Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Parasitology ; 151(5): 506-513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533610

RESUMO

Leishmania is a trypanosomatid parasite that causes skin lesions in its cutaneous form. Current therapies rely on old and expensive drugs, against which the parasites have acquired considerable resistance. Trypanosomatids are unable to synthesize purines relying on salvaging from the host, and nucleoside analogues have emerged as attractive antiparasitic drug candidates. 4-Methyl-7-ß-D-ribofuranosyl-7H-pyrrolo[2,3-d]pyrimidine (CL5564), an analogue of tubercidin in which the amine has been replaced by a methyl group, demonstrates activity against Trypanosoma cruzi and Leishmania infantum. Herein, we investigated its in vitro and in vivo activity against L. amazonensis. CL5564 was 6.5-fold (P = 0.0002) more potent than milteforan™ (ML) against intracellular forms in peritoneal mouse macrophages, and highly selective, while combination with ML gave an additive effect. These results stimulated us to study the activity of CL5564 in mouse model of cutaneous Leishmania infection. BALB/c female and male mice infected by L. amazonensis treated with CL5564 (10 mg kg−1, intralesional route for five days) presented a >93% reduction of paw lesion size likely ML given orally at 40 mg kg−1, while the combination (10 + 40 mg kg−1 of CL5564 and ML, respectively) caused >96% reduction. The qPCR confirmed the suppression of parasite load, but only the combination approach reached 66% of parasitological cure. These results support additional studies with nucleoside derivatives.


Assuntos
Modelos Animais de Doenças , Leishmania mexicana , Leishmaniose Cutânea , Camundongos Endogâmicos BALB C , Animais , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Feminino , Masculino , Leishmania mexicana/efeitos dos fármacos , Tubercidina/farmacologia , Tubercidina/análogos & derivados , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Antiprotozoários/administração & dosagem , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Leishmania/efeitos dos fármacos
2.
J Basic Microbiol ; 64(5): e2300490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227394

RESUMO

Currently, zinc oxide (ZnO) particles are used in nanotechnology to destroy a wide range of microorganisms. Although pentavalent antimony compounds are used as antileishmanial drugs, they are associated with several limitations and side effects. Therefore, it is always desirable to try to find new and effective treatments. The aim of this research is to determine the antileishmanial effect of ZnO particles in comparison to the Antimoan Meglumine compound on promastigotes and amastigotes of Leishmania major (MRHO/IR/75/ER). After the extraction and purification of macrophages from the peritoneal cavity of C57BL/6 mice, L. major parasites were cultured in Roswell Park Memorial Institute-1640 culture medium containing fetal bovine serum (FBS) 10% and antibiotic. In this experimental study, the effect of different concentrations of nanoparticles was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) colorimetric method, in comparison to the glucantime on promastigotes, amastigotes and healthy macrophages in the culture medium. The amount of light absorption of the obtained color from the regeneration of tetrazolium salt to the product color of formazan by the parasite was measured by an enzyme-linked immunosorbent assay (ELISA) reader, and the IC50 value was calculated. IC50 after 24 h of incubation was calculated as IC50 = 358.6 µg/mL. The results showed, that the efficacy of ZnO nanoparticles was favorable and dose-dependent. The concentration of 500 µg/mL of ZnO nanoparticles induced 84.67% apoptosis after 72. Also, the toxicity of nanoparticles was less than the drug. Nanoparticles exert their cytotoxic effects by inducing apoptosis. They can be suitable candidates in the pharmaceutical industry in the future.


Assuntos
Antiprotozoários , Leishmania major , Antimoniato de Meglumina , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Animais , Leishmania major/efeitos dos fármacos , Camundongos , Antiprotozoários/farmacologia , Antimoniato de Meglumina/farmacologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Concentração Inibidora 50 , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Nanopartículas Metálicas/química
3.
Front Cell Infect Microbiol ; 12: 882555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601101

RESUMO

Chagas disease (CD), caused by the hemoflagellate protozoan Trypanosoma cruzi, affects more than six million people worldwide and presents an unsatisfactory therapy, based on two nitroderivatives, introduced in clinical medicine for decades. The synthetic peptide, with CTHRSSVVC sequence (PepA), mimics the CD163 and TNF-α tripeptide "RSS" motif and binds to atheromatous plaques in carotid biopsies of human patients, spleen tissues, and a low-density lipoprotein receptor knockout (LDLr-/-) mouse model of atherosclerosis. CD163 receptor is present on monocytes, macrophages, and neutrophils, acting as a regulator of acute-phase processes and modulating aspects of the inflammatory response and the establishment of infections. Due to the potential theranostic role of PepA, our aim was to investigate its effect upon T. cruzi infection in vitro and in vivo. PepA and two other peptides with shuffled sequences were assayed upon different binomials of host cell/parasite, including professional [as peritoneal mouse macrophages (PMM)] and non-professional phagocytes [primary cultures of cardiac cells (CM)], under different protocols. Also, their impact was further addressed in vivo using a mouse model of acute experimental Chagas disease. Our in-vitro findings demonstrate that PepA and PepB (the peptide with random sequence retaining the "RS" sequence) reduced the intracellular parasitism of the PMM but were inactive during the infection of cardiac cells. Another set of in-vitro and in-vivo studies showed that they do not display a trypanocidal effect on bloodstream trypomastigotes nor exhibit in-vivo efficacy when administered after the parasite inoculation. Our data report the in-vitro activity of PepA and PepB upon the infection of PMM by T. cruzi, possibly triggering the microbicidal arsenal of the host professional phagocytes, capable of controlling parasitic invasion and proliferation.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Doença de Chagas/parasitologia , Humanos , Macrófagos Peritoneais/parasitologia , Modelos Teóricos , Peptídeos/metabolismo , Peptídeos/farmacologia , Trypanosoma cruzi/metabolismo
4.
Biomed Res Int ; 2022: 9928362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187176

RESUMO

Endogenous nucleotides produced by various group of cells under inflammatory conditions act as potential danger signals in vivo. Extracellularly released nucleotides such as ATP are rapidly hydrolyzed to adenosine by the coordinated ectonucleotidase activities of CD39 and CD73. Leishmania is an obligate intracellular parasite of macrophages and capable of modulating host immune response in order to survive and multiply within host cells. In this study, the activity of CD73 induced by Leishmania amazonensis in infected macrophages has been investigated and correlated with parasite survival and infection in vitro. For this, the expression of CD39 and CD73, by flow cytometry, in murine peritoneal macrophages infected with metacyclic promastigotes of L. amazonensis has been analyzed. Our results showed that L. amazonensis-infected macrophages, unlike LPS-treated macrophages, increased CD73 expression. It was also noted that when CD73 enzymatic activity was blocked by α, ß-methyleneadenosine 5'-diphosphate sodium salt (APCP), macrophage parasitism was significantly decreased. Interestingly, these effects were not associated with the production of TNF-α, IL-10, or nitric oxide (NO). Together, these data demonstrate that L. amazonensis induces a regulatory phenotype in macrophages, which by activating the CD39/CD73 pathway allows parasite survival through the action of immunomodulatory adenosine receptors.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina Trifosfatases/metabolismo , Leishmania mexicana/enzimologia , Macrófagos Peritoneais/parasitologia , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
PLoS One ; 16(11): e0259008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34723989

RESUMO

Leishmaniasis is a neglected disease that affects 12 million people living mainly in developing countries. Herein, 24 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antileishmanial activity. Compound 4f, a furoxan derivative, was particularly remarkable in this regard, with EC50 value of 3.6 µM against L. infantum amastigote forms and CC50 value superior to 500 µM against murine peritoneal macrophages. In vitro studies suggested that 4f may act by a dual effect, by releasing nitric oxide after biotransformation and by inhibiting cysteine protease CPB (IC50: 4.5 µM). In vivo studies using an acute model of infection showed that compound 4f at 7.7 mg/Kg reduced ~90% of parasite burden in the liver and spleen of L. infantum-infected BALB/c mice. Altogether, these outcomes highlight furoxan 4f as a promising compound for further evaluation as an antileishmanial agent.


Assuntos
Antiprotozoários/farmacologia , Desenho de Fármacos , Leishmania infantum/efeitos dos fármacos , Óxidos/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Biomarcadores/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ligantes , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico/análise , Nitritos/análise , Oxidiazóis/síntese química , Oxidiazóis/química , Óxidos/síntese química , Óxidos/química , Carga Parasitária , Pichia/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Proteínas de Protozoários/metabolismo
6.
J Med Chem ; 64(17): 12691-12704, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34427442

RESUMO

1,2,3-Triazole is one of the most flexible chemical scaffolds broadly used in various fields. Here, we report the antileishmanial activity of 1,2,3-triazole derivatives, the ultrastructural alterations induced by their treatment, and the nitric oxide (NO) modulation effect on their efficacy against Leishmania amazonensis in vitro infection. After the screening of eleven compounds, compound 4 exhibited better results against L. amazonensis promastigotes (IC50 = 15.52 ± 3.782 µM) and intracellular amastigotes (IC50 = 4.10 ± 1.136 µM), 50% cytotoxicity concentration at 84.01 ± 3.064 µM against BALB/c peritoneal macrophages, and 20.49-fold selectivity for the parasite over the cells. Compound 4 induced ultrastructural mitochondrial alterations and lipid inclusions in L. amazonensis promastigotes, upregulated tumor necrosis factor α, interleukin (IL)-1ß, IL-6, IL-12, and IL-10 messenger RNA expressions, and enhanced the NO production, verified by nitrite (p = 0.0095) and inducible nitric oxide synthase expression (p = 0.0049) quantification, which played an important role in its activity against intramacrophagic L. amazonensis. In silico prediction in association with antileishmanial activity results showed compound 4 as a hit compound with promising potential for further studies of new leishmaniasis treatment options.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Óxido Nítrico/metabolismo , Triazóis/farmacologia , Animais , Antiprotozoários/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Triazóis/química
7.
Exp Parasitol ; 229: 108152, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34419413

RESUMO

Dog roundworm (Toxocara canis) is the major causative agent of toxocarosis, a parasitic disease of both veterinary and medical importance. Knowledge gaps in fundamental and applied aspects hinder the control of this important zoonotic disease. To have a better understanding of Toxocara infection and host immune responses, mouse macrophages were exposed to excretory/secretory (ES) proteins released by adult worms of T. canis in vitro. The messenger RNA transcription and protein expression of nucleotide-binding oligomerization domain-containing protein 1 (NOD1), receptor interacting protein 2 (RIP2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in macrophages were analysed using quantitative real-time PCR (qRT-PCR) and Western blot. The levels of tumour necrosis factor alpha (TNF-ɑ), interleukin-1 beta (IL-1ß) and IL-6 released by the stimulated macrophages were analysed using enzyme-linked immunosorbent assay. It was found that 20 µg/mL ES proteins of adult T. canis induced the expression of NOD1, RIP2 and NF-κB in mouse macrophages at both transcriptional and translational levels after 9 h of incubation in vitro. Incubation with 20 µg/mL ES proteins also modulated the production of pro-inflammatory cytokines TNF-ɑ, IL-1ß and IL-6 by the macrophages. Taken together, ES proteins of adult T. canis appeared to be able to affect the macrophage NOD1-RIP2-NF-κB signalling pathway, which might play a role in regulating the production of proinflammatory cytokines. Further investigation of these aspects should lead to a better understanding of immune recognition of and modulation by Toxocara canis in host animals.


Assuntos
Citocinas/biossíntese , Proteínas de Helminto/metabolismo , Macrófagos Peritoneais/metabolismo , Toxocara canis/metabolismo , Animais , Western Blotting , Sobrevivência Celular , Citocinas/metabolismo , Cães , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas de Helminto/farmacologia , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Toxocara canis/química , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
8.
Cell Death Dis ; 12(7): 692, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34247195

RESUMO

Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/-, Bim-/- mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim-/- mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/- mice. At the peak of parasitemia, peritoneal macrophages of Bim-/- mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim-/- splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim-/- mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim-/- mice and place Bim as an important protein in the control of T. cruzi infections.


Assuntos
Proteína 11 Semelhante a Bcl-2/deficiência , Doença de Chagas/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Proteína 11 Semelhante a Bcl-2/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/parasitologia , Células Cultivadas , Doença de Chagas/genética , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Interferon gama/metabolismo , Interleucina-6/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Carga Parasitária , Baço/imunologia , Baço/metabolismo , Baço/parasitologia , Fatores de Tempo , Trypanosoma cruzi/imunologia
9.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199336

RESUMO

The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin's antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.


Assuntos
Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Ascomicetos/química , Macrófagos Peritoneais/citologia , Xantonas/farmacologia , Animais , Antibacterianos/química , Antiprotozoários/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Biomassa , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células Hep G2 , Humanos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Xantonas/química
10.
Mem Inst Oswaldo Cruz ; 116: e200417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33729328

RESUMO

BACKGROUND: Toxoplasma gondii causes toxoplasmosis and is controlled by activated macrophages. However, infection of macrophages by tachyzoites induces TGF-ß signaling (TGF-s) inhibiting nitric oxide (NO) production. NO inhibition may be a general escape mechanism of distinct T. gondii strains. OBJECTIVES: To evaluate in activated macrophages the capacity of T. gondii strains of different virulence and genetics (RH, type I; ME-49, type II; VEG, type III; P-Br, recombinant) to evade the NO microbicidal defense system and determine LC3 loading to the parasitophorous vacuole. METHODS: Activated peritoneal macrophages were infected with the different T. gondii strains, NO-production was evaluated by the Griess reagent, and inducible nitric oxide synthase expression, TGF-s, and LC3 localisation assayed by immunofluorescence. FINDINGS: Only RH persisted in macrophages, while VEG was more resistant than P-Br and ME-49. All strains induced TGF-s, degradation of inducible nitric oxide synthase, and NO-production inhibition from 2 to 24 h of infection, but only RH sustained these alterations for 48 h. By 24 h of infection, TGF-s lowered in macrophages infected by ME-49, and P-Br, and NO-production recovered, while VEG sustained TGF-s and NO-production inhibition longer. LC3 loading to parasitophorous vacuole was strain-dependent: higher for ME-49, P-Br and VEG, lower for RH. All strains inhibited NO-production, but only RH sustained this effect probably because it persisted in macrophages due to additional evasive mechanisms as lower LC3 loading to parasitophorous vacuole. MAIN CONCLUSIONS: These results support that T. gondii can escape the NO microbicidal defense system at the initial phase of the infection, but only the virulent strain sustain this evasion mechanism.


Assuntos
Macrófagos Peritoneais/parasitologia , Macrófagos/parasitologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/biossíntese , Toxoplasma/fisiologia , Animais , Macrófagos/metabolismo , Camundongos , Toxoplasmose Animal/parasitologia
11.
Mem. Inst. Oswaldo Cruz ; 116: e200417, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1154880

RESUMO

BACKGROUND Toxoplasma gondii causes toxoplasmosis and is controlled by activated macrophages. However, infection of macrophages by tachyzoites induces TGF-β signaling (TGF-s) inhibiting nitric oxide (NO) production. NO inhibition may be a general escape mechanism of distinct T. gondii strains. OBJECTIVES To evaluate in activated macrophages the capacity of T. gondii strains of different virulence and genetics (RH, type I; ME-49, type II; VEG, type III; P-Br, recombinant) to evade the NO microbicidal defense system and determine LC3 loading to the parasitophorous vacuole. METHODS Activated peritoneal macrophages were infected with the different T. gondii strains, NO-production was evaluated by the Griess reagent, and inducible nitric oxide synthase expression, TGF-s, and LC3 localisation assayed by immunofluorescence. FINDINGS Only RH persisted in macrophages, while VEG was more resistant than P-Br and ME-49. All strains induced TGF-s, degradation of inducible nitric oxide synthase, and NO-production inhibition from 2 to 24 h of infection, but only RH sustained these alterations for 48 h. By 24 h of infection, TGF-s lowered in macrophages infected by ME-49, and P-Br, and NO-production recovered, while VEG sustained TGF-s and NO-production inhibition longer. LC3 loading to parasitophorous vacuole was strain-dependent: higher for ME-49, P-Br and VEG, lower for RH. All strains inhibited NO-production, but only RH sustained this effect probably because it persisted in macrophages due to additional evasive mechanisms as lower LC3 loading to parasitophorous vacuole. MAIN CONCLUSIONS These results support that T. gondii can escape the NO microbicidal defense system at the initial phase of the infection, but only the virulent strain sustain this evasion mechanism.


Assuntos
Animais , Camundongos , Toxoplasma/fisiologia , Macrófagos Peritoneais/parasitologia , Óxido Nítrico Sintase/metabolismo , Macrófagos/parasitologia , Óxido Nítrico/biossíntese , Toxoplasmose Animal/parasitologia , Macrófagos/metabolismo
12.
Parasit Vectors ; 13(1): 449, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32891167

RESUMO

BACKGROUND: Neospora caninum is an obligate intracellular protozoan that causes neosporosis, N. caninum infection is a major cause of abortion in cattle worldwide. Currently, specific treatment for neosporosis is not available. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytoplasmic protein complex that plays an important role in host defense against N. caninum infection, but the underlying mechanisms are poorly understood. METHODS: The reactive oxygen species (ROS) inhibitor and the ROS inducer, wild-type (WT) and NLRP3-deficient peritoneal macrophages or mice were used to investigate the role of ROS in NLRP3 inflammasome activation and controlling parasite burdens. ROS production, cell death and cell viability, production of inflammasome-mediated IL-1ß or IL-18, cleavage of caspase-1 and NLRP3 expression, as well as parasite burdens were detected. RESULTS: In vitro, N. caninum induced ROS generation in a dose-dependent manner in peritoneal macrophages. The pretreatment of ROS inhibitor N-acetyl-L-cysteine (NAC) significantly attenuated N. caninum-induced ROS production, LDH release, IL-1ß secretion and NLRP3 expression, whereas N. caninum proliferation was notably increased. In contrary, the ROS inducer pyrogallol (PG) significantly enhanced ROS production and NLRP3 inflammasome activity and decreased the parasite burden in N. caninum-infected peritoneal macrophages. NADPH-dependent ROS-mediated NLRP3 inflammasome activation induced by N. caninum can also be confirmed by using the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI). However, the NAC or DPI pre-treatment or PG treatment did not significantly alter N. caninum-induced inflammasome activities and parasite proliferation in Nlrp3-/- peritoneal macrophages. In vivo, IL-18 releases in serum and parasite burdens in peritoneal exudate cells were significantly increased in PG-treated WT mice after infection with N. caninum; however, IL-18 productions and parasite burdens were not changed in PG-treated Nlrp3-/- mice. Furthermore, PG treatment in WT mice infected with N. caninum significantly decreased the mortality, weight loss and parasite burdens in tissues and histopathological lesions. CONCLUSIONS: Neospora caninum-induced NADPH-dependent ROS generation plays an important role in NLRP3 inflammasome activation and controlling parasites. The ROS inducer PG can control N. caninum infection mainly by promoting NLRP3 inflammasome activation. ROS-mediated NLRP3 inflammasome axis can be a potential therapeutic target for neosporosis.


Assuntos
Coccidiose/veterinária , Inflamassomos/metabolismo , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neospora/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Bovinos/parasitologia , Coccidiose/imunologia , Interações Hospedeiro-Parasita , Imunidade Inata , Macrófagos Peritoneais/parasitologia , Camundongos , Cultura Primária de Células
13.
Eur J Pharmacol ; 884: 173392, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32735985

RESUMO

The Leishmaniasis treatment currently available involves some difficulties, such as high toxicity, variable efficacy, high cost, therefore, it is crucial to search for new therapeutic alternatives. Over the past few years, research on new drugs has focused on the use of natural compounds such as chalcones and nanotechnology. In this context, this research aimed at assessing the in vitro leishmanicidal activity of free 4-nitrochalcone (4NC) on promastigotes and encapsulated 4NC on L. amazonensis-infected macrophages, as well as their action mechanisms. Free 4NC was able to reduce the viability of promastigotes, induce reactive oxygen species production, decrease mitochondrial membrane potential, increase plasma membrane permeability, and expose phosphatidylserine, in addition to altering the morphology and lowering parasite cellular volume. Treatment containing encapsulated 4NC in beeswax-copaiba oil nanoparticles (4NC-beeswax-CO Nps) did not alter the viability of macrophages. Furthermore, 4NC-beeswax-CO Nps reduced the percentage of infected macrophages and the number of amastigotes per macrophages, increasing the production of reactive oxygen species, NO, TNF-α, and IL-10. Therefore, free 4NC proved to exert anti-promastigote effect, while 4NC-beeswax-CO Nps showed a leishmanicidal effect on L. amazonensis-infected macrophages by activating the macrophage microbicidal machinery.


Assuntos
Chalconas/farmacologia , Portadores de Fármacos , Fabaceae , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Macrófagos Peritoneais/efeitos dos fármacos , Nanopartículas , Óleos de Plantas/química , Tripanossomicidas/farmacologia , Ceras/química , Animais , Apoptose/efeitos dos fármacos , Chalconas/química , Citocinas/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Fabaceae/química , Mediadores da Inflamação/metabolismo , Leishmania/crescimento & desenvolvimento , Leishmania/ultraestrutura , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óleos de Plantas/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Tripanossomicidas/química
14.
Front Immunol ; 11: 306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194558

RESUMO

CCL3, a member of the CC-chemokine family, has been associated with macrophage recruitment to heart tissue and parasite control in the acute infection of mouse with Trypanosoma cruzi, the causative agent of Chagas disease. Here, we approached the participation of CCL3 in chronic chagasic cardiomyopathy (CCC), the main clinical form of Chagas disease. We induced CCC in C57BL/6 (ccl3+/+) and CCL3-deficient (ccl3-/-) mice by infection with the Colombian Type I strain. In ccl3+/+ mice, high levels of CCL3 mRNA and protein were detected in the heart tissue during the acute and chronic infection. Survival was not affected by CCL3 deficiency. In comparison with ccl3+/+, chronically infected ccl3-/- mice presented reduced cardiac parasitism and inflammation due to CD8+ cells and macrophages. Leukocytosis was decreased in infected ccl3-/- mice, paralleling the accumulation of CD8+ T cells devoid of activated CCR5+ LFA-1+ cells in the spleen. Further, T. cruzi-infected ccl3-/-mice presented reduced frequency of interferon-gamma (IFNγ)+ cells and numbers of parasite-specific IFNγ-producing cells, while the T. cruzi antigen-specific cytotoxic activity was increased. Stimulation of CCL3-deficient macrophages with IFNγ improved parasite control, in a milieu with reduced nitric oxide (NOx) and tumor necrosis factor (TNF), but similar interleukin-10 (IL-10), concentrations. In comparison with chronically T. cruzi-infected ccl3+/+ counterparts, ccl3-/- mice did not show enlarged heart, loss of left ventricular ejection fraction, QTc prolongation and elevated CK-MB activity. Compared with ccl3+/+, infected ccl3-/- mice showed reduced concentrations of TNF, while IL-10 levels were not affected, in the heart milieu. In spleen of ccl3+/+ NI controls, most of the CD8+ T-cells expressing the CCL3 receptors CCR1 or CCR5 were IL-10+, while in infected mice these cells were mainly TNF+. Lastly, selective blockage of CCR1/CCR5 (Met-RANTES therapy) in chronically infected ccl3+/+ mice reversed pivotal electrical abnormalities (bradycardia, prolonged PR, and QTc interval), in correlation with reduced TNF and, mainly, CCL3 levels in the heart tissue. Therefore, in the chronic T. cruzi infection CCL3 takes part in parasite persistence and contributes to form a CD8+ T-cell and macrophage-enriched cardiac inflammation. Further, increased levels of CCL3 create a scenario with abundant IFNγ and TNF, associated with cardiomyocyte injury, heart dysfunction and QTc prolongation, biomarkers of severity of Chagas' heart disease.


Assuntos
Cardiomiopatia Chagásica/fisiopatologia , Quimiocina CCL3/fisiologia , Interferon gama/fisiologia , Macrófagos Peritoneais/parasitologia , Parasitemia/fisiopatologia , Trypanosoma cruzi/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Quimiocina CCL3/deficiência , Quimiocina CCL3/farmacologia , Quimiocina CCL5/farmacologia , Quimiocina CCL5/uso terapêutico , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/genética , Citocinas/farmacologia , Eletrocardiografia/efeitos dos fármacos , Feminino , Interferon gama/farmacologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/etiologia , Miocardite/patologia , Miocardite/fisiopatologia , RNA Mensageiro/biossíntese , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/genética , Organismos Livres de Patógenos Específicos , Baço/imunologia , Baço/metabolismo , Volume Sistólico , Trypanosoma cruzi/isolamento & purificação , Fator de Necrose Tumoral alfa/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-31871082

RESUMO

There is an urgent need for safe, efficacious, affordable, and field-adapted drugs for the treatment of cutaneous leishmaniasis, which newly affects around 1.5 million people worldwide annually. Chitosan, a biodegradable cationic polysaccharide, has previously been reported to have antimicrobial, antileishmanial, and immunostimulatory activities. We investigated the in vitro activity of chitosan and several of its derivatives and showed that the pH of the culture medium plays a critical role in antileishmanial activity of chitosan against both extracellular promastigotes and intracellular amastigotes of Leishmania major and Leishmania mexicana Chitosan and its derivatives were approximately 7 to 20 times more active at pH 6.5 than at pH 7.5, with high-molecular-weight chitosan being the most potent. High-molecular-weight chitosan stimulated the production of nitric oxide and reactive oxygen species by uninfected and Leishmania-infected macrophages in a time- and dose-dependent manner at pH 6.5. Despite the in vitro activation of bone marrow macrophages by chitosan to produce nitric oxide and reactive oxygen species, we showed that the antileishmanial activity of chitosan was not mediated by these metabolites. Finally, we showed that rhodamine-labeled chitosan is taken up by pinocytosis and accumulates in the parasitophorous vacuole of Leishmania-infected macrophages.


Assuntos
Antiprotozoários/farmacologia , Quitosana/farmacologia , Leishmania major/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Anfotericina B/farmacologia , Animais , Quitosana/análogos & derivados , Meios de Cultura/química , Meios de Cultura/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração de Íons de Hidrogênio , Leishmania major/imunologia , Leishmania major/metabolismo , Leishmania mexicana/imunologia , Leishmania mexicana/metabolismo , Estágios do Ciclo de Vida/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Óxido Nítrico/metabolismo , Testes de Sensibilidade Parasitária , Pinocitose/efeitos dos fármacos , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/biossíntese
16.
Sci Rep ; 9(1): 19841, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882833

RESUMO

The fate of Leishmania infection can be strongly influenced by the host genetic background. In this work, we describe gene expression modulation of the immune system based on dual global transcriptome profiles of bone marrow-derived macrophages (BMDMs) from BALB/c and C57BL/6 mice infected with Leishmania amazonensis. A total of 12,641 host transcripts were identified according to the alignment to the Mus musculus genome. Differentially expressed genes (DEGs) profiling revealed a differential modulation of the basal genetic background between the two hosts independent of L. amazonensis infection. In addition, in response to early L. amazonensis infection, 10 genes were modulated in infected BALB/c vs. non-infected BALB/c macrophages; and 127 genes were modulated in infected C57BL/6 vs. non-infected C57BL/6 macrophages. These modulated genes appeared to be related to the main immune response processes, such as recognition, antigen presentation, costimulation and proliferation. The distinct gene expression was correlated with the susceptibility and resistance to infection of each host. Furthermore, upon comparing the DEGs in BMDMs vs. peritoneal macrophages, we observed no differences in the gene expression patterns of Jun, Fcgr1 and Il1b, suggesting a similar activation trends of transcription factor binding, recognition and phagocytosis, as well as the proinflammatory cytokine production in response to early L. amazonensis infection. Analysis of the DEG profile of the parasite revealed only one DEG among the 8,282 transcripts, indicating that parasite gene expression in early infection does not depend on the host genetic background.


Assuntos
Perfilação da Expressão Gênica/métodos , Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos/metabolismo , Transcriptoma , Animais , Interações Hospedeiro-Parasita , Leishmania/fisiologia , Leishmaniose/genética , Leishmaniose/parasitologia , Macrófagos/parasitologia , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Parasit Vectors ; 12(1): 542, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727141

RESUMO

BACKGROUND: Larvae of Echinococcus granulosus (sensu lato) dwell in host organs for a long time but elicit only a mild inflammatory response, which indicates that the resolution of host inflammation is necessary for parasite survival. The recruitment of alternatively activated macrophages (AAMs) has been observed in a variety of helminth infections, and emerging evidence indicates that AAMs are critical for the resolution of inflammation. However, whether AAMs can be induced by E. granulosus (s.l.) infection or thioredoxin peroxidase (TPx), one of the important molecules secreted by the parasite, remains unclear. METHODS: The activation status of peritoneal macrophages (PMs) derived from mice infected with E. granulosus (sensu stricto) was analyzed by evaluating the expression of phenotypic markers. PMs were then treated in vivo and in vitro with recombinant EgTPx (rEgTPx) and its variant (rvEgTPx) in combination with parasite excretory-secretory (ES) products, and the resulting activation of the PMs was evaluated by flow cytometry and real-time PCR. The phosphorylation levels of various molecules in the PI3K/AKT/mTOR pathway after parasite infection and antigen stimulation were also detected. RESULTS: The expression of AAM-related genes in PMs was preferentially induced after E. granulosus (s.s.) infection, and phenotypic differences in cell morphology were detected between PMs isolated from E. granulosus (s.s.)-infected mice and control mice. The administration of parasite ES products or rEgTPx induced the recruitment of AAMs to the peritoneum and a notable skewing of the ratio of PM subsets, and these effects are consistent with those obtained after E. granulosus (s.s.) infection. ES products or rEgTPx also induced PMs toward an AAM phenotype in vitro. Interestingly, this immunomodulatory property of rEgTPx was dependent on its antioxidant activity. In addition, the PI3K/AKT/mTOR pathway was activated after parasite infection and antigen stimulation, and the activation of this pathway was suppressed by pre-treatment with an AKT/mTOR inhibitor. CONCLUSIONS: This study demonstrates that E. granulosus (s.s.) infection and ES products, including EgTPx, can induce PM recruitment and alternative activation, at least in part, via the PI3K/AKT/mTOR pathway. These results suggest that EgTPx-induced AAMs might play a key role in the resolution of inflammation and thereby favour the establishment of hydatid cysts in the host.


Assuntos
Echinococcus granulosus/imunologia , Macrófagos Peritoneais/imunologia , Proteína Oncogênica v-akt/metabolismo , Peroxirredoxinas/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Equinococose/parasitologia , Echinococcus granulosus/enzimologia , Feminino , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Peroxirredoxinas/farmacologia , Fenótipo , Fosforilação , Transdução de Sinais , Organismos Livres de Patógenos Específicos
18.
Biosci Rep ; 39(11)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31694049

RESUMO

Neurocysticercosis (NCC), a major cause of neurological morbidity worldwide, is caused by the larvae of Taenia solium. Cestodes secrete molecules that block the Th1 response of their hosts and induce a Th2 response permissive to their establishment. Mature microRNAs (miRs) are small noncoding RNAs that regulate gene expression and participate in immunological processes. To determine the participation of Taenia miRs in the immune response against cysticercosis, we constructed small RNA (sRNA) libraries from larvae of Taenia solium and Taenia crassiceps. A total of 12074504 and 11779456 sequencing reads for T. solium and T. crassiceps, respectively, were mapped to the genomes of T. solium and other helminths. Both larvae shared similar miRNome, and miR-10-5p was the most abundant in both species, followed by let-7-5p in T. solium and miR-4989-3p in T. crassiceps, whereas among the genus-specific miRs, miR-001-3p was the most abundant in both, followed by miR-002-3p in T. solium and miR-003a-3p in T. crassiceps. The sequences of these miRs were identical in both. Structure and target prediction analyses revealed that these pre-miRs formed a hairpin and had more than one target involved in immunoregulation. Culture of macrophages, RT-PCR and ELISA assays showed that cells internalized miR-10-5p and let-7-5p into the cytoplasm and the miRs strongly decreased interleukin 16 (Il6) expression, tumor necrosis factor (TNF) and IL-12 secretion, and moderately decreased nitric oxide synthase inducible (Nos2) and Il1b expression (pro-inflammatory cytokines) in M(IFN-γ) macrophages and expression of Tgf1b, and the secretion of IL-10 (anti-inflammatory cytokines) in M(IL-4) macrophages. These findings could help us understand the role of miRs in the host-Taenia relationship.


Assuntos
Cisticercose/metabolismo , Citocinas/metabolismo , Larva/patogenicidade , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , MicroRNAs/metabolismo , Taenia solium/patogenicidade , Animais , Cisticercose/parasitologia , Citoplasma/metabolismo , Inflamação/metabolismo , Inflamação/parasitologia , Interferon gama/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-31355149

RESUMO

Lipophosphoglycan (LPG) is the major Leishmania surface glycoconjugate having importance during the host-parasite interface. Leishmania (Viannia) braziliensis displays a spectrum of clinical forms including: typical cutaneous leishmaniasis (TL), mucocutaneous (ML), and atypical lesions (AL). Those variations in the immunopathology may be a result of intraspecies polymorphisms in the parasite's virulence factors. In this context, we evaluated the role of LPG of strains originated from patients with different clinical manifestations and the sandfly vector. Six isolates of L. braziliensis were used: M2903, RR051 and RR418 (TL), RR410 (AL), M15991 (ML), and M8401 (vector). LPGs were extracted and purified by hydrophobic interaction. Peritoneal macrophages from C57BL/6 and respective knock-outs (TLR2-/- and TLR-4-/-) were primed with IFN-γ and exposed to different LPGs for nitric oxide (NO) and cytokine production (IL-1ß, IL-6, IL-12, and TNF-α). LPGs differentially activated the production of NO and cytokines via TLR4. In order to ascertain if such functional variations were related to intraspecies polymorphisms in the LPG, the purified glycoconjugates were subjected to western blot with specific LPG antibodies (CA7AE and LT22). Based on antibody reactivity preliminary variations in the repeat units were detected. To confirm these findings, LPGs were depolymerized for purification of repeat units. After thin layer chromatography, intraspecies polymorphisms were confirmed especially in the type and/size of sugars branching-off the repeat units motif. In conclusion, different isolates of L. braziliensis from different clinical forms and hosts possess polymorphisms in their LPGs that functionally affected macrophage responses.


Assuntos
Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Leishmaniose Cutânea/imunologia , Ativação de Macrófagos , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Técnicas de Inativação de Genes , Glicoesfingolipídeos/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico , Psychodidae/parasitologia , Receptor 4 Toll-Like/genética , Fatores de Virulência
20.
Biomaterials ; 217: 119286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284125

RESUMO

Antimicrobial peptides (AMPs) have recently attracted great attention due to their rapid action, broad spectrum of activity, and low propensity of resistance development. The successful application of AMPs in the treatment of intracellular infections, however, remains a challenge because of their low penetration efficiency into the pathogen's intracellular niche. Herein, we report that sub-micrometer-sized crystals of the protein Cry3Aa formed within Bacillus thuringiensis are readily and specifically taken up by macrophages. We demonstrate that these protein crystals efficiently encapsulate a known antileishmanial peptide, dermaseptin S1 (DS1), and thereby promote improved cellular uptake of DS1 and its lysosomal accumulation in macrophages. Notably, this targeted delivery of DS1 results in enhanced in vitro and in vivo antileishmanial activity, as well as reduced toxicity to the host macrophages. These findings suggest that the Cry3Aa crystal can be an effective delivery platform for AMPs to treat intramacrophage infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/química , Sistemas de Liberação de Medicamentos , Endotoxinas/química , Proteínas Hemolisinas/química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Proteínas de Anfíbios/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/ultraestrutura , Linhagem Celular Tumoral , Endotoxinas/toxicidade , Feminino , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/ultraestrutura , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA