Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.532
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 92, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715072

RESUMO

Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Imunoterapia/métodos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos
2.
Cell Mol Biol Lett ; 29(1): 77, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769475

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS: ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS: LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS: LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.


Assuntos
Quimiocina CCL2 , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Microambiente Tumoral , Macrófagos Associados a Tumor , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Animais , Camundongos , Feminino , Proliferação de Células/genética
3.
Cancer Immunol Immunother ; 73(6): 115, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693304

RESUMO

In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.


Assuntos
Matriz Extracelular , Neoplasias , Macrófagos Associados a Tumor , Humanos , Matriz Extracelular/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo
4.
Breast Cancer Res ; 26(1): 75, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720366

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are a prominent immune subpopulation in the tumor microenvironment that could potentially serve as therapeutic targets for breast cancer. Thus, it is important to characterize this cell population across different tumor subtypes including patterns of association with demographic and prognostic factors, and breast cancer outcomes. METHODS: We investigated CD163+ macrophages in relation to clinicopathologic variables and breast cancer outcomes in the Women's Circle of Health Study and Women's Circle of Health Follow-up Study populations of predominantly Black women with breast cancer. We evaluated 611 invasive breast tumor samples (507 from Black women, 104 from White women) with immunohistochemical staining of tissue microarray slides followed by digital image analysis. Multivariable Cox proportional hazards models were used to estimate hazard ratios for overall survival (OS) and breast cancer-specific survival (BCSS) for 546 cases with available survival data (median follow-up time 9.68 years (IQR: 7.43-12.33). RESULTS: Women with triple-negative breast cancer showed significantly improved OS in relation to increased levels of tumor-infiltrating CD163+ macrophages in age-adjusted (Q3 vs. Q1: HR = 0.36; 95% CI 0.16-0.83) and fully adjusted models (Q3 vs. Q1: HR = 0.30; 95% CI 0.12-0.73). A similar, but non-statistically significant, association was observed for BCSS. Macrophage infiltration in luminal and HER2+ tumors was not associated with OS or BCSS. In a multivariate regression model that adjusted for age, subtype, grade, and tumor size, there was no significant difference in CD163+ macrophage density between Black and White women (RR = 0.88; 95% CI 0.71-1.10). CONCLUSIONS: In contrast to previous studies, we observed that higher densities of CD163+ macrophages are independently associated with improved OS and BCSS in women with invasive triple-negative breast cancer. Trial registration Not applicable.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Receptores de Superfície Celular , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Feminino , Microambiente Tumoral/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Seguimentos , Prognóstico , Adulto , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Modelos de Riscos Proporcionais
5.
J Transl Med ; 22(1): 442, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730286

RESUMO

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Colina , Células Endoteliais , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Pessoa de Meia-Idade , Prognóstico , Imunoterapia , Terapia de Imunossupressão , Estimativa de Kaplan-Meier , Nomogramas , Reprogramação Metabólica
6.
Int J Oncol ; 64(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695252

RESUMO

Tumor­associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor­promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage­based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM­targeting therapeutic strategies and discussed the obstacles and perspectives of TAM­targeting therapies for cancers.


Assuntos
Progressão da Doença , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neovascularização Patológica/imunologia , Animais , Terapia de Alvo Molecular/métodos
7.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774995

RESUMO

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Assuntos
Neoplasias Ósseas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Imunoterapia , Macrófagos , Osteossarcoma , Microambiente Tumoral , Osteossarcoma/patologia , Osteossarcoma/imunologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/terapia , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Prognóstico , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Masculino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Metástase Neoplásica , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Movimento Celular
8.
J Cancer Res Clin Oncol ; 150(5): 238, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713256

RESUMO

BACKGROUND: Tumor growth is closely linked to the activities of various cells in the tumor microenvironment (TME), particularly immune cells. During tumor progression, circulating monocytes and macrophages are recruited, altering the TME and accelerating growth. These macrophages adjust their functions in response to signals from tumor and stromal cells. Tumor-associated macrophages (TAMs), similar to M2 macrophages, are key regulators in the TME. METHODS: We review the origins, characteristics, and functions of TAMs within the TME. This analysis includes the mechanisms through which TAMs facilitate immune evasion and promote tumor metastasis. Additionally, we explore potential therapeutic strategies that target TAMs. RESULTS: TAMs are instrumental in mediating tumor immune evasion and malignant behaviors. They release cytokines that inhibit effector immune cells and attract additional immunosuppressive cells to the TME. TAMs primarily target effector T cells, inducing exhaustion directly, influencing activity indirectly through cellular interactions, or suppressing through immune checkpoints. Additionally, TAMs are directly involved in tumor proliferation, angiogenesis, invasion, and metastasis. Developing innovative tumor-targeted therapies and immunotherapeutic strategies is currently a promising focus in oncology. Given the pivotal role of TAMs in immune evasion, several therapeutic approaches have been devised to target them. These include leveraging epigenetics, metabolic reprogramming, and cellular engineering to repolarize TAMs, inhibiting their recruitment and activity, and using TAMs as drug delivery vehicles. Although some of these strategies remain distant from clinical application, we believe that future therapies targeting TAMs will offer significant benefits to cancer patients.


Assuntos
Neoplasias , Evasão Tumoral , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Evasão Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Imunoterapia/métodos
9.
Cancer Immunol Immunother ; 73(7): 128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743074

RESUMO

The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.


Assuntos
Codonopsis , Fenótipo , Microambiente Tumoral , Macrófagos Associados a Tumor , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Humanos , Glicopeptídeos/metabolismo , Glicopeptídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/imunologia
10.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690738

RESUMO

Targeting tumor-associated macrophages (TAMs) is an emerging approach being tested in multiple clinical trials. TAMs, depending on their differentiation state, can exhibit pro- or antitumorigenic functions. For example, the M2-like phenotype represents a protumoral state that can stimulate tumor growth, angiogenesis, metastasis, therapy resistance, and immune evasion by expressing immune checkpoint proteins. In this issue of the JCI, Vaccaro and colleagues utilized an innovative drug screen approach to demonstrate that targeting driver oncogenic signaling pathways concurrently with anti-CD47 sensitizes tumor cells, causing them to undergo macrophage-induced phagocytosis. The combination treatment altered expression of molecules on the tumor cells that typically limit phagocytosis. It also reprogrammed macrophages to an M1-like antitumor state. Moreover, the approach was generalizable to tumor cells with different oncogenic pathways, opening the door to precision oncology-based rationale combination therapies that have the potential to improve outcomes for patients with oncogene-driven lung cancers and likely other cancer types.


Assuntos
Antígeno CD47 , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Antígeno CD47/metabolismo , Antígeno CD47/antagonistas & inibidores , Animais , Fagocitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
11.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703051

RESUMO

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Assuntos
Linfócitos do Interstício Tumoral , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Supressoras Mieloides/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Tolerância Imunológica , Animais , Macrófagos Associados a Tumor/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Mieloides/imunologia
12.
PLoS One ; 19(5): e0302780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713738

RESUMO

Reticulocalbin 1 (RCN1) is a calcium-binding protein involved in the regulation of calcium homeostasis in the endoplasmic reticulum. The aim of this study was to explore the clinical value and biological role of RCN1 in esophageal squamous cell carcinoma (ESCC). In addition, we investigated the effect of RCN1 on the polarization of tumor-associated macrophages (TAMs). The GSE53625 dataset from the Gene Expression Omnibus database was used to analyze the expression of RCN1 mRNA and its relationship with clinical value and immune cell infiltration. Immunohistochemistry was used to validate the expression of RCN1 and its correlation with clinicopathological characteristics. Subsequently, transwell and cell scratch assays were conducted to evaluate the migration and invasion abilities of ESCC cells. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot, while apoptosis was detected by flow cytometry and western blot. Additionally, qRT‒PCR was utilized to evaluate the role of RCN1 in macrophage polarization. RCN1 was significantly upregulated in ESCC tissues and was closely associated with lymphatic metastasis and a poor prognosis, and was an independent prognostic factor for ESCC in patients. Knockdown of RCN1 significantly inhibited the migration, invasion, and EMT of ESCC cells, and promoted cell apoptosis. In addition, RCN1 downregulation inhibited M2 polarization. RCN1 is upregulated in ESCC patients and is negatively correlated with patient prognosis. Knocking down RCN1 inhibits ESCC progression and M2 polarization. RCN1 can serve as a potential diagnostic and prognostic indicator for ESCC, and targeting RCN1 is a very promising therapeutic strategy.


Assuntos
Proteínas de Ligação ao Cálcio , Regulação para Baixo , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Feminino , Masculino , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Movimento Celular/genética , Progressão da Doença , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Apoptose , Prognóstico , Macrófagos/metabolismo
13.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714539

RESUMO

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Assuntos
Hexoquinase , Neuroblastoma , Macrófagos Associados a Tumor , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Humanos , Hexoquinase/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Quimiocinas CXC/metabolismo , Animais , Microambiente Tumoral/imunologia
14.
Pathol Oncol Res ; 30: 1611586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689823

RESUMO

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Assuntos
Lipossomos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata , Macrófagos Associados a Tumor , Animais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Camundongos , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Modelos Animais de Doenças , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Selectina E/metabolismo , Microambiente Tumoral/imunologia
15.
Nat Commun ; 15(1): 2818, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561369

RESUMO

Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.


Assuntos
Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Animais , Masculino , Camundongos , Eferocitose , Evasão da Resposta Imune , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Neoplasias da Bexiga Urinária/metabolismo
16.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611749

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1ß, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-ß1 and p-ERK in a concentration-dependent manner, as well as TGF-ß1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.


Assuntos
Ácidos Cafeicos , Lactatos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Macrófagos Associados a Tumor
17.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612413

RESUMO

Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.


Assuntos
Neoplasias da Mama , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Macrófagos , Camundongos Knockout , Poli(ADP-Ribose) Polimerases , Tamoxifeno
18.
Cell Mol Life Sci ; 81(1): 179, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602536

RESUMO

Extracellular vesicles (EVs) have recently received increasing attention as essential mediators of communication between tumor cells and their microenvironments. Tumor-associated macrophages (TAMs) play a proangiogenic role in various tumors, especially head and neck squamous cell carcinoma (HNSCC), and angiogenesis is closely related to tumor growth and metastasis. This research focused on exploring the mechanisms by which EVs derived from TAMs modulate tumor angiogenesis in HNSCC. Our results indicated that TAMs infiltration correlated positively with microvascular density in HNSCC. Then we collected and identified EVs from TAMs. In the microfluidic chip, TAMs derived EVs significantly enhanced the angiogenic potential of pHUVECs and successfully induced the formation of perfusable blood vessels. qPCR and immunofluorescence analyses revealed that EVs from TAMs transferred miR-21-5p to endothelial cells (ECs). And targeting miR-21-5p of TAMs could effectively inhibit TAM-EVs induced angiogenesis. Western blot and tube formation assays showed that miR-21-5p from TAM-EVs downregulated LATS1 and VHL levels but upregulated YAP1 and HIF-1α levels, and the inhibitors of YAP1 and HIF-1α could both reduce the miR-21-5p enhanced angiogenesis in HUVECs. The in vivo experiments further proved that miR-21-5p carried by TAM-EVs promoted the process of tumor angiogenesis via YAP1/HIF-1α axis in HNSCC. Conclusively, TAM-derived EVs transferred miR-21-5p to ECs to target the mRNA of LATS1 and VHL, which inhibited YAP1 phosphorylation and subsequently enhanced YAP1-mediated HIF-1α transcription and reduced VHL-mediated HIF-1α ubiquitination, contributing to angiogenesis in HNSCC. These findings present a novel regulatory mechanism of tumor angiogenesis, and miR-21-5p/YAP1/HIF-1α might be a potential therapeutic target for HNSCC.


Assuntos
Exossomos , Neoplasias de Cabeça e Pescoço , MicroRNAs , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Angiogênese , Células Endoteliais , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Macrófagos Associados a Tumor , Exossomos/metabolismo , Animais , Camundongos
19.
J Med Chem ; 67(8): 6854-6879, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38593344

RESUMO

Blocking CSF-1/CSF-1R pathway has emerged as a promising strategy to remodel tumor immune microenvironment (TME) by reprogramming tumor-associated macrophages (TAMs). In this work, a novel CSF-1R inhibitor C19 with a highly improved pharmacokinetic profile and in vivo anticolorectal cancer (CRC) efficiency was successfully discovered. C19 could effectively reprogram M2-like TAMs to M1 phenotype and reshape the TME by inducing the recruitment of CD8+ T cells into tumors and reducing the infiltration of immunosuppressive Tregs/MDSCs. Deeper mechanistic studies revealed that C19 facilitated the infiltration of CD8+ T cells by enhancing the secretion of chemokine CXCL9, thus significantly potentiating the anti-CRC efficiency of PD-1 blockade. More importantly, C19 combined with PD-1 mAb could induce durable antitumor immune memory, effectively overcoming the recurrence of CRC. Taken together, our findings suggest that C19 is a promising therapeutic option for sensitizing CRC to anti-PD-1 therapy.


Assuntos
Neoplasias Colorretais , Imunoterapia , Receptor de Fator Estimulador de Colônias de Macrófagos , Neoplasias Colorretais/tratamento farmacológico , Animais , Humanos , Camundongos , Imunoterapia/métodos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/química , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Feminino , Descoberta de Drogas , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Masculino , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia
20.
Cancer Cell ; 42(5): 815-832.e12, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38640932

RESUMO

Monocyte-derived tumor-associated macrophages (Mo-TAMs) intensively infiltrate diffuse gliomas with remarkable heterogeneity. Using single-cell transcriptomics, we chart a spatially resolved transcriptional landscape of Mo-TAMs across 51 patients with isocitrate dehydrogenase (IDH)-wild-type glioblastomas or IDH-mutant gliomas. We characterize a Mo-TAM subset that is localized to the peri-necrotic niche and skewed by hypoxic niche cues to acquire a hypoxia response signature. Hypoxia-TAM destabilizes endothelial adherens junctions by activating adrenomedullin paracrine signaling, thereby stimulating a hyperpermeable neovasculature that hampers drug delivery in glioblastoma xenografts. Accordingly, genetic ablation or pharmacological blockade of adrenomedullin produced by Hypoxia-TAM restores vascular integrity, improves intratumoral concentration of the anti-tumor agent dabrafenib, and achieves combinatorial therapeutic benefits. Increased proportion of Hypoxia-TAM or adrenomedullin expression is predictive of tumor vessel hyperpermeability and a worse prognosis of glioblastoma. Our findings highlight Mo-TAM diversity and spatial niche-steered Mo-TAM reprogramming in diffuse gliomas and indicate potential therapeutics targeting Hypoxia-TAM to normalize tumor vasculature.


Assuntos
Adrenomedulina , Neoplasias Encefálicas , Glioblastoma , Macrófagos Associados a Tumor , Humanos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Animais , Adrenomedulina/genética , Adrenomedulina/metabolismo , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Neovascularização Patológica/genética , Microambiente Tumoral , Isocitrato Desidrogenase/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Macrófagos/metabolismo , Hipóxia Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA