Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
J Infect ; 88(5): 106144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574776

RESUMO

OBJECTIVE: The effectiveness of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is threatened by increasing SP-resistance in Africa. We assessed the level of SP-resistance markers, and the clinical and parasitological effectiveness of IPTp-SP in southern Mozambique. METHODS: P. falciparum infection, antimalarial antibodies and dhfr/dhps SP-resistance mutants were detected by quantitative polymerase chain reaction (qPCR), suspension array technology and targeted deep sequencing, respectively, among 4016 HIV-negative women in Maputo province (2016-2019). Univariate and multivariate regression models were used to assess the association between taking the recommended three or more IPTp-SP doses (IPTp3+) and parasitological and clinical outcomes. RESULTS: 84.3% (3385/4016) women received three or more IPTp-SP doses. The prevalence of quintuple mutants at first antenatal care (ANC) visit was 94.2%. IPTp3+ was associated with a higher clearance rate of qPCR-detected infections from first ANC visit to delivery (adjusted odds ratio [aOR]=5.9, 95% CI: 1.5-33.3; p = 0.012), lower seroprevalence at delivery of antibodies against the pregnancy-specific antigen VAR2CSADBL34 (aOR=0.72, 95% CI: 0.54-0.95; p = 0.022), and lower prevalence of low birth weight deliveries (aOR: 0.61, 95% CI: 0.41-0.90; p = 0.013). CONCLUSION: A sustained parasitological effect of IPTp-SP contributes to the clinical effectiveness of IPTp3+ in areas with high prevalence of SP-resistance markers.


Assuntos
Antimaláricos , Combinação de Medicamentos , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Humanos , Feminino , Sulfadoxina/uso terapêutico , Sulfadoxina/administração & dosagem , Pirimetamina/uso terapêutico , Pirimetamina/administração & dosagem , Gravidez , Antimaláricos/uso terapêutico , Adulto , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Moçambique/epidemiologia , Adulto Jovem , Complicações Parasitárias na Gravidez/prevenção & controle , Complicações Parasitárias na Gravidez/tratamento farmacológico , Adolescente , Quimioprevenção/métodos
2.
Malar J ; 23(1): 92, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570791

RESUMO

BACKGROUND: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS: A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION: The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION: ACTRN12623000344695.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Piperazinas , Quinolinas , Criança , Adulto , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Prevalência , Togo/epidemiologia , Estudos Prospectivos , Artemeter/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária/tratamento farmacológico , Resistência a Medicamentos , Tetra-Hidrofolato Desidrogenase/genética , Biomarcadores , Combinação de Medicamentos , Plasmodium falciparum/genética
3.
Am J Trop Med Hyg ; 110(5): 892-901, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531102

RESUMO

Malaria eradication efforts prioritize safe and efficient vaccination strategies, although none with high-level efficacy against malaria infection are yet available. Among several vaccine candidates, Sanaria® PfSPZ Vaccine and Sanaria PfSPZ-CVac are, respectively, live radiation- and chemo-attenuated sporozoite vaccines designed to prevent infection with Plasmodium falciparum, the leading cause of malaria-related morbidity and mortality. We are conducting a randomized normal saline placebo-controlled trial called IDSPZV1 that will analyze the safety, tolerability, immunogenicity, and efficacy of PfSPZ Vaccine and PfSPZ-CVac administered pre-deployment to malaria-naive Indonesian soldiers assigned to temporary duties in a high malaria transmission area. We describe the manifold challenges of enrolling and immunizing 345 soldier participants at their home base in western Indonesia before their nearly 6,000-km voyage to eastern Indonesia, where they are being monitored for incident P. falciparum and Plasmodium vivax malaria cases during 9 months of exposure. The unique regulatory, ethical, and operational complexities of this trial demonstrate the importance of thorough planning, frequent communication, and close follow-up with stakeholders. Effective engagement with the military community and the ability to adapt to unanticipated events have proven key to the success of this trial.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária Vivax , Militares , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Vacinas Antimaláricas/administração & dosagem , Indonésia/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Esporozoítos/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Plasmodium falciparum/imunologia , Malária Vivax/prevenção & controle , Malária Vivax/epidemiologia , Masculino , Adulto , Adulto Jovem , Plasmodium vivax/imunologia , Feminino
4.
Lancet Infect Dis ; 24(1): 75-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37625434

RESUMO

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years. METHODS: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso. Children who had been enrolled in the initial 3-year trial when aged 5-17 months were initially randomly assigned individually to receive SMC with sulphadoxine-pyrimethamine and amodiaquine plus control vaccines, RTS,S/AS01E plus placebo SMC, or SMC plus RTS,S/AS01E. They continued to receive the same interventions until the age of 5 years. The primary trial endpoint was the incidence of clinical malaria over the 5-year trial period in both the modified intention-to-treat and per-protocol populations. Over the 5-year period, non-inferiority was defined as a 20% increase in clinical malaria in the RTS,S/AS01E-alone group compared with the SMC alone group. Superiority was defined as a 12% difference in the incidence of clinical malaria between the combined and single intervention groups. The study is registered with ClinicalTrials.gov, NCT04319380, and is complete. FINDINGS: In April, 2020, of 6861 children originally recruited, 5098 (94%) of the 5433 children who completed the initial 3-year follow-up were re-enrolled in the extension study. Over 5 years, the incidence of clinical malaria per 1000 person-years at risk was 313 in the SMC alone group, 320 in the RTS,S/AS01E-alone group, and 133 in the combined group. The combination of RTS,S/AS01E and SMC was superior to SMC (protective efficacy 57·7%, 95% CI 53·3 to 61·7) and to RTS,S/AS01E (protective efficacy 59·0%, 54·7 to 62·8) in preventing clinical malaria. RTS,S/AS01E was non-inferior to SMC (hazard ratio 1·03 [95% CI 0·95 to 1·12]). The protective efficacy of the combination versus SMC over the 5-year period of the study was very similar to that seen in the first 3 years with the protective efficacy of the combination versus SMC being 57·7% (53·3 to 61·7) and versus RTS/AS01E-alone being 59·0% (54·7 to 62·8). The comparable figures for the first 3 years of the study were 62·8% (58·4 to 66·8) and 59·6% (54·7 to 64·0%), respectively. Hospital admissions for WHO-defined severe malaria were reduced by 66·8% (95% CI 40·3 to 81·5), for malarial anaemia by 65·9% (34·1 to 82·4), for blood transfusion by 68·1% (32·6 to 84·9), for all-cause deaths by 44·5% (2·8 to 68·3), for deaths excluding external causes or surgery by 41·1% (-9·2 to 68·3), and for deaths from malaria by 66·8% (-2·7 to 89·3) in the combined group compared with the SMC alone group. No safety signals were detected. INTERPRETATION: Substantial protection against malaria was sustained over 5 years by combining seasonal malaria vaccination with seasonal chemoprevention, offering a potential new approach to malaria control in areas with seasonal malaria transmission. FUNDING: UK Joint Global Health Trials and PATH's Malaria Vaccine Initiative (through a grant from the Bill & Melinda Gates Foundation). TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Pré-Escolar , Mali/epidemiologia , Burkina Faso/epidemiologia , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Vacinação , Quimioprevenção , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle
5.
Int J Infect Dis ; 139: 41-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016502

RESUMO

OBJECTIVES: Partial artemisinin resistance, mediated by Plasmodium falciparum K13 (PfK13) mutations, has been confirmed in certain areas of East Africa that are historically associated with high-level antimalarial resistance. The Democratic Republic of Congo (DRC) borders these areas in the East. This study aimed to determine the prevalence of resistance markers in six National Malaria Control Program surveillance sites; Boende, Kabondo, Kapolowe, Kimpese, Mikalayi, and Rutshuru. METHODS: The single nucleotide polymorphisms (SNPs) in P. falciparum genes PfK13, Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt were assessed using targeted next-generation sequencing of isolates collected at enrollment in therapeutic efficacy studies. RESULTS: PfK13 SNPs were detected in two samples: in Kabondo (R561H) and in Rutshuru (P441L), both areas near Uganda and Rwanda. The Pfdhps ISGEGA haplotype, associated with reduced sulfadoxine-pyrimethamine chemoprevention efficacy, ranged from 0.8% in Mikalayi (central DRC) to 42.2% in Rutshuru (East DRC). CONCLUSIONS: R561H and P441L observed in eastern DRC are a concern, as they are associated with delayed artemisinin-based combination therapies-clearance and candidate marker of resistance, respectively. This is consistent with previous observations of shared drug resistance profiles in parasites of that region with bordering areas of Rwanda and Uganda. The likely circulation of parasites has important implications for the ongoing surveillance of partial artemisinin-resistant P. falciparum and for future efforts to mitigate its dispersal.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , República Democrática do Congo/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação , Uganda , Proteínas de Protozoários/genética
6.
Am J Hematol ; 99(1): 113-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009642

RESUMO

Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that significantly contributes to childhood cancer burden in sub-Saharan Africa. Plasmodium falciparum, which causes malaria, is geographically associated with BL, but the evidence remains insufficient for causal inference. Inference could be strengthened by demonstrating that mendelian genes known to protect against malaria-such as the sickle cell trait variant, HBB-rs334(T)-also protect against BL. We investigated this hypothesis among 800 BL cases and 3845 controls in four East African countries using genome-scan data to detect polymorphisms in 22 genes known to affect malaria risk. We fit generalized linear mixed models to estimate odds ratios (OR) and 95% confidence intervals (95% CI), controlling for age, sex, country, and ancestry. The ORs of the loci with BL and P. falciparum infection among controls were correlated (Spearman's ρ = 0.37, p = .039). HBB-rs334(T) was associated with lower P. falciparum infection risk among controls (OR = 0.752, 95% CI 0.628-0.9; p = .00189) and BL risk (OR = 0.687, 95% CI 0.533-0.885; p = .0037). ABO-rs8176703(T) was associated with decreased risk of BL (OR = 0.591, 95% CI 0.379-0.992; p = .00271), but not of P. falciparum infection. Our results increase support for the etiological correlation between P. falciparum and BL risk.


Assuntos
Linfoma de Burkitt , Malária Falciparum , Malária , Traço Falciforme , Humanos , África Oriental , Alelos , Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/genética , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/complicações , Traço Falciforme/epidemiologia , Traço Falciforme/genética , Traço Falciforme/complicações , Nectinas/metabolismo
7.
BMC Res Notes ; 16(1): 199, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684680

RESUMO

OBJECTIVE: Schistosomiasis remains a chronic disease of global importance, especially in many rural areas of the world where co-infection with Plasmodium falciparum is common. It is critical to decipher the role of single or co-infected disease scenarios on immune system regulation in such individuals and how such co-infections can either ameliorate or complicate immune response and the consequent disease outcome. First, 10 ml of urine samples, collected between 10:00 am and 2:00 pm, was filtered for diagnosis of schistosomiasis, while egg count, indicative of disease severity, was determined by microscopy. Furthermore, genomic DNA samples extracted from dried blood spots collected on filter paper from one hundred and forty-four Schistosoma haematobium-infected school-children was tested for P. falciparum parasite positivity by an allele-specific nested-PCR analysis of merozoite surface protein (msp)-1 and -2 genes and a real-time PCR assay. In addition, among P. falciparum parasite-positive individuals, we carried out a Taqman SNP genotyping assay to extrapolate the effect of host CD14 (-159 C/T; rs2569190) genetic variants on schistosome egg count. RESULTS: Of the 144 individuals recruited, P. falciparum parasite positivity with msp-1 gene were 34%, 43% and 55% for MAD20, RO33 and K1 alleles respectively. Of the co-infected individuals, CD14 genetic variants ranged from 18.8% vs 21.5%, 33.3% vs 44.4%, 9.7% vs 11.8% for single versus schistosome co-infection for the wild type (CC), heterozygous (CT) and mutant (TT) variants respectively. Though the mean egg count for co-infected individuals with CD14 wild type (33.7 eggs per 10 ml of urine) and heterozygote variants (37.5 eggs per 10 ml of urine) were lower than that of schistosome infection alone (52.48 and 48.08 eggs/10 ml of urine respectively), it lacked statistical significance (p-value 0.12 and 0.29), possibly reflecting the benefit of the CD14 activation in schistosome plus malaria co-infection and not schistosome infection alone. In addition, the lower mean egg count in co-infected individuals reveal the benefit of downstream Th1 immune response mitigated by CD14 innate activation that is absent in schistosome infection alone.


Assuntos
Coinfecção , Malária Falciparum , Malária , Esquistossomose Urinária , Humanos , Animais , Criança , Schistosoma haematobium/genética , Coinfecção/genética , Esquistossomose Urinária/complicações , Esquistossomose Urinária/epidemiologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Instituições Acadêmicas
8.
PLoS One ; 18(7): e0288560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37523402

RESUMO

BACKGROUND: The double burden of malaria and helminthiasis in children poses an obvious public health challenge, particularly in terms of anemia morbidity. While both diseases frequently geographically overlap, most studies focus on mono-infection and general prevalence surveys without molecular analysis. The current study investigated the epidemiological determinants of malaria, schistosomiasis, and geohelminthiasis transmission among children in the North Region of Cameroon. METHODOLOGY: School and pre-school children aged 3-15 year-of-age were enrolled from three communities in March 2021 using a community cross-sectional design. Capillary-blood samples were obtained, and each was examined for malaria parasites using rapid-diagnostic-test (RDT), microscopy, and PCR while hemoglobin level was measured using a hemoglobinometer. Stool samples were analyzed for Schistosoma mansoni, S. guineensis, and soil-transmitted-helminthiasis (STH) infections using the Kato Katz method, and urine samples were assessed for the presence of S. haematobium eggs (including hybrids) using the standard urine filtration technique. RESULT: A malaria prevalence of 56% (277/495) was recorded by PCR as opposed to 31.5% (156/495) by microscopy and 37.8% (186/495) by RDT. Similarly, schistosomiasis was observed at prevalence levels of up to 13.3% (66/495) overall [S. haematobium (8.7%); S. mansoni (3.8%); mixed Sh/Sm (0.6%); mixed Sh/Sm/Sg (0.2%). Both infections were higher in males and the 3-9 year-of-age groups. A high frequency of PCR reported P. falciparum mono-infection of 81.9% (227/277) and mixed P. falciparum/P. malariae infection of 17.3% (48/277) was observed. Malaria-helminths co-infections were observed at 13.1% (65/495) with marked variation between P. falciparum/S. haematobium (50.8%, 33/65); P. falciparum/S. mansoni (16.9%, 11/65) and P. falciparum/Ascaris (9.2%, 6/65) (χ2 = 17.5, p = 0.00003). Anemia prevalence was 32.9% (163/495), categorically associated with P. falciparum (45.8%, 104/227), Pf/Sh (11.5%, 26/227), and Pf/Sm (3.9%, 9/227) polyparasitism. CONCLUSION: Polyparasitism with malaria and helminth infections is common in school-aged children despite periodic long-lasting insecticide-treated nets (LLINs) distribution and regular school-based praziquantel (for schistosomiasis) and albendazole (for STH) campaigns. Co-existence of Plasmodium parasites and helminths infections notably Schistosoma species among children may concurrently lead to an increase in Plasmodium infection with an enhanced risk of anemia, highlighting the necessity of an integrated approach for disease control interventions.


Assuntos
Anemia , Helmintíase , Malária Falciparum , Malária , Esquistossomose , Masculino , Animais , Humanos , Pré-Escolar , Criança , Adolescente , Estudos Transversais , Camarões/epidemiologia , Estações do Ano , Esquistossomose/diagnóstico , Esquistossomose/epidemiologia , Esquistossomose/complicações , Helmintíase/parasitologia , Malária/complicações , Malária Falciparum/epidemiologia , Schistosoma mansoni , Anemia/epidemiologia , Anemia/complicações , Prevalência , Fezes/parasitologia , Solo/parasitologia
9.
Malar J ; 22(1): 213, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474966

RESUMO

BACKGROUND: Artemisinin-based combinations therapy (ACT) is the current frontline curative therapy for uncomplicated malaria in Burkina Faso. Sulfadoxine-pyrimethamine (SP) is used for the preventive treatment of pregnant women (IPTp), while SP plus amodiaquine (SP-AQ) is recommended for children under five in seasonal malaria chemoprevention (SMC). This study aimed to assess the proportions of mutations in the P. falciparum multidrug-resistance 1 (Pfmdr1), P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum dihydrofolate reductase (pfdhfr), and P. falciparum dihydropteroate synthase (pfdhps), genes from isolates collected during household surveys in Burkina Faso. METHODS: Dried blood spots from Plasmodium falciparum-positive cases at three sites (Orodara, Gaoua, and Banfora) collected during the peak of transmission were analysed for mutations in Pfcrt (codons 72-76, 93, 97, 145, 218, 343, 350 and 353), Pfmdr-1 (codons 86, 184, 1034, 1042 and 1246) dhfr (codons 51, 59, 108, 164) and dhps (at codons 431, 436, 437, 540, 581, 613) genes using deep sequencing of multiplexed Polymerase chaine reaction (PCR) amplicons. RESULTS: Of the 377 samples analysed, 346 (91.7%), 369 (97.9%), 368 (97.6%), and 374 (99.2%) were successfully sequenced for Pfcrt, Pfmdr-1, dhfr, and dhps, respectively. Most of the samples had a Pfcrt wild-type allele (89.3%). The 76T mutation was below 10%. The most frequent Pfmdr-1 mutation was detected at codon 184 (Y > F, 30.9%). The single mutant genotype (NFSND) predominated (66.7%), followed by the wild-type genotype (NYSND, 30.4%). The highest dhfr mutations were observed at codon 59R (69.8%), followed by codons 51I (66.6%) and 108 N (14.7%). The double mutant genotype (ACIRSI) predominated (52.4%). For mutation in the dhps gene, the highest frequency was observed at codon 437 K (89.3%), followed by codons 436 A (61.2%), and 613 S (14.4%). The double mutant genotype (IAKKAA) and the single mutant genotype (ISKKAA) were predominant (37.7% and 37.2%, respectively). The most frequent dhfr/dhps haplotypes were the triple mutant ACIRSI/IAKKAA (23%), the wild-type ACNCSI/ISKKAA (19%) and the double mutant ACIRSI/ISKKAA (14%). A septuple mutant ACIRNI/VAKKGA was observed in 2 isolates from Gaoua (0.5%). CONCLUSION: The efficacy of ACT partner drugs and drugs used in IPTp and SMC does not appear to be affected by the low proportion of highly resistant mutants observed in this study. Continued monitoring, including molecular surveillance, is critical for decision-making on effective treatment policy in Burkina Faso.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Criança , Feminino , Gravidez , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Burkina Faso , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Mutação , Tetra-Hidrofolato Desidrogenase/genética , Combinação de Medicamentos , Resistência a Medicamentos/genética , Códon
10.
Malar J ; 22(1): 158, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37202779

RESUMO

BACKGROUND: Malaria remains a public health concern globally. Resistance to anti-malarial drugs has consistently threatened the gains in controlling the malaria parasites. Currently, artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the treatment regimens against Plasmodium falciparum infections in many African countries, including Kenya. Recurrent infections have been reported in patients treated with AL or DP, suggesting the possibility of reinfection or parasite recrudescence associated with the development of resistance against the two therapies. The Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) K65 selection marker has previously been associated with decreased lumefantrine susceptibility. This study evaluated the frequency of the Pfnfs1 K65 resistance marker and associated K65Q resistant allele in recurrent infections collected from P. falciparum-infected individuals living in Matayos, Busia County, in western Kenya. METHODS: Archived dried blood spots (DBS) of patients with recurrent malaria infection on clinical follow-up days after treatment with either AL or DP were used in the study. After extraction of genomic DNA, PCR amplification and sequencing analysis were employed to determine the frequencies of the Pfnfs1 K65 resistance marker and K65Q mutant allele in the recurrent infections. Plasmodium falciparum msp1 and P. falciparum msp2 genetic markers were used to distinguish recrudescent infections from new infections. RESULTS: The K65 wild-type allele was detected at a frequency of 41% while the K65Q mutant allele was detected at a frequency of 22% in the recurrent samples. 58% of the samples containing the K65 wild-type allele were AL treated samples and while 42% were DP treated samples. 79% of the samples with the K65Q mutation were AL treated samples and 21% were DP treated samples. The K65 wild-type allele was detected in three recrudescent infections (100%) identified from the AL treated samples. The K65 wild-type allele was detected in two recrudescent DP treated samples (67%) while the K65Q mutant allele was identified in one DP treated (33%) recrudescent sample. CONCLUSIONS: The data demonstrate a higher frequency of the K65 resistance marker in patients with recurrent infection during the study period. The study underscores the need for consistent monitoring of molecular markers of resistance in regions of high malaria transmission.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Quinolinas , Humanos , Combinação Arteméter e Lumefantrina/uso terapêutico , Antimaláricos/uso terapêutico , Plasmodium falciparum/genética , Quênia/epidemiologia , Reinfecção/induzido quimicamente , Reinfecção/tratamento farmacológico , Prevalência , Combinação de Medicamentos , Artemeter/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Quinolinas/uso terapêutico , Lumefantrina/uso terapêutico , Malária/tratamento farmacológico , Mutação
11.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047683

RESUMO

The seroprevalence of Kaposi sarcoma-associated herpesvirus (KSHV) and the incidence of endemic Kaposi sarcoma (KS) overlap with regions of malaria endemicity in sub-Saharan Africa. Multiple studies have shown an increased risk of KSHV seroconversion in children from high malaria compared to low malaria regions; however, the impact of acute episodes of Plasmodium falciparum (P. falciparum) malaria on KSHV's biphasic life cycle and lytic reactivation has not been determined. Here, we examined KSHV serological profiles and viral loads in 134 children with acute malaria and 221 healthy children from high malaria regions in Kisumu, as well as 77 healthy children from low malaria regions in Nandi. We assayed KSHV, Epstein-Barr virus (EBV), and P. falciparum malaria antibody responses in these three by multiplexed Luminex assay. We confirmed that KSHV seroprevalence was significantly associated with malaria endemicity (OR = 1.95, 1.18-3.24 95% CI, p = 0.01) with 71-77% seropositivity in high-malaria (Kisumu) compared to 28% in low-malaria (Nandi) regions. Furthermore, KSHV serological profiles during acute malaria episodes were distinct from age-matched non-malaria-infected children from the same region. Paired IgG levels also varied after malaria treatment, with significantly higher anti-ORF59 at day 0 but elevated ORF38, ORF73, and K8.1 at day 3. Acute malaria episodes is characterized by perturbation of KSHV latency in seropositive children, providing further evidence that malaria endemicity contributes to the observed increase in endemic KS incidence in sub-Saharan Africa.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 8 , Malária Falciparum , Sarcoma de Kaposi , Criança , Humanos , Estudos Soroepidemiológicos , Herpesvirus Humano 4 , Malária Falciparum/epidemiologia
12.
Sci Rep ; 13(1): 6311, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072433

RESUMO

Following integrated malaria control interventions, malaria burden on the Bijagós Archipelago has significantly decreased. Understanding the genomic diversity of circulating Plasmodium falciparum malaria parasites can assist infection control, through identifying drug resistance mutations and characterising the complexity of population structure. This study presents the first whole genome sequence data for P. falciparum isolates from the Bijagós Archipelago. Amplified DNA from P. falciparum isolates sourced from dried blood spot samples of 15 asymptomatic malaria cases were sequenced. Using 1.3 million SNPs characterised across 795 African P. falciparum isolates, population structure analyses revealed that isolates from the archipelago cluster with samples from mainland West Africa and appear closely related to mainland populations; without forming a separate phylogenetic cluster. This study characterises SNPs associated with antimalarial drug resistance on the archipelago. We observed fixation of the PfDHFR mutations N51I and S108N, associated with resistance to sulphadoxine-pyrimethamine, and the continued presence of PfCRT K76T, associated with chloroquine resistance. These data have relevance for infection control and drug resistance surveillance; particularly considering expected increases in antimalarial drug use following updated WHO recommendations, and the recent implementation of seasonal malaria chemoprevention and mass drug administration in the region.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Guiné-Bissau , Filogenia , Proteínas de Protozoários/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Malária/parasitologia , Mutação , Resistência a Medicamentos/genética , Combinação de Medicamentos , Dinâmica Populacional
13.
Malar J ; 22(1): 133, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095480

RESUMO

BACKGROUND: A recent WHO recommendation for perennial malaria chemoprevention (PMC) encourages countries to adapt dose timing and number to local conditions. However, knowledge gaps on the epidemiological impact of PMC and possible combination with the malaria vaccine RTS,S hinder informed policy decisions in countries where malaria burden in young children remains high. METHODS: The EMOD malaria model was used to predict the impact of PMC with and without RTS,S on clinical and severe malaria cases in children under the age of two years (U2). PMC and RTS,S effect sizes were fit to trial data. PMC was simulated with three to seven doses (PMC-3-7) before the age of eighteen months and RTS,S with three doses, shown to be effective at nine months. Simulations were run for transmission intensities of one to 128 infectious bites per person per year, corresponding to incidences of < 1 to 5500 cases per 1000 population U2. Intervention coverage was either set to 80% or based on 2018 household survey data for Southern Nigeria as a sample use case. The protective efficacy (PE) for clinical and severe cases in children U2 was calculated in comparison to no PMC and no RTS,S. RESULTS: The projected impact of PMC or RTS,S was greater at moderate to high transmission than at low or very high transmission. Across the simulated transmission levels, PE estimates of PMC-3 at 80% coverage ranged from 5.7 to 8.8% for clinical, and from 6.1 to 13.6% for severe malaria (PE of RTS,S 10-32% and 24.6-27.5% for clinical and severe malaria, respectively. In children U2, PMC with seven doses nearly averted as many cases as RTS,S, while the combination of both was more impactful than either intervention alone. When operational coverage, as seen in Southern Nigeria, increased to a hypothetical target of 80%, cases were reduced beyond the relative increase in coverage. CONCLUSIONS: PMC can substantially reduce clinical and severe cases in the first two years of life in areas with high malaria burden and perennial transmission. A better understanding of the malaria risk profile by age in early childhood and on feasible coverage by age, is needed for selecting an appropriate PMC schedule in a given setting.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Criança , Pré-Escolar , Lactente , Malária/prevenção & controle , Nigéria , Quimioprevenção , Vacinação , Malária Falciparum/epidemiologia
14.
Vaccine ; 41(20): 3215-3223, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37080831

RESUMO

BACKGROUND: The World Health Organization has recommended a 4-dose schedule of the RTS,S/AS01 (RTS,S) vaccine for children in regions of moderate to high P. falciparum transmission. Faced with limited supply and finite resources, global funders and domestic malaria control programs will need to examine the relative cost-effectiveness of RTS,S and identify target areas for vaccine implementation relative to scale-up of existing interventions. METHODS: Using an individual-based mathematical model of P. falciparum, we modelled the cost-effectiveness of RTS,S across a range of settings in sub-Saharan Africa, incorporating various rainfall patterns, insecticide-treated net (ITN) use, treatment coverage, and parasite prevalence bands. We compare age-based and seasonal RTS,S administration to increasing ITN usage, switching to next generation ITNs in settings experiencing insecticide-resistance, and introduction of seasonal malaria chemoprevention (SMC) in areas of seasonal transmission. RESULTS: For RTS,S to be the most cost-effective intervention option considered, the maximum cost per dose was less than $9.30 USD in 90.9% of scenarios. Nearly all (89.8%) values at or above $9.30 USD per dose were in settings with 60% established bed net use and / or with established SMC, and 76.3% were in the highest PfPR2-10 band modelled (40%). Addition of RTS,S to strategies involving 60% ITN use, increased ITN usage or a switch to PBO nets, and SMC, if eligible, still led to significant marginal case reductions, with a median of 2,653 (IQR: 1,741 to 3,966) cases averted per 100,000 people annually, and 82,270 (IQR: 54,034 to 123,105) cases averted per 100,000 fully vaccinated children (receiving at least three doses). CONCLUSIONS: Use of RTS,S results in reductions in malaria cases and deaths even when layered upon existing interventions. When comparing relative cost-effectiveness, scale up of ITNs, introduction of SMC, and switching to new technology nets should be prioritized in eligible settings.


Assuntos
Inseticidas , Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Análise Custo-Benefício , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Quimioprevenção
15.
J Infect Dis ; 228(2): 212-223, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37042518

RESUMO

Transmission-blocking interventions can play an important role in combating malaria worldwide. Recently, a highly potent Plasmodium falciparum transmission-blocking monoclonal antibody (TB31F) was demonstrated to be safe and efficacious in malaria-naive volunteers. Here we predict the potential public health impact of large-scale implementation of TB31F alongside existing interventions. We developed a pharmaco-epidemiological model, tailored to 2 settings of differing transmission intensity with already established insecticide-treated nets and seasonal malaria chemoprevention interventions. Community-wide annual administration (at 80% coverage) of TB31F over a 3-year period was predicted to reduce clinical incidence by 54% (381 cases averted per 1000 people per year) in a high-transmission seasonal setting, and 74% (157 cases averted per 1000 people per year) in a low-transmission seasonal setting. Targeting school-aged children gave the largest reduction in terms of cases averted per dose. An annual administration of the transmission-blocking monoclonal antibody TB31F may be an effective intervention against malaria in seasonal malaria settings.


Assuntos
Malária Falciparum , Malária , Criança , Humanos , Plasmodium falciparum , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Estações do Ano , Malária/prevenção & controle , Anticorpos Monoclonais/uso terapêutico
16.
Front Public Health ; 11: 1087044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935683

RESUMO

Background: Concurrent infections of Plasmodium falciparum with Soil Transmitted Helminths (STH) and Schistosoma spp are still a major public health problem among children living in Sub-Saharan Africa. We conducted two prospective studies among children living in urban and rural settings of Senegal, where control programmes for malaria, STH and schistosomiasis have been sustained, to determine the prevalence of malaria-helminth co-infection. Methods: We enrolled 910 children aged 1-14 years from Saraya and Diourbel districts of Senegal in June and November 2021, respectively. We collected finger-prick blood samples from the children for malaria parasite detection using microscopy and PCR methods. Stool samples were also collected and Kato-Katz and PCR methods were used to detect STH and S. mansoni; and Merthiolate-iodine-formalin (MIF) test for other intestinal protozoans. Urine samples were analyzed using a filtration test, Point of Care Circulating Cathodic Antigens (POC-CCA) and PCR methods for detection of S. haematobium. Statistical analyses were performed to compare the continuous and categorical variables across the two study sites and age groups, as well as using the adjusted Odds ratios (aOR) to explore risk factors for malaria-helminth co-infections. Results: The overall prevalence of polyparasitism with P. falciparum, STH, S. haematobium and S. mansoni among children in the two study sites was 2.2% (20/910) while prevalence of P. falciparum-S. haematobium co-infection was 1.1% (10/910); P. falciparum-S. mansoni 0.7% (6/910) and P. falciparum with any intestinal protozoan 2.4% (22/910). Co-infection was slightly higher among 5-14 year old children (17/629, 2.7%; 95% CI: 1.43-3.97) than 1-4 years (3/281, 1.1%; 95% CI: -0.12-2.32) and, in boys (13/567, 2.3%; 95% CI: 1.27-3.96) than girls (7/343, 2.1%; 95% CI: 0.52-3.48). Children aged 5-14 years (aOR = 3.37; 95% CI: 0.82-13.77, p = 0.09), who were boys (aOR = 1.44; 95% CI: 0.48-4.36, p = 0.51) and lived in Saraya (aOR = 1.27; 95% CI: 0.24-6.69, p = 0.77) had a higher risk of malaria-helminth co-infection than other age group, in girls and those who lived in Diourbel. Living in houses with spaces between the walls and roofs as well as frequent contacts with water during swimming were statistically significant risk factors for malaria-helminth co-infection. Conclusions: The prevalence of malaria-helminth co-infection is low in two districts in Senegal, possibly due to sustained implementation of effective control measures for malaria and NTDs. These findings could help to develop and implement strategies that would lead to elimination of malaria and helminths in the study areas.


Assuntos
Coinfecção , Helmintíase , Helmintos , Malária Falciparum , Malária , Masculino , Animais , Feminino , Humanos , Criança , Pré-Escolar , Adolescente , Coinfecção/epidemiologia , Prevalência , Senegal/epidemiologia , Estudos Prospectivos , Helmintíase/epidemiologia , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Solo/parasitologia
17.
J Infect Dis ; 228(2): 202-211, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36961831

RESUMO

BACKGROUND: TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. METHODS: p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. RESULTS: Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. CONCLUSIONS: These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.


Assuntos
Malária Falciparum , Malária , Criança , Adulto , Humanos , Estudos de Coortes , Estudos Prospectivos , Parasitemia/genética , Proteína Supressora de Tumor p53/genética , Plasmodium falciparum/genética , Malária/complicações , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/complicações , Febre/etiologia
18.
Proc Natl Acad Sci U S A ; 120(2): e2211055120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595676

RESUMO

Endemic Burkitt lymphoma (eBL) is a pediatric cancer coendemic with malaria in sub-Saharan Africa, suggesting an etiological link between them. However, previous cross-sectional studies of limited geographic areas have not found a convincing association. We used spatially detailed data from the Epidemiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) study to assess this relationship. EMBLEM is a case-control study of eBL from 2010 through 2016 in six regions of Kenya, Uganda, and Tanzania. To measure the intensity of exposure to the malaria parasite, Plasmodium falciparum, among children in these regions, we used high-resolution spatial data from the Malaria Atlas Project to estimate the annual number of P. falciparum infections from 2000 through 2016 for each of 49 districts within the study region. Cumulative P. falciparum exposure, calculated as the sum of annual infections by birth cohort, varied widely, with a median of 47 estimated infections per child by age 10, ranging from 4 to 315 infections. eBL incidence increased 39% for each 100 additional lifetime P. falciparum infections (95% CI: 6.10 to 81.04%) with the risk peaking among children aged 5 to 11 and declining thereafter. Alternative models using estimated annual P. falciparum infections 0 to 10 y before eBL onset were inconclusive, suggesting that eBL risk is a function of cumulative rather than recent cross-sectional exposure. Our findings provide population-level evidence that eBL is a phenotype related to heavy lifetime exposure to P. falciparum malaria and support emphasizing the link between malaria and eBL.


Assuntos
Linfoma de Burkitt , Malária Falciparum , Malária , Humanos , Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/genética , Plasmodium falciparum , Estudos de Casos e Controles , Uganda/epidemiologia , Quênia/epidemiologia , Tanzânia/epidemiologia , Estudos Transversais , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária/epidemiologia
19.
Parasitol Int ; 92: 102657, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36038059

RESUMO

A major challenge in the fight to effectively control malaria is the emergence of resistant parasite to drugs used in therapy as well as for chemoprevention. In this study, single nucleotide polymorphisms (SNPs) associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP), one of the partner drugs in artemisinin-based therapies (ACTs) were studied in asymptomatic P. falciparum isolates from Cameroon. Dried Blood spots were collected from children with asymptomatic malaria enrolled during a household survey. The P. falciparum dihydrofolate reductase (Pfdhfr), dihydropteroate synthase (Pfdhps) and Kelch 13 genes were amplified and point mutations in these gene sequences were analyzed by sequencing. Among a total of 234 samples collected, 51 showed parasitaemia after microscopic examination of which 47 were P. falciparum mono-infections. Molecular analysis revealed 97.3% of mutant alleles at codons 51I, 59R and 108 N in Pfdhfr gene. In Pfdhps gene the most common mutation was 437G (83.3%); followed by 436A (47.6%) and 436F (28.6%). The association of mutations in the two genes (dhfr + dhps) showed 11 different haplotypes including three sextuple mutants (IRNI + AGKGA, IRNI + AAKGS, IRNI + AGKAS) and one septuple mutant (IRNI + AGKGS). For K13 gene no SNPs were seen in the studied asymptomatic malaria samples. The findings revealed presence of SP-resistant alleles in asymptomatic infected individuals with presence of sextuples and septuple SNPs. This emphasizes that regular profiling of antimalarial drugs resistance markers in such population is essential for malaria control and elimination programmes.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Criança , Plasmodium falciparum/genética , Ácido Fólico , Camarões/epidemiologia , Infecções Assintomáticas/epidemiologia , Malária Falciparum/epidemiologia , Mutação , Tetra-Hidrofolato Desidrogenase/genética
20.
Braz. j. biol ; 83: 1-7, 2023. ilus, map, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468891

RESUMO

Military conflicts have been significant obstacles in detecting and treating infectious disease diseases due to the diminished public health infrastructure, resulting in malaria endemicity. A variety of violent and destructive incidents were experienced by FATA (Federally Administered Tribal Areas). It was a struggle to pursue an epidemiological analysis due to continuing conflict and Talibanization. Clinical isolates were collected from Bajaur, Mohmand, Khyber, Orakzai agencies from May 2017 to May 2018. For Giemsa staining, full blood EDTA blood samples have been collected from symptomatic participants. Malaria-positive microscopy isolates were spotted on filter papers for future Plasmodial molecular detection by nested polymerase chain reaction (nPCR) of small subunit ribosomal ribonucleic acid (ssrRNA) genes specific primers. Since reconfirming the nPCR, a malariometric study of 762 patients found 679 positive malaria cases. Plasmodium vivax was 523 (77%), Plasmodium falciparum 121 (18%), 35 (5%) were with mixed-species infection (P. vivax plus P. falciparum), and 83 were declared negative by PCR. Among the five agencies of FATA, Khyber agency has the highest malaria incidence (19%) with followed by P. vivax (19%) and P. falciparum (4.1%). In contrast, Kurram has about (14%), including (10.8%) P. vivax and (2.7%) P. falciparum cases, the lowest malaria epidemiology. Surprisingly, no significant differences in the distribution of mixed-species infection among all five agencies. P. falciparum and P. vivax were two prevalent FATA malaria species in Pakistan's war-torn area. To overcome this rising incidence of malaria, this study recommends that initiating malaria awareness campaigns in school should be supported by public health agencies and malaria related education locally, targeting children and parents alike.


Os conflitos militares têm sido obstáculos significativos na detecção e tratamento de doenças infecciosas devido à diminuição da infraestrutura de saúde pública, resultando na endemicidade da malária. Uma variedade de incidentes violentos e destrutivos foi vivida pelas FATA (áreas tribais administradas pelo governo federal). Foi uma luta busca ruma análise epidemiológica devido ao conflito contínuo e à talibanização. Isolados clínicos foram coletados de agências Bajaur, Mohmand, Khyber e Orakzai, de maio de 2017 a maio de 2018. Para a coloração de Giemsa, amostras de sangue completo com EDTA foram coletadas de participantes sintomáticos. Isolados de microscopia positivos para malária foram colocados em papéis de filtro para futura detecção molecular plasmódica por reação em cadeia da polimerase aninhada (nPCR) de primers específicos de genes de subunidade ribossômica de ácido ribonucleico (ssrRNA). Desde a reconfirmação do nPCR, um estudo malariométrico de 762 pacientes encontrou 679 casos positivos de malária. Plasmodium vivax foi 523 (77%), Plasmodium falciparum 121 (18%), 35 (5%) eram com infecção de espécies mistas (P. vivax mais P. falciparum) e 83 foram declarados negativos por PCR. Entre as cinco agências da FATA, a agência Khyber tem a maior incidência de malária (19%), seguida por P. vivax (19%) e P. falciparum (4,1%). Em contraste, Kurram tem cerca de 14%, incluindo 10,8% casos de P. vivax e 2,7% P. falciparum, a epidemiologia de malária mais baixa. Surpreendentemente, não há diferenças significativas na distribuição da infecção de espécies mistas entre todas as cinco agências. P. falciparum e P. vivax foram duas espécies prevalentes de malária FATA na área devastada pela guerra no Paquistão. Para superar essa incidência crescente de malária, este estudo recomenda que o início de campanhas de conscientização sobre a malária na escola deve ser apoiado por agências de saúde pública e educação relacionada com a malária localmente, visando crianças e pais.


Assuntos
Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/sangue , Malária Vivax/epidemiologia , Malária Vivax/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA