using both whole frozen cords and MSCs, we determined that site-specific CpG methylation in the CXCL14 promoter is associated with altered expression, and that changes in methylation are evident in LBW infant-derived umbilical cords that may indicate future metabolic compromise through CXCL14.


Assuntos
Quimiocinas CXC/genética , Metilação de DNA , Perfilação da Expressão Gênica , Recém-Nascido de Baixo Peso/metabolismo , Adulto , Animais , Restrição Calórica , Células Cultivadas , Ilhas de CpG/genética , Feminino , Humanos , Recém-Nascido , Macaca fascicularis/genética , Masculino , Idade Materna , Células-Tronco Mesenquimais/metabolismo , Gravidez , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA