Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Emerg Microbes Infect ; 10(1): 1457-1470, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34120576

RESUMO

Zika virus (ZIKV) is an emerging arbovirus with recent global expansion. Historically, ZIKV infections with Asian lineages have been associated with mild disease such as rash and fever. However, recent Asian sub-lineages have caused outbreaks in the South Pacific and Latin America with increased prevalence of neurological disorders in infants and adults. Asian sub-lineage differences may partially explain the range of disease severity observed. However, the effect of Asian sub-lineage differences on pathogenesis remains poorly characterized. Current study conducts a head-to-head comparison of three Asian sub-lineages that are representative of the circulating ancestral mild Asian strain (ZIKV-SG), the 2007 epidemic French Polynesian strain (ZIKV-FP), and the 2013 epidemic Brazil strain (ZIKV-Brazil) in adult Cynomolgus macaques. Animals infected intervenously or subcutaneously with either of the three clinical isolates showed sub-lineage-specific differences in viral pathogenesis, early innate immune responses and systemic inflammation. Despite the lack of neurological symptoms in infected animals, the epidemiologically neurotropic ZIKV sub-lineages (ZIKV-Brazil and/or ZIKV-FP) were associated with more sustained viral replication, higher systemic inflammation (i.e. higher levels of TNFα, MCP-1, IL15 and G-CSF) and greater percentage of CD14+ monocytes and dendritic cells in blood. Multidimensional analysis showed clustering of ZIKV-SG away from ZIKV-Brazil and ZIKV-FP, further confirming sub-lineage differences in the measured parameters. These findings highlight greater systemic inflammation and monocyte recruitment as possible risk factors of adult ZIKV disease observed during the 2007 FP and 2013 Brazil epidemics. Future studies should explore the use of anti-inflammatory therapeutics as early treatment to prevent ZIKV-associated disease in adults.


Assuntos
Imunidade Inata , Infecção por Zika virus/imunologia , Zika virus/classificação , Zika virus/imunologia , Zika virus/patogenicidade , Adulto , Animais , Ásia , Brasil , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Monócitos/imunologia , Especificidade da Espécie , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Virulência , Replicação Viral , Zika virus/genética , Infecção por Zika virus/virologia
2.
Viruses ; 14(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35062252

RESUMO

Co-infection with Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) is a worldwide public health concern, leading to worse clinical outcomes caused by both pathogens. We used a non-human primate model of simian immunodeficiency virus (SIV)-Mtb co-infection, in which latent Mtb infection was established prior to SIVmac251 infection. The evolutionary dynamics of SIV env was evaluated from samples in plasma, lymph nodes, and lungs (including granulomas) of SIV-Mtb co-infected and SIV only control animals. While the diversity of the challenge virus was low and overall viral diversity remained relatively low over 6-9 weeks, changes in viral diversity and divergence were observed, including evidence for tissue compartmentalization. Overall, viral diversity was highest in SIV-Mtb animals that did not develop clinical Mtb reactivation compared to animals with Mtb reactivation. Among lung granulomas, viral diversity was positively correlated with the frequency of CD4+ T cells and negatively correlated with the frequency of CD8+ T cells. SIV diversity was highest in the thoracic lymph nodes compared to other sites, suggesting that lymphatic drainage from the lungs in co-infected animals provides an advantageous environment for SIV replication. This is the first assessment of SIV diversity across tissue compartments during SIV-Mtb co-infection after established Mtb latency.


Assuntos
Coinfecção/microbiologia , Coinfecção/virologia , Macaca fascicularis/virologia , Mycobacterium tuberculosis/virologia , Vírus da Imunodeficiência Símia/genética , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Biodiversidade , Linfócitos T CD8-Positivos , Evolução Molecular , Infecções por HIV , Humanos , Mutação , Carga Viral
3.
Sci Rep ; 9(1): 20221, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882888

RESUMO

We isolated a novel simian sapelovirus (SSV), Cam13, from fecal specimen of a cynomolgus monkey by using PLC/PRF/5 cells. The SSV infection of the cells induced an extensive cytopathic effect. Two types of virus particles with identical diameter (~32 nm) but different densities (1.348 g/cm3 and 1.295 g/cm3) were observed in the cell culture supernatants. The RNA genome of Cam13 possesses 8,155 nucleotides and a poly(A) tail, and it has a typical sapelovirus genome organization consisting of a 5' terminal untranslated region, a large open reading frame (ORF), and a 3' terminal untranslated region. The ORF encodes a single polyprotein that is subsequently processed into a leader protein (L), four structural proteins (VP1, VP2, VP3, and VP4) and seven functional proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D). We confirmed that 293 T, HepG2/C3A, Hep2C, Huh7 and primary cynomolgus monkey kidney cells were susceptible to SSV infection. In contrast, PK-15, Vero, Vero E6, RD-A, A549, and primary green monkey kidney cells were not susceptible to SSV infection. We established an ELISA for the detection of IgG antibodies against SSV by using the virus particles as the antigen. A total of 327 serum samples from cynomolgus monkeys and 61 serum samples from Japanese monkeys were examined, and the positive rates were 88.4% and 18%, respectively. These results demonstrated that SSV infection occurred frequently in the monkeys. Since Cam13 shared 76.54%-79.52% nucleotide sequence identities with other known SSVs, and constellated in a separate lineage in the phylogeny based on the entire genome sequence, we propose that Cam13 is a new genotype of the simian sapelovirus species.


Assuntos
Fezes/virologia , Genoma Viral/genética , Macaca fascicularis/virologia , Picornaviridae/genética , Vírion/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Células A549 , Animais , Sequência de Bases/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Humanos , Fases de Leitura Aberta/genética , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Análise de Sequência de DNA/métodos , Células Vero , Vírion/isolamento & purificação
4.
Viruses ; 11(10)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652508

RESUMO

Cynomolgus macaques are common across South East Asian countries including Thailand. The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) captures wild-borne cynomolgus macaque for research use. Limited information is available on the enteric viruses and possible zoonotic infections into or from cynomolgus macaques. We characterized and compare the fecal virome of two populations; healthy wild-originated captive cynomolgus macaques (n = 43) reared in NPRCT-CU and healthy wild cynomolgus macaques (n = 35). Over 90% of recognized viral sequence reads amplified from feces were from bacterial viruses. Viruses from seven families of mammalian viruses were also detected (Parvoviridae, Anelloviridae, Picornaviridae, Adenoviridae, Papillomaviridae, Herpesviridae, and Caliciviridae). The genomes of a member of a new picornavirus genus we named Mafapivirus, a primate chapparvovirus, and a circular Rep-encoding single-strand (CRESS) DNA virus were also characterized. Higher abundance of CRESS DNA viruses of unknown tropism and invertebrate-tropic ambidensovirus were detected in wild versus captive macaques likely reflecting dietary differences. Short term rearing in captivity did not have a pronounced effect on the diversity of mammalian viruses of wild cynomolgus macaques. This study is the first report of the fecal virome of cynomolgus macaques, non-human primates frequently used in biomedical research and vaccination studies.


Assuntos
Animais Selvagens/virologia , Animais de Zoológico/virologia , Infecções por Enterovirus/veterinária , Enterovirus/classificação , Variação Genética , Macaca fascicularis/virologia , Animais , Fezes/virologia , Feminino , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Metagenômica , Filogenia , Tailândia
5.
Nat Commun ; 10(1): 3737, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427581

RESUMO

Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis worldwide. In this work, a pulse-triggered ultrasensitive electrochemical sensor was fabricated using graphene quantum dots and gold-embedded polyaniline nanowires, prepared via an interfacial polymerization and then self-assembly approach. Introducing an external electrical pulse during the virus accumulation step increases the sensitivity towards HEV due to the expanded surface of the virus particle as well as the antibody-conjugated polyaniline chain length, compared to other conventional electrochemical sensors. The sensor was applied to various HEV genotypes, including G1, G3, G7 and ferret HEV obtained from cell culture supernatant and in a series of fecal specimen samples collected from G7 HEV-infected monkey. The sensitivity is similar to that detected by real-time quantitative reverse transcription-polymerase chain (RT-qPCR). These results suggests that the proposed sensor can pave the way for the development of robust, high-performance sensing methodologies for HEV detection.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Vírus da Hepatite E/isolamento & purificação , Hepatite E/diagnóstico , Compostos de Anilina/química , Animais , Linhagem Celular Tumoral , Fezes/virologia , Furões/virologia , Ouro/química , Grafite/química , Hepatite E/virologia , Humanos , Macaca fascicularis/virologia , Mariposas/virologia , Nanofios/química , Pontos Quânticos/química , Sensibilidade e Especificidade
6.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700602

RESUMO

Hepatitis E virus (HEV) is zoonotic and a major cause of acute viral hepatitis worldwide. Recently, we identified a novel HEV genotype 8 (HEV8) in Bactrian camels in Xinjiang, China. However, the epidemiology, pathogenicity, and zoonotic potential of HEV8 are unclear. Here, we present the prevalence of HEV8 in China and investigate its pathogenicity and cross-species transmission in cynomolgus macaques. Fresh fecal and milk samples from Bactrian camels collected from four provinces/regions in China were screened for HEV RNA by reverse transcriptase PCR (RT-PCR). An HEV8-positive sample was used to inoculate two cynomolgus macaques to examine the potential for cross-species infection. The pathogenicity of HEV8 was analyzed by testing HEV markers and liver function during the study period and histopathology of liver biopsy specimens at 3, 13, and 25 weeks postinoculation. Extrahepatic replication was tested by using reverse transcriptase quantitative PCR (RT-qPCR) and immunofluorescence assays. The overall prevalence of HEV8 RNA in Chinese Bactrian camels was 1.4% (4/295), and positive samples were found in three different provinces/regions in China. Histopathology confirmed acute and chronic HEV8 infections in the two monkeys. Multiple tissues were positive for HEV RNA and ORF2 proteins. Renal pathology was observed in the monkey with chronic hepatitis. Whole-genome sequencing showed only 1 to 3 mutations in the HEV8 in the fecal samples from the two monkeys compared to that from the camel. HEV8 is circulating in multiple regions in China. Infection of two monkeys with HEV8 induced chronic and systemic infections, demonstrating the high potential zoonotic risk of HEV8.IMPORTANCE It is estimated that one-third of the world population have been exposed to hepatitis E virus (HEV). In developed countries and China, zoonotic HEV strains are responsible for almost all acute and chronic HEV infection cases. It is always of immediate interest to investigate the zoonotic potential of novel HEV strains. In 2016, we discovered a novel HEV genotype, HEV8, in Bactrian camels, but the epidemiology, zoonotic potential, and pathogenicity of the virus were unknown. In the present study, we demonstrated that HEV8 was circulating in multiple regions in China and was capable of infecting cynomolgus macaques, a surrogate for humans, posing high risk of zoonosis. Chronic hepatitis, systemic infection, and renal pathology were observed. Collectively, these data indicate that HEV8 exhibits a high potential for zoonotic transmission. Considering the importance of Bactrian camels as livestock animals, risk groups, such as camelid meat and milk consumers, should be screened for HEV8 infection.


Assuntos
Camelus/virologia , Vírus da Hepatite E/genética , Hepatite E/transmissão , Macaca fascicularis/virologia , Animais , China , Fezes/virologia , Genótipo , Filogenia , RNA Viral/genética , Zoonoses/virologia
7.
PLoS One ; 14(1): e0211235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682126

RESUMO

Due to the extreme tissue and species restriction of the papillomaviruses (PVs), there is a great need for animal models that accurately mimic PV infection in humans for testing therapeutic strategies against human papillomaviruses (HPVs). In this study, we present data that demonstrate that in terms of gene expression during initial viral DNA amplification, Macaca fascicularis PV (MfPV) types 5 and 8 appear to be similar to mucosal oncogenic HPVs, while MfPV1 (isolated from skin) resembles most high-risk cutaneous beta HPVs (HPV5). Similarities were also observed in replication properties during the initial amplification phase of the MfPV genomes. We demonstrate that high-risk mucosal HPV-specific inhibitors target the transient replication of the MfPV8 genomes, which indicates that similar pathways are used by the high-risk HPVs and MfPVs during their genome replication. Taking all into account, we propose that Macaca fascicularis may serve as a highly relevant model for preclinical tests designed to evaluate therapeutic strategies against HPV-associated lesions.


Assuntos
Antivirais/uso terapêutico , Macaca fascicularis/virologia , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/tratamento farmacológico , Animais , Antivirais/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Regulação Viral da Expressão Gênica , Humanos , Papillomaviridae/efeitos dos fármacos , Papillomaviridae/genética , Infecções por Papillomavirus/veterinária , Infecções por Papillomavirus/virologia , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
8.
PLoS One ; 13(10): e0205039, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278075

RESUMO

Hepatitis E virus (HEV) transmission through infected blood and blood products has already been described. However, little is known about the bone marrow (BM) as source of HEV infection. Our study aimed to investigate the presence of HEV antigen (Ag) and histological changes in BM of cynomolgus monkeys (Macaca fascicularis) experimentally and naturally infected with HEV. Four cynomolgus monkeys with acute, and two with chronic hepatitis E ─ after immunosuppressive therapy with tacrolimus ─ were compared with one colony-bred animal naturally infected. Both, natural and experimental infections were characterized by anti-HEV IgG seroconversion detected by ELISA, and viral RNA isolation confirmed by RT-qPCR and qualitative nested RT-PCR. BM biopsies were collected from all animals, submitted to histology and indirect immunofluorescence techniques and observed, respectively, by light and confocal microscopy. The HEV Ag-fluorescent-labeled cells were detected from BM biopsies obtained from three monkeys with acute and one with chronic hepatitis E, and also from the naturally infected monkey. In the experimentally infected animals with acute hepatitis, HEV Ag detection occurred at 160 days post-infection, even after viral clearance in serum, feces, and liver. Double-stranded RNA, a replicative marker, was detected in BM cells from both acute and chronically infected animals. Major histological findings included vacuolization in mononuclear and endosteal cells, an absence of organized inflammatory infiltrates, and also some fields suggesting displasic focal BM disease. These findings support the hypothesis of BM cells as secondary target sites of HEV persistence. Further experimental studies should be carried out to confirm the assumption of HEV transmission through BM transplantation.


Assuntos
Medula Óssea/virologia , Vírus da Hepatite E/fisiologia , Macaca fascicularis/virologia , Animais , Cruzamento , Feminino , Vírus da Hepatite E/imunologia , Macaca fascicularis/imunologia , Masculino , Soroconversão
9.
PLoS One ; 13(6): e0198996, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912929

RESUMO

Papillomavirus capsids are known to have the ability to package DNA plasmids and deliver them both in vitro and in vivo. Of all known papillomavirus types, human papillomaviruses (HPVs) are by far the most intensely studied. Although HPVs work well as gene transfer vectors, their use is limited as most individuals are exposed to this virus either through a HPV vaccination or natural infection. To circumvent these constraints, we produced pseudovirions (PsVs) of ten non-human papillomavirus types and tested their transduction efficiencies in vitro. PsVs based on Macaca fascicularis papillomavirus-11 and Puma concolor papillomavirus-1 were further tested in vivo. Intramuscular transduction by PsVs led to months-long expression of a reporter plasmid, indicating that PsVs have potential as gene delivery vectors.


Assuntos
Técnicas de Transferência de Genes , Papillomaviridae , Animais , Western Blotting , Capsídeo/virologia , Feminino , Células HEK293 , Humanos , Técnicas In Vitro , Macaca fascicularis/virologia , Camundongos Endogâmicos BALB C , Papillomaviridae/genética , Plasmídeos/genética , Puma/virologia , Transfecção/métodos
10.
Viruses ; 10(5)2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772762

RESUMO

Since 2005, Chikungunya virus (CHIKV) re-emerged and caused numerous outbreaks in the world, and finally, was introduced into the Americas in 2013. The lack of CHIKV-specific therapies has led to the use of non-specific drugs. Chloroquine, which is commonly used to treat febrile illnesses in the tropics, has been shown to inhibit CHIKV replication in vitro. To assess the in vivo effect of chloroquine, two complementary studies were performed: (i) a prophylactic study in a non-human primate model (NHP); and (ii) a curative study "CuraChik", which was performed during the Reunion Island outbreak in 2006 in a human cohort. Clinical, biological, and immunological data were compared between treated and placebo groups. Acute CHIKV infection was exacerbated in NHPs treated with prophylactic administration of chloroquine. These NHPs displayed a higher viremia and slower viral clearance (p < 0.003). Magnitude of viremia was correlated to the type I IFN response (Rho = 0.8, p < 0.001) and severe lymphopenia (Rho = 0.8, p < 0.0001), while treatment led to a delay in both CHIKV-specific cellular and IgM responses (p < 0.02 and p = 0.04, respectively). In humans, chloroquine treatment did not affect viremia or clinical parameters during the acute stage of the disease (D1 to D14), but affected the levels of C-reactive Protein (CRP), IFNα, IL-6, and MCP1 over time (D1 to D16). Importantly, no positive effect could be detected on prevalence of persistent arthralgia at Day 300. Although inhibitory in vitro, chloroquine as a prophylactic treatment in NHPs enhances CHIKV replication and delays cellular and humoral response. In patients, curative chloroquine treatment during the acute phase decreases the levels of key cytokines, and thus may delay adaptive immune responses, as observed in NHPs, without any suppressive effect on peripheral viral load.


Assuntos
Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Cloroquina/farmacologia , Surtos de Doenças , Imunidade/efeitos dos fármacos , Macaca fascicularis/virologia , Carga Viral/efeitos dos fármacos , Animais , Células Cultivadas , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Cloroquina/uso terapêutico , Estudos de Coortes , Modelos Animais de Doenças , Fibroblastos/virologia , Humanos , Macaca fascicularis/imunologia , Macrófagos/virologia , Masculino , Reunião/epidemiologia , Replicação Viral/efeitos dos fármacos
11.
J Gen Virol ; 97(11): 3017-3023, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27609630

RESUMO

A new simian retrovirus (SRV) subtype was discovered in China and the USA from Cambodian-origin cynomolgus monkeys. Histopathological examination from necropsied animals showed multifocal lymphoplasmacystic and histocytic inflammation. The complete genome sequences demonstrated that the US virus isolates were nearly identical (99.91-99.93 %) and differed only slightly (99.13-99.16 % identical) from the China isolate. Phylogenetic analysis showed that the new virus isolates formed a distinct branch of SRV-1 through -7, and therefore were named this subtype, SRV-8. This SRV-8 variant was also phylogenetically and serologically more closely related to SRV-4 than any other SRV subtype.


Assuntos
Doenças dos Macacos/virologia , Infecções por Retroviridae/veterinária , Retrovirus dos Símios/isolamento & purificação , Animais , Macaca fascicularis/virologia , Fases de Leitura Aberta , Filogenia , Infecções por Retroviridae/virologia , Retrovirus dos Símios/classificação , Retrovirus dos Símios/genética , Proteínas Virais/genética
12.
PLoS One ; 11(7): e0159281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27415779

RESUMO

In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm). Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac) and pig-tailed macaques (SIVmne) have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa) were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.


Assuntos
Macaca fascicularis/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Animais , Cercocebus atys/virologia , Modelos Animais de Doenças , Genoma Viral/genética , Macaca nemestrina/virologia , Filogenia
13.
Mem. Inst. Oswaldo Cruz ; 111(4): 258-266, Apr. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-779000

RESUMO

This study was conducted to analyse the course and the outcome of the liver disease in the co-infected animals in order to evaluate a possible synergic effect of human parvovirus B19 (B19V) and hepatitis A virus (HAV) co-infection. Nine adult cynomolgus monkeys were inoculated with serum obtained from a fatal case of B19V infection and/or a faecal suspension of acute HAV. The presence of specific antibodies to HAV and B19V, liver enzyme levels, viraemia, haematological changes, and necroinflammatory liver lesions were used for monitoring the infections. Seroconversion was confirmed in all infected groups. A similar pattern of B19V infection to human disease was observed, which was characterised by high and persistent viraemia in association with reticulocytopenia and mild to moderate anaemia during the period of investigation (59 days). Additionally, the intranuclear inclusion bodies were observed in pro-erythroblast cell from an infected cynomolgus and B19V Ag in hepatocytes. The erythroid hypoplasia and decrease in lymphocyte counts were more evident in the co-infected group. The present results demonstrated, for the first time, the susceptibility of cynomolgus to B19V infection, but it did not show a worsening of liver histopathology in the co-infected group.


Assuntos
Masculino , Vírus da Hepatite A , Hepatite A/complicações , Falência Hepática Aguda/virologia , Macaca fascicularis/virologia , Infecções por Parvoviridae/complicações , Parvovirus B19 Humano , Anticorpos Antivirais/sangue , Coinfecção/virologia , Modelos Animais de Doenças , Vírus da Hepatite A/imunologia , Hepatite A/imunologia , Infecções por Parvoviridae/imunologia , Parvovirus B19 Humano/imunologia , Viremia
14.
Virology ; 488: 28-36, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26590795

RESUMO

Lymphocryptoviruses such as Epstein-Barr virus (EBV) cause persistent infections in human and non-human primates, and suppression of the immune system can increase the risk of lymphocryptovirus (LCV)-associated tumor development in both human and non-human primates. To enable LCV infection as a non-clinical model to study effects of therapeutics on EBV immunity, we determined the genomic DNA sequence of the LCV from cynomolgus macaque, a species commonly used for non-clinical testing. Comparison to rhesus macaque LCV and human EBV sequences indicates that LCV from the cynomolgus macaque has the same genomic arrangement and a high degree of similarity in most genes, especially with rhesus macaque LCV. Genes showing lower similarity were those encoding proteins involved in latency and/or tumor promotion or immune evasion. The genomic sequence of LCV from cynomolgus macaque should aid the development of non-clinical tools for identifying therapeutics that impact LCV immunity and carry potential lymphoma risk.


Assuntos
DNA Viral/química , DNA Viral/genética , Genoma Viral , Lymphocryptovirus/genética , Lymphocryptovirus/isolamento & purificação , Macaca fascicularis/virologia , Animais , Ordem dos Genes , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sintenia
15.
J Infect Dis ; 212 Suppl 2: S379-83, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25957963

RESUMO

Ebola virus (EBOV) causes lethal disease in up to 90% of EBOV-infected humans. Among vaccines, only the vesicular stomatitis virus platform has been successful in providing postexposure protection in nonhuman primates. Here, we show that an adjuvanted human adenovirus serotype 5 (Ad5)-vectored vaccine (Ad5-Zaire EBOV glycoprotein) protected 67% (6 of 9) and 25% (1 of 4) of cynomolgus macaques when administered 30 minutes and 24 hours following EBOV challenge, respectively. The treatment also protected 33% of rhesus macaques (1 of 3) when given at 24 hours. The results highlight the utility of adjuvanted Ad5 vaccines for rapid immunization against EBOV.


Assuntos
Adenovírus Humanos/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Vetores Genéticos/imunologia , Doença pelo Vírus Ebola/imunologia , Macaca fascicularis/imunologia , Macaca mulatta/imunologia , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/virologia , Animais , Anticorpos Antivirais/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Macaca fascicularis/virologia , Macaca mulatta/virologia , Vacinação/métodos
16.
Antiviral Res ; 110: 175-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111905

RESUMO

Using an established nonhuman primate model for H5N1 highly pathogenic influenza virus infection in humans, we have been able to demonstrate the prophylactic mitigation of the pulmonary damage characteristic of human fatal cases from primary influenza virus pneumonia with a low dose oral formulation of a commercially available parenteral natural human interferon alpha (Alferon N Injection®). At the highest oral dose (62.5IU/kg body weight) used there was a marked reduction in the alveolar inflammatory response with minor evidence of alveolar and interstitial edema in contrast to the hemorrhage and inflammatory response observed in the alveoli of control animals. The mitigation of severe damage to the lower pulmonary airway was observed without a parallel reduction in viral titers. Clinical trial data will be necessary to establish its prophylactic human efficacy for highly pathogenic influenza viruses.


Assuntos
Interferon-alfa/farmacologia , Lesão Pulmonar/prevenção & controle , Doenças dos Macacos/tratamento farmacológico , Infecções por Orthomyxoviridae/tratamento farmacológico , Administração Oral , Animais , Modelos Animais de Doenças , Hemorragia/prevenção & controle , Humanos , Inflamação/prevenção & controle , Virus da Influenza A Subtipo H5N1/patogenicidade , Interferon-alfa/administração & dosagem , Macaca fascicularis/virologia , Doenças dos Macacos/virologia , Mucosa Bucal , Infecções por Orthomyxoviridae/prevenção & controle , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Replicação Viral/efeitos dos fármacos
17.
J Virol ; 88(12): 6690-701, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696472

RESUMO

UNLABELLED: In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation. IMPORTANCE: The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.


Assuntos
Vacinas contra a AIDS/imunologia , Sistema Nervoso Central/virologia , Vetores Genéticos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Macaca fascicularis , Vírus da Estomatite Vesicular Indiana/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Anticorpos Antivirais/imunologia , Sistema Nervoso Central/imunologia , Modelos Animais de Doenças , Vetores Genéticos/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , Humanos , Macaca fascicularis/genética , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Masculino , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
18.
Nature ; 508(7496): 402-5, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24590073

RESUMO

Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Infecções por Filoviridae/prevenção & controle , Infecções por Filoviridae/virologia , Filoviridae/efeitos dos fármacos , Nucleosídeos de Purina/farmacologia , Adenina/análogos & derivados , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacocinética , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Animais de Doenças , Ebolavirus/efeitos dos fármacos , Filoviridae/enzimologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Injeções Intramusculares , Macaca fascicularis/virologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/virologia , Marburgvirus/efeitos dos fármacos , Nucleosídeos de Purina/administração & dosagem , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacocinética , Pirrolidinas , RNA/biossíntese , Fatores de Tempo
19.
J Infect Dis ; 209(12): 2012-6, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24403559

RESUMO

Highly pathogenic avian influenza virus infection is characterized by a marked inflammatory response, but the impact of infection on dendritic cells (DCs) is unknown. We show that influenza A virus subtype H5N1 infection rapidly and profoundly impacts DCs in cynomolgus macaques, increasing the number of blood myeloid and plasmacytoid DCs by 16- and 60-fold, respectively. Infection was associated with recruitment, activation, and apoptosis of DCs in lung-draining lymph nodes; granulocyte and macrophage infiltration in lungs was also detected, together with expression of CXCL10. This degree of DC mobilization is unprecedented in viral infection and suggests a potential role for DCs in the pathogenesis of highly pathogenic avian influenza virus.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae/imunologia , Animais , Proliferação de Células , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Pulmão/patologia , Pulmão/virologia , Linfonodos/virologia , Macaca fascicularis/virologia , Macrófagos/metabolismo , Masculino , Infecções por Orthomyxoviridae/patologia
20.
Virol J ; 10: 326, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24180225

RESUMO

BACKGROUND: Foamy viruses are non-pathogenic in vivo and naturally infect all species of non-human primates (NHP). Simian foamy viruses (SFV) are highly prevalent in both free ranging and captive NHP but few longitudinal studies have been performed to assess the prevalence and biodistribution of SFV within captive NHP. METHOD: LTR and pol gene along with Gag antibody detection were undertaken to identify infection in a cohort of over 80 captive macaques. RESULTS: The prevalence of SFV was between 64% and 94% in different groups. Access to 23 dam-infant pairs allowed us to reveal horizontal transfer as the dominant route of SFV transmission in our cohort. Further, analysis of SFV from a range of tissues and blood revealed that macaques as young as six months old can be infected and that proviral biodistribution increases with age. CONCLUSIONS: These are the first data of this type for a captive cohort of cynomolgus macaques.


Assuntos
Transmissão de Doença Infecciosa , Macaca fascicularis/virologia , Infecções por Retroviridae/veterinária , Spumavirus/classificação , Spumavirus/genética , Animais , Anticorpos Antivirais/sangue , Análise por Conglomerados , Feminino , Produtos do Gene gag/imunologia , Produtos do Gene pol/genética , Masculino , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Prevalência , RNA Viral/genética , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia , Análise de Sequência de DNA , Spumavirus/isolamento & purificação , Sequências Repetidas Terminais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA