Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Microbiol Spectr ; 12(7): e0072724, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864616

RESUMO

A hallmark of cerebral malaria (CM) is sequestration of Plasmodium falciparum-infected erythrocytes (IE) within the brain microvasculature. Binding of IE to endothelium reduces microvascular flow and, combined with an inflammatory response, perturbs endothelial barrier function, resulting in breakdown of the blood-brain barrier (BBB). Cytoadherence leads to activation of the endothelium and alters a range of cell processes affecting signaling pathways, receptor expression, coagulation, and disruption of BBB integrity. Here, we investigated whether CM-derived parasites elicit differential effects on human brain microvascular endothelial cells (HBMECs), as compared to uncomplicated malaria (UM)-derived parasites. Patient-derived IE from UM and CM clinical cases, as well as non-binding skeleton-binding protein 1 knockout parasites, were overlaid onto tumour necrosis factor (TNF)-activated HBMECs. Gene expression analysis of endothelial responses was performed using probe-based assays of a panel of genes involved in inflammation, apoptosis, endothelial barrier function, and prostacyclin synthesis pathway. We observed a significant effect on endothelial transcriptional responses in the presence of IE, yet there was no significant correlation between HBMEC responses and type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and level of IE binding to HBMECs, as we detected the same change in endothelial responses when employing both binding and non-binding parasites. Our results suggest that interaction of IE with endothelial cells in this co-culture model induces some endothelial responses that are independent of clinical origin and independent of the expression of the major variant antigen Plasmodium falciparum erythrocyte membrane protein 1 on the IE surface. IMPORTANCE: Cerebral malaria (CM) is the most prevalent and deadly complication of severe Plasmodium falciparum infection. A hallmark of this disease is sequestration of P. falciparum-infected erythrocytes (IE) in brain microvasculature that ultimately results in breakdown of the blood-brain barrier. Here, we compared the effect of P. falciparum parasites derived from uncomplicated malaria (UM) and CM cases on the relative gene expression of human brain microvascular endothelial cells (HBMECs) for a panel of genes. We observed a significant effect on the endothelial transcriptional response in the presence of IE, yet there is no significant correlation between HBMEC responses and the type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and the level of IE binding to HBMECs. Our results suggest that interaction of IE with endothelial cells induces endothelial responses that are independent of clinical origin and not entirely driven by surface Plasmodium falciparum erythrocyte membrane protein 1 expression.


Assuntos
Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Eritrócitos , Malária Cerebral , Malária Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Humanos , Células Endoteliais/parasitologia , Células Endoteliais/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/metabolismo , Malária Cerebral/parasitologia , Malária Cerebral/metabolismo , Encéfalo/parasitologia , Encéfalo/metabolismo , Barreira Hematoencefálica/parasitologia , Barreira Hematoencefálica/metabolismo , Eritrócitos/parasitologia , Eritrócitos/metabolismo
2.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715061

RESUMO

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Malária Cerebral , Camundongos Endogâmicos C57BL , Neurônios , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Camundongos Knockout , Neurônios/metabolismo , Plasmodium berghei , Transdução de Sinais/fisiologia , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Mol Omics ; 18(8): 716-730, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35960011

RESUMO

BACKGROUND: cerebral malaria (CM) is an important complication of malaria with a high mortality rate. Artesunate is recommended as the first-line artemisinin compound treatment for severe malaria. Due to the difficulty of obtaining brain tissue samples clinically, the use of animals to research host responses to CM parasite infections is necessary. Rodent malaria models allow for detailed time series studies of host responses in multiple organs. To date, studies on the transcriptome of severe malaria are only limited to the parasites in the peripheral blood of patients, and there is little data on the transcriptional changes in brain tissue in mice with CM treated with artesunate. METHOD AND RESULT: in this study, fresh tissue samples (three biological replicates per mouse) from the same area of the brain in each animal were collected from the uninfected, Plasmodium berghei ANKA-infected and artesunate-treated C57BL/6 mice, and then transcriptome research was performed by the RNA-seq technique. Differentially expressed genes (DEGs) included Il-21, Tnf, Il-6, Il-1ß, Il-10, Ifng, and Icam-1. Among which, Il-6, Il-10, Tnf-α and Il-1ß were further verified and validated via qRT-PCR and ELISA. This revealed that Il-1ß (p < 0.0001), Il-10 (p < 0.05) and Tnf-α (p < 0.05) were significantly up-regulated in the Pb ANKA-infected versus uninfected group, while Il-1ß (p < 0.0001) and Tnf-α (p < 0.05) were significantly down-regulated after artesunate treatment. All DEGs were closely related to the top 3 artesunate treatment pathways, including the JAK-STAT signaling pathway, apoptosis, and Toll-like receptor signaling pathway. CONCLUSION: the mechanism of improving the prognosis of cerebral malaria by artesunate may not only involve the killing of plasmodium but also the inhibition of a cytokine storm in the host. This study provides new insights into the molecular mechanism by which artesunate improves the prognosis of cerebral malaria.


Assuntos
Antimaláricos , Artemisininas , Malária Cerebral , Animais , Anti-Inflamatórios/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Molécula 1 de Adesão Intercelular/uso terapêutico , Interleucina-10/uso terapêutico , Interleucina-6/uso terapêutico , Chumbo/uso terapêutico , Malária Cerebral/tratamento farmacológico , Malária Cerebral/genética , Malária Cerebral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Receptores Toll-Like/uso terapêutico , Fator de Necrose Tumoral alfa/uso terapêutico
4.
Front Immunol ; 12: 719189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456927

RESUMO

Epidemiological studies provide compelling evidence that glucose-6-phosphate dehydrogenase (G6PD) deficiency individuals are relatively protected against Plasmodium parasite infection. However, the animal model studies on this subject are lacking. Plus, the underlying mechanism in vivo is poorly known. In this study, we used a G6pd-deficient mice infected with the rodent parasite Plasmodium berghei (P.berghei) to set up a malaria model in mice. We analyzed the pathological progression of experimental cerebral malaria (ECM) and acute liver injury in mice with different G6pd activity infected with P.berghei. We performed dual RNA-seq for host-parasite transcriptomics and validated the changes of proinflammatory response in the murine model. G6pd-deficient mice exhibited a survival advantage, less severe ECM and mild liver injury compared to the wild type mice. Analysis based on dual RNA-seq suggests that G6pd-deficient mice are protected from ECM and acute liver injury were related to proinflammatory responses. Th1 differentiation and dendritic cell maturation in the liver and spleen were inhibited in G6pd-deficient mice. The levels of proinflammatory cytokines were reduced, chemokines and vascular adhesion molecules in the brain were significantly down-regulated, these led to decreased cerebral microvascular obstruction in G6pd-deficient mice. We generated the result that G6pd-deficiency mediated protection against ECM and acute liver injury were driven by the regulatory proinflammatory responses. Furthermore, bioinformatics analyses showed that P.berghei might occur ribosome loss in G6pd-deficient mice. Our findings provide a novel perspective of the underlying mechanism of G6PD deficiency mediated protection against malaria in vivo.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Hepatopatias Parasitárias/complicações , Hepatopatias Parasitárias/prevenção & controle , Malária Cerebral/complicações , Malária Cerebral/prevenção & controle , Animais , Biomarcadores , Biópsia , Barreira Hematoencefálica/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ativação Enzimática , Perfilação da Expressão Gênica , Deficiência de Glucosefosfato Desidrogenase/etiologia , Hemólise , Mediadores da Inflamação/metabolismo , Hepatopatias Parasitárias/metabolismo , Hepatopatias Parasitárias/patologia , Malária Cerebral/metabolismo , Camundongos , Plasmodium berghei
5.
Am J Clin Nutr ; 111(5): 1059-1067, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32005992

RESUMO

BACKGROUND: WHO guidelines recommend concurrent iron and antimalarial treatment in children with malaria and iron deficiency, but iron may not be well absorbed or utilized during a malaria episode. OBJECTIVES: We aimed to determine whether starting iron 28 d after antimalarial treatment in children with severe malaria and iron deficiency would improve iron status and lower malaria risk. METHODS: We conducted a randomized clinical trial on the effect of immediate compared with delayed iron treatment in Ugandan children 18 mo-5 y of age with 2 forms of severe malaria: cerebral malaria (CM; n = 79) or severe malarial anemia (SMA; n = 77). Asymptomatic community children (CC; n = 83) were enrolled as a comparison group. Children with iron deficiency, defined as zinc protoporphyrin (ZPP) ≥ 80 µmol/mol heme, were randomly assigned to receive a 3-mo course of daily oral ferrous sulfate (2 mg · kg-1 · d-1) either concurrently with antimalarial treatment (immediate arm) or 28 d after receiving antimalarial treatment (delayed arm). Children were followed for 12 mo. RESULTS: All children with CM or SMA, and 35 (42.2%) CC, were iron-deficient and were randomly assigned to immediate or delayed iron treatment. Immediate compared with delayed iron had no effect in any of the 3 study groups on the primary study outcomes (hemoglobin concentration and prevalence of ZPP ≥ 80 µmol/mol heme at 6 mo, malaria incidence over 12 mo). However, after 12 mo, children with SMA in the delayed compared with the immediate arm had a lower prevalence of iron deficiency defined by ZPP (29.4% compared with 65.6%, P = 0.006), a lower mean concentration of soluble transferrin receptor (6.1 compared with 7.8 mg/L, P = 0.03), and showed a trend toward fewer episodes of severe malaria (incidence rate ratio: 0.39; 95% CI: 0.14, 1.12). CONCLUSIONS: In children with SMA, delayed iron treatment did not increase hemoglobin concentration, but did improve long-term iron status over 12 mo without affecting malaria incidence.This trial was registered at clinicaltrials.gov as NCT01093989.


Assuntos
Anemia/tratamento farmacológico , Antimaláricos/administração & dosagem , Compostos Ferrosos/administração & dosagem , Malária Cerebral/tratamento farmacológico , Anemia/metabolismo , Pré-Escolar , Feminino , Hemoglobinas/metabolismo , Humanos , Lactente , Malária Cerebral/metabolismo , Masculino
6.
Nano Lett ; 19(12): 8887-8895, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31671939

RESUMO

Cerebral malaria is a lethal complication of malaria infection characterized by central nervous system dysfunction and is often not effectively treated by antimalarial combination therapies. It has been shown that the sequestration of the parasite-infected red blood cells that interact with cerebral vessel endothelial cells and the damage of the blood-brain barrier (BBB) play critical roles in the pathogenesis. In this study, we developed a ferritin nanozyme (Fenozyme) composed of recombinant human ferritin (HFn) protein shells that specifically target BBB endothelial cells (BBB ECs) and the inner Fe3O4 nanozyme core that exhibits reactive oxygen species-scavenging catalase-like activity. In the experimental cerebral malaria (ECM) mouse model, administration of the Fenozyme, but not HFn, markedly ameliorated the damage of BBB induced by the parasite and improved the survival rate of infected mice significantly. Further investigations found that Fenozyme, as well as HFn, was able to polarize the macrophages in the liver to the M1 phenotype and promote the elimination of malaria in the blood. Thus, the catalase-like activity of the Fenozyme is required for its therapeutic effect in the mouse model. Moreover, the Fenozyme significantly alleviated the brain inflammation and memory impairment in ECM mice that had been treated with artemether, indicating that combining Fenozyme with an antimalarial drug is a novel strategy for the treatment of cerebral malaria.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Ferritinas/farmacologia , Malária Cerebral/prevenção & controle , Plasmodium berghei/metabolismo , Animais , Barreira Hematoencefálica/parasitologia , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Células Endoteliais/parasitologia , Células Endoteliais/patologia , Ferritinas/genética , Humanos , Inflamação/metabolismo , Inflamação/parasitologia , Inflamação/patologia , Inflamação/prevenção & controle , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
7.
Sci Rep ; 9(1): 13142, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511575

RESUMO

Recent concepts suggest that both Plasmodium falciparum factors and coagulation contribute to endothelial activation and dysfunction in pediatric cerebral malaria (CM) pathology. However, there is still limited understanding of how these complex inflammatory stimuli are integrated by brain endothelial cells. In this study, we examined how mature-stage P. falciparum infected erythrocytes (IE) interact with tumor necrosis factor α (TNFα) and thrombin in the activation and permeability of primary human brain microvascular endothelial cell (HBMEC) monolayers. Whereas trophozoite-stage P. falciparum-IE have limited effect on the viability of HBMEC or the secretion of pro-inflammatory cytokines or chemokines, except at super physiological parasite-host cell ratios, schizont-stage P. falciparum-IE induced low levels of cell death. Additionally, schizont-stage parasites were more barrier disruptive than trophozoite-stage P. falciparum-IE and prolonged thrombin-induced barrier disruption in both resting and TNFα-activated HBMEC monolayers. These results provide evidence that parasite products and thrombin may interact to increase brain endothelial permeability.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Plasmodium falciparum/metabolismo , Trombina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/parasitologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/parasitologia , Eritrócitos/parasitologia , Humanos , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Esquizontes/metabolismo , Esquizontes/fisiologia , Trombina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
8.
FEBS Lett ; 593(18): 2585-2595, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271645

RESUMO

Cerebral malaria (CM) is a severe complication with brain vascular hyperpermeability. Claudin-5 is the major component of tight junctions. To investigate the expression of claudin-5 in CM, we established a murine experimental cerebral malaria (ECM) model and an in vitro model by treating murine brain endothelial cells (bEnd3) with plasma from ECM mice. Expression of claudin-5 and the ETS transcription factor Erg was reduced in the brain endothelium of ECM mice. In bEnd3 cells exposed to ECM plasma, decreased expression of claudin-5 and Erg, and increased permeability were observed. Silencing of Erg significantly reduced Cldn5 expression. ChIP assays indicated that Erg binds to the -813 ETS motif of the murine Cldn5 gene promoter, and the binding is decreased by treatment with ECM plasma.


Assuntos
Encéfalo/metabolismo , Claudina-5/genética , Regulação para Baixo , Endotélio/metabolismo , Malária Cerebral/genética , Malária Cerebral/metabolismo , Proteínas Oncogênicas/metabolismo , Regulador Transcricional ERG/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica
9.
Pediatr Infect Dis J ; 38(8): 840-848, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31232898

RESUMO

BACKGROUND: We explored 3 immunopathogenic biomarkers collected during acute malaria illness as potential moderators of gains from a computerized cognitive rehabilitation training (CCRT) intervention. METHOD: Von Willebrand Factor (vWF), tumor necrosis factor (TNF) and Regulated on Activation, Normal T Expressed and Secreted (RANTES) were assayed from plasma and cerebral spinal fluid (CSF) of children during acute severe malaria anemia or cerebral malaria. Two years after acute malaria illness, 150 surviving children and 150 nonmalaria community controls (CCs) from their households 6-12 years old entered a 3-arm randomized controlled trial of titrating and nontitrating CCRT against no CCRT. Tests of cognition [Kaufman Assessment Battery for Children (KABC)], Tests of Variables of Attention and Achenbach Child Behavior Checklist (CBCL) were administered before and after 24 CCRT sessions over a 3-month period, and at 1-year follow-up. Differences in outcomes by trial arms and biomarker levels were evaluated using linear mixed effects models. RESULTS: Severe malaria survivors with lower levels of vWF, lower CSF levels of TNF and higher levels of plasma and CSF RANTES had better KABC cognitive performance after both titrating and nontitrating CCRT compared with no CCRT. For the CBCL, high plasma RANTES was associated with no benefit from either the titrating and nontitrating CCRT, whereas high TNF plasma was predictive of the benefit for both interventions. These biomarker moderating effects were not evident for CC children. CONCLUSIONS: Severe malaria immunopathogenic biomarkers may be related to poorer long-term brain/behavior function as evidenced by diminished benefit from a computerized cognitive rehabilitation intervention.


Assuntos
Biomarcadores , Terapia Cognitivo-Comportamental , Malária Cerebral/epidemiologia , Malária Cerebral/metabolismo , Transtornos Neurocognitivos/epidemiologia , Transtornos Neurocognitivos/etiologia , Atenção , Criança , Comportamento Infantil , Pré-Escolar , Terapia Cognitivo-Comportamental/métodos , Feminino , Humanos , Imunoensaio , Malária Cerebral/complicações , Malária Cerebral/etiologia , Masculino , Transtornos Neurocognitivos/psicologia , Transtornos Neurocognitivos/reabilitação , Testes Neuropsicológicos , Avaliação de Resultados da Assistência ao Paciente , Uganda/epidemiologia , Jogos de Vídeo
10.
Mediators Inflamm ; 2018: 5258797, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515051

RESUMO

Cerebral malaria (CM) is the major complication associated with death in malaria patients, and its pathogenesis is associated with excessive proinflammatory cytokine production. Notably, the severity and mortality of natural infections with Plasmodium are higher in males than females, suggesting that sexual hormones influence both the pathogenesis of and immune response in CM. However, no studies on inflammation mediators in the brains of both sexes have been reported. In this work, the mRNA expression levels of the proinflammatory cytokines IL-1ß, IFN-γ, TNF-α, and IL-2 were measured in the preoptic area, hypothalamus, hippocampus, olfactory bulb, frontal cortex, and lateral cortex regions of gonadectomized female and male CBA/Ca mice infected with P. berghei ANKA (a recognized experimental CM model). Our findings demonstrate that both infection with P. berghei ANKA and gonadectomy trigger a cerebral sex dimorphic mRNA expression pattern of the cytokines IL-1ß, TNF-α, IFN-γ, and IL-2. This dimorphic cytokine pattern was different in each brain region analysed. In most cases, infected males exhibited higher mRNA expression levels than females, suggesting that sexual hormones differentially regulate the mRNA expression of proinflammatory cytokines in the brain and the potential use of gonadal steroids or their derivates in the immunomodulation of cerebral malaria.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Malária Cerebral/metabolismo , Plasmodium berghei/patogenicidade , RNA Mensageiro/metabolismo , Animais , Feminino , Imunomodulação/fisiologia , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Interleucina-2/metabolismo , Malária Cerebral/genética , Masculino , Camundongos , Camundongos Endogâmicos CBA , Orquiectomia , Ovariectomia , Fator de Necrose Tumoral alfa/metabolismo
11.
Front Immunol ; 9: 2611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483269

RESUMO

CD8+ T cells are key players during infection with the malaria parasite Plasmodium berghei ANKA (PbA). While they cannot provide protection against blood-stage parasites, they can cause immunopathology, thus leading to the severe manifestation of cerebral malaria. Hence, the tight control of CD8+ T cell function is key in order to prevent fatal outcomes. One major mechanism to control CD8+ T cell activation, proliferation and effector function is the integration of co-inhibitory and co-stimulatory signals. In this study, we show that one such pathway, the HVEM-CD160 axis, significantly impacts CD8+ T cell regulation and thereby the incidence of cerebral malaria. Here, we show that the co-stimulatory molecule HVEM is indeed required to maintain CD8+ T effector populations during infection. Additionally, by generating a CD160-/- mouse line, we observe that the HVEM ligand CD160 counterbalances stimulatory signals in highly activated and cytotoxic CD8+ T effector cells, thereby restricting immunopathology. Importantly, CD160 is also induced on cytotoxic CD8+ T cells during acute Plasmodium falciparum malaria in humans. In conclusion, CD160 is specifically expressed on highly activated CD8+ T effector cells that are harmful during the blood-stage of malaria.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Malária Cerebral/metabolismo , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Adulto , Idoso , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas Ligadas por GPI/metabolismo , Humanos , Ativação Linfocitária/fisiologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo
12.
Parasitol Res ; 117(10): 3177-3182, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30030625

RESUMO

α-Tocopheryl succinate (α-TOS), a derivative of vitamin E, is synthesized by esterification of α-tocopherol. It has been reported that α-TOS inhibits the mitochondrial complex II resulting in generation of reactive oxygen species, which triggers selective apoptosis in a large number of cancer cells, while it appears largely non-toxic towards normal cells. Plasmodium parasites are well known to have high sensitivity to oxidative stress. Thus, α-TOS is suspected to impact Plasmodium parasites by oxidative stress. In this study, to ascertain whether α-TOS is an appropriate candidate for an anti-malarial drug, C57BL/6J mice were infected with P. yoelii 17XL and P. berghei ANKA, a lethal strain of rodent malaria and experimental cerebral malaria (ECM), and treated with several concentrations of α-TOS by intraperitoneal administration on 1, 3, 5, and 7 days post infection (dpi). In addition, the permeability of the blood brain barrier (BBB) was examined by Evans blue staining in ECM on 7 dpi. As a result of α-TOS treatment, parasitemia was decreased and survival rate was significantly increased in mice infected with both parasites. Furthermore, the intensity of Evans blue staining on brains taken from α-TOS-treated mice was weaker than that of untreated mice. This means that α-TOS might inhibit the breakdown of BBB and progress of cerebral malaria. These findings indicate that vitamin E derivatives like α-TOS might be a potential candidate for treatment drugs against malaria.


Assuntos
Antimaláricos/administração & dosagem , Malária Cerebral/tratamento farmacológico , alfa-Tocoferol/análogos & derivados , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/parasitologia , Humanos , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Parasitemia/tratamento farmacológico , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/fisiologia , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/administração & dosagem
13.
Proc Natl Acad Sci U S A ; 115(28): 7404-7409, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29954866

RESUMO

Cerebral malaria (CM) is a serious neurological complication caused by Plasmodium falciparum infection. Currently, the only treatment for CM is the provision of antimalarial drugs; however, such treatment by itself often fails to prevent death or development of neurological sequelae. To identify potential improved treatments for CM, we performed a nonbiased whole-brain transcriptomic time-course analysis of antimalarial drug chemotherapy of murine experimental CM (ECM). Bioinformatics analyses revealed IL33 as a critical regulator of neuroinflammation and cerebral pathology that is down-regulated in the brain during fatal ECM and in the acute period following treatment of ECM. Consistent with this, administration of IL33 alongside antimalarial drugs significantly improved the treatment success of established ECM. Mechanistically, IL33 treatment reduced inflammasome activation and IL1ß production in microglia and intracerebral monocytes in the acute recovery period following treatment of ECM. Moreover, treatment with the NLRP3-inflammasome inhibitor MCC950 alongside antimalarial drugs phenocopied the protective effect of IL33 therapy in improving the recovery from established ECM. We further showed that IL1ß release from macrophages was stimulated by hemozoin and antimalarial drugs and that this was inhibited by MCC950. Our results therefore demonstrate that manipulation of the IL33-NLRP3 axis may be an effective therapy to suppress neuroinflammation and improve the efficacy of antimalarial drug treatment of CM.


Assuntos
Antimaláricos/farmacologia , Encéfalo/parasitologia , Sistemas de Liberação de Medicamentos/métodos , Interleucina-33/metabolismo , Malária Cerebral/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Plasmodium falciparum/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Hemeproteínas/metabolismo , Interleucina-1beta/biossíntese , Interleucina-33/antagonistas & inibidores , Macrófagos/metabolismo , Macrófagos/patologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Transcriptoma/efeitos dos fármacos
14.
Neuroscience ; 369: 66-75, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113928

RESUMO

Malaria, parasitic disease considered a major health public problem, is caused by Plasmodium protozoan genus and transmitted by the bite of infected female Anopheles mosquito genus. Cerebral malaria (CM) is the most severe presentation of malaria, caused by P. falciparum and responsible for high mortality and enduring development of cognitive deficits which may persist even after cure and cessation of therapy. In the present study we evaluated selected behavioral, neurochemical and neuropathologic parameters after rescue from experimental cerebral malaria caused by P. berghei ANKA in C57BL/6 mice. Behavioral tests showed impaired nest building activity as well as increased marble burying, indicating that natural behavior of mice remains altered even after cure of infection. Regarding the neurochemical data, we found decreased α2/α3 Na+,K+-ATPase activity and increased immunoreactivity of phosphorylated Na+,K+-ATPase at Ser943 in cerebral cortex after CM. In addition, [3H]-Flunitrazepam binding assays revealed a decrease of benzodiazepine/GABAA receptor binding sites in infected animals. Moreover, in hippocampus, dot blot analysis revealed increased levels of protein carbonyls, suggesting occurrence of oxidative damage to proteins. Interestingly, no changes in the neuropathological markers Fluoro-Jade C, Timm staining or IBA-1 were detected. Altogether, present data indicate that behavioral and neurochemical alterations persist even after parasitemia clearance and CM recovery, which agrees with available clinical findings. Some of the molecular mechanisms reported in the present study may underlie the behavioral changes and increased seizure susceptibility that persist after recovery from CM and may help in the future development of therapeutic strategies for CM sequelae.


Assuntos
Comportamento Animal , Malária Cerebral/metabolismo , Malária Cerebral/psicologia , Plasmodium berghei/patogenicidade , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/metabolismo , Feminino , Flunitrazepam/metabolismo , Fluoresceínas/metabolismo , Hipocampo/metabolismo , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Carbonilação Proteica , Ensaio Radioligante , Receptores de GABA-A/metabolismo , Compostos de Prata/metabolismo , ATPase Trocadora de Sódio-Potássio/imunologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Trítio/metabolismo
15.
Cell Host Microbe ; 22(5): 601-614.e5, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29107642

RESUMO

Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling.


Assuntos
Edema Encefálico/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Malária Cerebral/metabolismo , Proteínas de Neoplasias/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Receptores de Superfície Celular/metabolismo , Encéfalo/parasitologia , Edema Encefálico/parasitologia , Adesão Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária Cerebral/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/fisiopatologia , Malaui , Masculino , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/metabolismo
16.
Cytokine ; 99: 249-259, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28803696

RESUMO

Modulation of pro-inflammatory and anti-inflammatory axis and orientation of glial cell function towards neuroinflammation, were hallmark signs of cerebral malaria (CM). CM pathogenesis was concerned with the circulating levels of Interleukin 6 (IL 6) and Transforming growth factor ß (TGF ß). Definite roles of these two cytokines in brain related pathology remained largely unexplored. To study the effect of these two cytokines, we have examined changes in morphology and in activation profile of the glial cells after TGF ß and IL 6 neutralization during CM in cortex and cerebellum of the Plasmodium berghei ANKA (PbA) infected male swiss albino mice. PbA infection caused severe inflammation by inducing changes in morphological features as well as in activation profile of the astrocytes and microglia. Similar inflammatory signs were evident in Anti TGF ß treated set. Interestingly in the Anti IL 6 treated set, reduced level of activation of these glial cells corresponds to the reduced level of inflammatory profile. Microglial activation was found to be synchronous with TLR4 engagement. Neuronal death was triggered by neuroinflammatory milieu seen in PbA and PbA+Anti TGF ß treated set. In conclusion, it can be said that IL 6 and TGF ß perform essential role in CM pathogenesis by modulating the level of glial cell induced neuroinflammation.


Assuntos
Encéfalo/patologia , Inflamação/patologia , Interleucina-6/metabolismo , Malária Cerebral/patologia , Neuroglia/metabolismo , Plasmodium berghei/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Astrócitos/metabolismo , Biomarcadores/metabolismo , Antígeno CD11b/metabolismo , Agregação Celular , Proteínas de Ligação a DNA , Proteína Glial Fibrilar Ácida/metabolismo , Mediadores da Inflamação/metabolismo , Malária Cerebral/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/patologia , Proteínas Nucleares/metabolismo , Coloração pela Prata , Receptor 4 Toll-Like/metabolismo
17.
Sci Transl Med ; 8(358): 358ra128, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683553

RESUMO

Cerebral malaria is a leading cause of global morbidity and mortality. Interventions targeting the underlying pathophysiology of cerebral malaria may improve outcomes compared to treatment with antimalarials alone. Microvascular leak plays an important role in the pathogenesis of cerebral malaria. The angiopoietin (Ang)-Tie-2 system is a critical regulator of vascular function. We show that Ang-1 expression and soluble Tie-2 expression were associated with disease severity and outcome in a prospective study of Ugandan children with severe malaria and in a preclinical murine model of experimental cerebral malaria. Ang-1 was necessary for maintenance of vascular integrity and survival in a mouse model of cerebral malaria. Therapeutic administration of Ang-1 preserved blood-brain barrier integrity and, in combination with artesunate treatment, improved survival beyond that with artesunate alone. These data define a role for dysregulation of the Ang-Tie-2 axis in the pathogenesis of cerebral malaria and support the evaluation of Ang-Tie-2-based interventions as potential adjunctive therapies for treating severe malaria.


Assuntos
Angiopoietina-1/metabolismo , Malária Cerebral/etiologia , Malária Cerebral/metabolismo , Adenoviridae/metabolismo , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artesunato , Barreira Hematoencefálica/patologia , Pré-Escolar , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Deleção de Genes , Humanos , Lactente , Estimativa de Kaplan-Meier , Cinética , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Plasmodium falciparum/efeitos dos fármacos , Receptor TIE-2/metabolismo , Proteínas Recombinantes/farmacologia , Análise de Sobrevida , Resultado do Tratamento , Uganda
18.
J Ethnopharmacol ; 190: 159-64, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27260410

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Biophytum umbraculum Welw. (Oxalidaceae) is a highly valued African medicinal plant used for treatment of cerebral malaria, a critical complication of falciparum malaria. AIM OF THE STUDY: To provide additional information about traditional use of B. umbraculum and to test plant extracts and isolated compounds for in vitro activities related to cerebral malaria. MATERIALS AND METHODS: The traditional practitioners were questioned about indication, mode of processing/application, dosage and local name of B. umbraculum. Organic extracts and some main constituents of the plant were investigated for anti-malaria, anti-complement activity and inhibition of NO secretion in a RAW 264.7 cell line. RESULTS: Treatment of cerebral malaria was the main use of B. umbraculum (fidelity level 56%). The ethyl acetate extract showed anti-complement activity (ICH50 5.7±1.6µg/ml), inhibition of macrophage activation (IC50 16.4±1.3µg/ml) and in vitro antiplasmodial activity (IC50 K1 5.6±0.13µg/ml, IC50 NF54 6.7±0.03µg/ml). The main constituents (flavone C-glycosides) did not contribute to the activity of the extract. CONCLUSION: Inhibition of complement activation and anti-inflammatory activity of B. umbraculum observed in this study might be possible targets for adjunctive therapy in cerebral malaria together with its antiplasmodial activity. However, clinical trials are necessary to evaluate the activity due to the complex pathogenesis of cerebral malaria.


Assuntos
Anti-Inflamatórios/farmacologia , Antimaláricos/farmacologia , Inativadores do Complemento/farmacologia , Macrófagos/efeitos dos fármacos , Malária Cerebral/prevenção & controle , Malária Falciparum/prevenção & controle , Oxalidaceae/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Acetatos/química , Animais , Anti-Inflamatórios/isolamento & purificação , Antimaláricos/isolamento & purificação , Inativadores do Complemento/isolamento & purificação , Relação Dose-Resposta a Droga , Etnofarmacologia , Humanos , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Mali , Medicinas Tradicionais Africanas , Camundongos , Óxido Nítrico/metabolismo , Fitoterapia , Componentes Aéreos da Planta/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Plasmodium falciparum/crescimento & desenvolvimento , Células RAW 264.7 , Solventes/química
19.
Blood ; 127(9): 1192-201, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26511133

RESUMO

Plasmodium falciparum malaria infection is associated with an early marked increase in plasma von Willebrand factor (VWF) levels, together with a pathological accumulation of hyperreactive ultra-large VWF (UL-VWF) multimers. Given the established critical role of platelets in malaria pathogenesis, these increases in plasma VWF raise the intriguing possibility that VWF may play a direct role in modulating malaria pathogenesis. To address this hypothesis, we used an established murine model of experimental cerebral malaria (ECM), in which wild-type (WT) C57BL/6J mice were infected with Plasmodium berghei ANKA. In keeping with findings in children with P falciparum malaria, acute endothelial cell activation was an early and consistent feature in the murine model of cerebral malaria (CM), resulting in significantly increased plasma VWF levels. Despite the fact that murine plasma ADAMTS13 levels were not significantly reduced, pathological UL-VWF multimers were also observed in murine plasma following P berghei infection. To determine whether VWF plays a role in modulating the pathogenesis of CM in vivo, we further investigated P berghei infection in VWF(-/-) C57BL/6J mice. Clinical ECM progression was delayed, and overall survival was significantly prolonged in VWF(-/-) mice compared with WT controls. Despite this protection against ECM, no significant differences in platelet counts or blood parasitemia levels were observed between VWF(-/-) and WT mice. Interestingly, however, the degree of ECM-associated enhanced blood-brain barrier permeability was significantly attenuated in VWF(-/-) mice compared with WT controls. Given the significant morbidity and mortality associated with CM, these novel data may have direct translational significance.


Assuntos
Malária Cerebral/etiologia , Malária Cerebral/metabolismo , Fator de von Willebrand/metabolismo , Animais , Antígenos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Células Endoteliais/metabolismo , Humanos , Malária Cerebral/parasitologia , Malária Cerebral/prevenção & controle , Camundongos Endogâmicos C57BL , Modelos Biológicos , Peptídeos/metabolismo , Permeabilidade , Plasmodium berghei , Multimerização Proteica , Trombocitopenia/sangue , Trombocitopenia/complicações
20.
Parasitol Res ; 115(1): 415-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499384

RESUMO

Malaria is considered to be one of the most prevalent diseases in the world. Severity of the disease between males and females is very important in clinical research areas. In this study, we investigated the impact of sex differences in brain response to infection with Plasmodium berghei. Male and female C57Bl/6 mice were infected with P. berghei-infected erythrocytes. The infection induced a significant change in weight loss in males (-7.2 % ± 0.5) than females (-4.9 % ± 0.6). The maximum parasitemia reached about 15 % at day 9 postinfection. Also, P. berghei infection caused histopathological changes in the brain of mice. These changes were in the form of inflammation, hemorrhage, and structural changes in Purkinje cells. In addition, P. berghei was able to induce a marked oxidative damage in mice brain. The infection induced a significant increase in male brain glutathione than females while the brain catalase level was significantly increased in infected females than infected males. Moreover, the change in brain neurotransmitters, dopamine, epinephrine, norepinephrine, and serotonin, was more in infected males than infected females. At the molecular level, P. berghei was able to induce upregulations of Adam23, Cabp1, Cacnb4, Glrb, and Vdac3-mRNA in the brain of mice. These genes were significantly upregulated in infected males than in infected females. In general, P. berghei could induce structural, biochemical, and molecular alterations in mice brain. Severity of these alterations was different according to sex of mice.


Assuntos
Encéfalo/patologia , Malária Cerebral/patologia , Plasmodium berghei/fisiologia , Caracteres Sexuais , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Epinefrina/metabolismo , Eritrócitos/parasitologia , Feminino , Expressão Gênica/genética , Glutationa/metabolismo , Malária Cerebral/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Oxirredução , Parasitemia/parasitologia , Parasitemia/patologia , RNA Mensageiro/metabolismo , Serotonina/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA