Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioengineered ; 12(1): 3358-3366, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224313

RESUMO

Magnolia sieboldii K. Koch is endemic to China and has high medicinal and ornamental values. However, its seed exhibits morphophysiological dormancy, and the molecular mechanisms of which are not clearly understood. To reveal the regulation mechanism of the ABA signal in seed dormancy, the M. sieboldii ABA receptor Pyrabactin Resistance 1 (PYR1) gene was cloned and analyzed. Analysis of the MsPYR1 sequence analysis showed that the full-length cDNA contained a complete open reading frame of 987 bp and encoded a predicted protein of 204 amino acid residues. The protein had a relative molecular weight of 22.661 kDa and theoretical isoelectric point of 5.01. The transcript levels of MsPYR1 were immediately upregulated at 16 DAI and then decreased at 40 DAI. The highest transcript level of MsPYR1 was found in the dry seeds, indicating that the MsPYR1 gene may play an important role in the regulation of dormancy. The MsPYR1 gene cDNA was successfully expressed in E. coli Rosetta (DE3), and the protein bands were consistent with the prediction. The Anti-MsPYR1antibody could detect the expression of MsPYR1 in M. sieboldii. The results provided a foundation for further study of the function of the MsPYR1 gene.ABBREVIATIONSABA: Abscisic acid; MPD: morphophysiological; PYR1: Pyrabactin Resistance1; PYL: Pyr1-Like; RCAR: Regulatory Components of Aba Receptors; PP2C: protein phosphatases 2C; SnRK2: sucrose non-fermenting1-related protein kinase2; DAI: day after imbibition; NCBI: National Center for Biotechnology Information; BCA: Bicinchoninic acid; CDD: Conserved Domains.


Assuntos
Magnolia , Proteínas de Membrana Transportadoras , Proteínas de Plantas , Clonagem Molecular , Magnolia/genética , Magnolia/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/química , Sementes/metabolismo , Transdução de Sinais/genética
2.
Electron. j. biotechnol ; 17(6): 268-274, Nov. 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-730257

RESUMO

Background Genetic diversity and genetic variation of 10 populations and subpopulations of Magnolia wufengensis, a new and endangered endemic species, were examined by inter simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) molecular markers. Compared with other endangered endemic Magnolia taxa, M. wufengensis holds a relatively high level of genetic variation. Result Total genetic diversity was found to be 87.7% for ISSR and 88.0% for SRAP markers. For polymorphic loci (P), the effective mean number of alleles (Ae) was 1.414 for ISSR markers and 1.458 for SRAP markers, while the mean expected heterozygosity (H) was 0.256 using ISSR and 0.291 for SRAP markers. Within-population variation was estimated for P as 74.9% using ISSR and 74.6% with SRAP markers; the number of alleles Ae was 1.379 with ISSR and 1.397 for SRAP and H 0.235 with ISSR and 0.247 for SRAP markers. Conclusion The analysis of molecular variation of both ISSR and SRAP marker systems indicated that most genetic variation is within populations, with values of 90.64% and 82.92% respectively. Mantel tests indicated a moderate association between the two marker systems and a low correlation between genetic and geographic distances. High levels of genetic diversity and low levels of population divergence suggest that genetic drift is not currently of great concern for this species. Severe habitat loss and fragmentation, predominantly ascribed to anthropogenic pressures, caused in-situ developing restriction of this species. Action for conserving this rare species for its long-term survival should be taken immediately.


Assuntos
Polimorfismo Genético , Variação Genética , Repetições de Microssatélites , Magnolia/genética , DNA/isolamento & purificação , Sequência de Bases , Marcadores Genéticos , Análise por Conglomerados , Análise de Variância , Magnoliaceae , Estruturas Genéticas
3.
Plant Physiol ; 147(3): 1017-33, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18467455

RESUMO

Magnolia grandiflora (Southern Magnolia) is a primitive evergreen tree that has attracted attention because of its horticultural distinctiveness, the wealth of natural products associated with it, and its evolutionary position as a basal angiosperm. Three cDNAs corresponding to terpene synthase (TPS) genes expressed in young leaves were isolated, and the corresponding enzymes were functionally characterized in vitro. Recombinant Mg25 converted farnesyl diphosphate (C(15)) predominantly to beta-cubebene, while Mg17 converted geranyl diphosphate (C(5)) to alpha-terpineol. Efforts to functionally characterize Mg11 were unsuccessful. Transcript levels for all three genes were prominent in young leaf tissue and significantly elevated for Mg25 and Mg11 messenger RNAs in stamens. A putative amino-terminal signal peptide of Mg17 targeted the reporter green fluorescent protein to both chloroplasts and mitochondria when transiently expressed in epidermal cells of Nicotiana tabacum leaves. Phylogenetic analyses indicated that Mg25 and Mg11 belonged to the angiosperm sesquiterpene synthase subclass TPS-a, while Mg17 aligned more closely to the angiosperm monoterpene synthase subclass TPS-b. Unexpectedly, the intron-exon organizations for the three Magnolia TPS genes were different from one another and from other well-characterized TPS gene sets. The Mg17 gene consists of six introns arranged in a manner similar to many other angiosperm sesquiterpene synthases, but Mg11 contains only four introns, and Mg25 has only a single intron located near the 5' terminus of the gene. Our results suggest that the structural diversity observed in the Magnolia TPS genes could have occurred either by a rapid loss of introns from a common ancestor TPS gene or by a gain of introns into an intron-deficient progenote TPS gene.


Assuntos
Alquil e Aril Transferases/genética , Evolução Molecular , Íntrons , Magnolia/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Cycadopsida/genética , Monoterpenos Cicloexânicos , Cicloexenos/metabolismo , DNA Complementar/isolamento & purificação , Genoma de Planta , Magnolia/enzimologia , Dados de Sequência Molecular , Monoterpenos/metabolismo , Sinais Direcionadores de Proteínas , RNA Mensageiro/metabolismo
4.
Rev. biol. trop ; 54(3): 997-1002, sept. 2006.
Artigo em Inglês | LILACS | ID: lil-492282

RESUMO

Little is known about the ecology and demography of the genus Magnolia. Magnolia dealbata Zucc. is an endangered species endemic to Mexico. Two contrasting populations of M. dealbata (one from the grasslands and other from a secondary cloud forest) were studied. We asked the following questions: (a) Are size structure (diameter at breast height, DBH) and infrutescence production significantly different between the two populations? (b) What are the populations' growth rates (lambda) based on an initial 1987 study? (c) Are the associated species diversity indices of these M. dealbata populations significantly different? The results show no significant differences between the population size structure (p=.094); the growth rates of the populations were 0.992 in grassland and 1.053 in secondary cloud forest. The number of infrutescences produced in year 2001 and DBH relationship were significantly linear (p<.001) in both populations, and there was no significant difference (p>.01) between their slopes. The diversity indices were not significantly different (p>.05), and only 54% of the species were common to both sites. Our study suggests that both populations are relatively stable and that the management history could impact more on the species composition than on the diversity indices.


Assuntos
Variação Genética , Magnolia/genética , México , Magnolia/fisiologia , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA