Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Malar J ; 23(1): 48, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360586

RESUMO

BACKGROUND: Immunogenic cell death (ICD) is a type of regulated cell death that plays a crucial role in activating the immune system in response to various stressors, including cancer cells and pathogens. However, the involvement of ICD in the human immune response against malaria remains to be defined. METHODS: In this study, data from Plasmodium falciparum infection cohorts, derived from cross-sectional studies, were analysed to identify ICD subtypes and their correlation with parasitaemia and immune responses. Using consensus clustering, ICD subtypes were identified, and their association with the immune landscape was assessed by employing ssGSEA. Differentially expressed genes (DEGs) analysis, functional enrichment, protein-protein interaction networks, and machine learning (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify ICD-associated hub genes linked with high parasitaemia. A nomogram visualizing these genes' correlation with parasitaemia levels was developed, and its performance was evaluated using receiver operating characteristic (ROC) curves. RESULTS: In the P. falciparum infection cohort, two ICD-associated subtypes were identified, with subtype 1 showing better adaptive immune responses and lower parasitaemia compared to subtype 2. DEGs analysis revealed upregulation of proliferative signalling pathways, T-cell receptor signalling pathways and T-cell activation and differentiation in subtype 1, while subtype 2 exhibited elevated cytokine signalling and inflammatory responses. PPI network construction and machine learning identified CD3E and FCGR1A as candidate hub genes. A constructed nomogram integrating these genes demonstrated significant classification performance of high parasitaemia, which was evidenced by AUC values ranging from 0.695 to 0.737 in the training set and 0.911 to 0.933 and 0.759 to 0.849 in two validation sets, respectively. Additionally, significant correlations between the expressions of these genes and the clinical manifestation of P. falciparum infection were observed. CONCLUSION: This study reveals the existence of two ICD subtypes in the human immune response against P. falciparum infection. Two ICD-associated candidate hub genes were identified, and a nomogram was constructed for the classification of high parasitaemia. This study can deepen the understanding of the human immune response to P. falciparum infection and provide new targets for the prevention and control of malaria.


Assuntos
Morte Celular Imunogênica , Malária Falciparum , Humanos , Relevância Clínica , Plasmodium falciparum/genética , Estudos Transversais , Malária Falciparum/genética , Biologia Computacional , Aprendizado de Máquina
2.
Am J Hematol ; 99(1): 113-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009642

RESUMO

Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that significantly contributes to childhood cancer burden in sub-Saharan Africa. Plasmodium falciparum, which causes malaria, is geographically associated with BL, but the evidence remains insufficient for causal inference. Inference could be strengthened by demonstrating that mendelian genes known to protect against malaria-such as the sickle cell trait variant, HBB-rs334(T)-also protect against BL. We investigated this hypothesis among 800 BL cases and 3845 controls in four East African countries using genome-scan data to detect polymorphisms in 22 genes known to affect malaria risk. We fit generalized linear mixed models to estimate odds ratios (OR) and 95% confidence intervals (95% CI), controlling for age, sex, country, and ancestry. The ORs of the loci with BL and P. falciparum infection among controls were correlated (Spearman's ρ = 0.37, p = .039). HBB-rs334(T) was associated with lower P. falciparum infection risk among controls (OR = 0.752, 95% CI 0.628-0.9; p = .00189) and BL risk (OR = 0.687, 95% CI 0.533-0.885; p = .0037). ABO-rs8176703(T) was associated with decreased risk of BL (OR = 0.591, 95% CI 0.379-0.992; p = .00271), but not of P. falciparum infection. Our results increase support for the etiological correlation between P. falciparum and BL risk.


Assuntos
Linfoma de Burkitt , Malária Falciparum , Malária , Traço Falciforme , Humanos , África Oriental , Alelos , Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/genética , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/complicações , Traço Falciforme/epidemiologia , Traço Falciforme/genética , Traço Falciforme/complicações , Nectinas/metabolismo
3.
BMC Res Notes ; 16(1): 199, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684680

RESUMO

OBJECTIVE: Schistosomiasis remains a chronic disease of global importance, especially in many rural areas of the world where co-infection with Plasmodium falciparum is common. It is critical to decipher the role of single or co-infected disease scenarios on immune system regulation in such individuals and how such co-infections can either ameliorate or complicate immune response and the consequent disease outcome. First, 10 ml of urine samples, collected between 10:00 am and 2:00 pm, was filtered for diagnosis of schistosomiasis, while egg count, indicative of disease severity, was determined by microscopy. Furthermore, genomic DNA samples extracted from dried blood spots collected on filter paper from one hundred and forty-four Schistosoma haematobium-infected school-children was tested for P. falciparum parasite positivity by an allele-specific nested-PCR analysis of merozoite surface protein (msp)-1 and -2 genes and a real-time PCR assay. In addition, among P. falciparum parasite-positive individuals, we carried out a Taqman SNP genotyping assay to extrapolate the effect of host CD14 (-159 C/T; rs2569190) genetic variants on schistosome egg count. RESULTS: Of the 144 individuals recruited, P. falciparum parasite positivity with msp-1 gene were 34%, 43% and 55% for MAD20, RO33 and K1 alleles respectively. Of the co-infected individuals, CD14 genetic variants ranged from 18.8% vs 21.5%, 33.3% vs 44.4%, 9.7% vs 11.8% for single versus schistosome co-infection for the wild type (CC), heterozygous (CT) and mutant (TT) variants respectively. Though the mean egg count for co-infected individuals with CD14 wild type (33.7 eggs per 10 ml of urine) and heterozygote variants (37.5 eggs per 10 ml of urine) were lower than that of schistosome infection alone (52.48 and 48.08 eggs/10 ml of urine respectively), it lacked statistical significance (p-value 0.12 and 0.29), possibly reflecting the benefit of the CD14 activation in schistosome plus malaria co-infection and not schistosome infection alone. In addition, the lower mean egg count in co-infected individuals reveal the benefit of downstream Th1 immune response mitigated by CD14 innate activation that is absent in schistosome infection alone.


Assuntos
Coinfecção , Malária Falciparum , Malária , Esquistossomose Urinária , Humanos , Animais , Criança , Schistosoma haematobium/genética , Coinfecção/genética , Esquistossomose Urinária/complicações , Esquistossomose Urinária/epidemiologia , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Instituições Acadêmicas
4.
J Infect Dis ; 228(2): 202-211, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36961831

RESUMO

BACKGROUND: TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. METHODS: p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. RESULTS: Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. CONCLUSIONS: These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.


Assuntos
Malária Falciparum , Malária , Criança , Adulto , Humanos , Estudos de Coortes , Estudos Prospectivos , Parasitemia/genética , Proteína Supressora de Tumor p53/genética , Plasmodium falciparum/genética , Malária/complicações , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/complicações , Febre/etiologia
5.
Cytokine ; 164: 156137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773528

RESUMO

Host immunity has been suggested to clear drug-resistant parasites in malaria-endemic settings. However, the immunogenetic mechanisms involved in parasite clearance are poorly understood. Characterizing the host's immunity and genes involved in controlling the parasitic infection can inform the development of blood-stage malaria vaccines. This study investigates host regulatory cytokines and immunogenomic factors associated with the clearance of Plasmodium falciparum carrying a chloroquine resistance genotype. Biological samples from participants of previous drug efficacy trials conducted in two Malian localities were retrieved. The P. falciparum chloroquine resistance transporter (Pfcrt) gene was genotyped using parasite DNA. Children carrying parasites with the mutant allele (Pfcrt-76T) were classified based on their ability to clear their parasites. The levels of the different cytokines were measured in serum. The polymorphisms of specific human genes involved in malaria susceptibility were genotyped using human DNA. The prevalence of the Pfcrt-76T was significantly higher in Kolle than in Bandiagara (81.6 % vs 38.6 %, p < 10-6). The prevalence of children who cleared their mutant parasites was significantly higher in Bandiagara than in Kolle (82.2 % vs 67.4 %, p < 0.05). The genotyping of host genes revealed that IFN-γ -874 T and TNF-α -308A alleles were positively associated with parasite clearance. Cytokine profiling revealed that IFN-γ level was positively associated with parasite clearance (p = 0.04). This study highlights the role of host's immunity and immunogenetic factors to clear resistant parasites, suggesting further characterization of these polymorphisms may help to develop novel approaches to antiparasitic treatment strategies.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Criança , Antimaláricos/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/uso terapêutico , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Cloroquina/farmacologia , Malária Falciparum/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/uso terapêutico , Malária/tratamento farmacológico
6.
Nat Commun ; 14(1): 1033, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823144

RESUMO

The malaria parasite Plasmodium falciparum causes substantial human mortality, primarily in equatorial Africa. Enriched in affected African populations, the B*53 variant of HLA-B, a cell surface protein that presents peptide antigens to cytotoxic lymphocytes, confers protection against severe malaria. Gorilla, chimpanzee, and bonobo are humans' closest living relatives. These African apes have HLA-B orthologs and are infected by parasites in the same subgenus (Laverania) as P. falciparum, but the consequences of these infections are unclear. Laverania parasites infect bonobos (Pan paniscus) at only one (TL2) of many sites sampled across their range. TL2 spans the Lomami River and has genetically divergent subpopulations of bonobos on each side. Papa-B, the bonobo ortholog of HLA-B, includes variants having a B*53-like (B07) peptide-binding supertype profile. Here we show that B07 Papa-B occur at high frequency in TL2 bonobos and that malaria appears to have independently selected for different B07 alleles in the two subpopulations.


Assuntos
Antígenos de Histocompatibilidade Classe I , Malária Falciparum , Pan paniscus , Plasmodium , Animais , Malária Falciparum/genética , Pan paniscus/genética , Pan paniscus/parasitologia , Peptídeos , Filogenia , Antígenos de Histocompatibilidade Classe I/genética
7.
Malar J ; 22(1): 5, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604655

RESUMO

BACKGROUND: Polymorphisms in ATP2B4 coding for PMCA4b, the primary regulator of erythrocyte calcium concentration, have been shown by GWAS and cross-sectional studies to protect against severe malaria but the mechanism remains unknown. METHODS: Using a recall-by-genotype design, we investigated the impact of a common haplotype variant in ATP2B4 using in vitro assays that model erythrocyte stage malaria pathogenesis. Ninety-six donors representing homozygote (carriers of the minor allele, C/C), heterozygote (T/C) and wildtype (T/T) carriers of the tagging SNP rs1541252 were selected from a cohort of over 12,000 participants in the Keneba Biobank. RESULTS: Red blood cells (RBCs) from homozygotes showed reduced PMCA4b protein expression (mean fluorescence intensities (MFI = 2428 ± 124, 3544 ± 159 and 4261 ± 283], for homozygotes, heterozygotes and wildtypes respectively, p < 0.0001) and slower rates of calcium expulsion (calcium t½ ± SD = 4.7 ± 0.5, 1.8 ± 0.3 and 1.9 ± 0.4 min, p < 0.0001). Growth of a Plasmodium falciparum laboratory strain (FCR3) and two Gambian field isolates was decreased in RBCs from homozygotes compared to heterozygotes and wildtypes (p < 0.01). Genotype group did not affect parasite adhesion in vitro or var-gene expression in malaria-infected RBCs. Parasite growth was inhibited by a known inhibitor of PMCA4b, aurintricarboxylic acid (IC50 = 122uM CI: 110-134) confirming its sensitivity to calcium channel blockade. CONCLUSION: The data support the hypothesis that this ATP2B4 genotype, common in The Gambia and other malaria-endemic areas, protects against severe malaria through the suppression of parasitaemia during an infection. Reduction in parasite density plays a pivotal role in disease outcome by minimizing all aspects of malaria pathogenesis. Follow up studies are needed to further elucidate the mechanism of protection and to determine if this ATP2B4 genotype carries a fitness cost or increases susceptibility to other human disease.


Assuntos
Malária Falciparum , ATPases Transportadoras de Cálcio da Membrana Plasmática , Adulto , Humanos , Cálcio/metabolismo , Estudos Transversais , Eritrócitos/parasitologia , Gâmbia , Malária Falciparum/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único
8.
Proc Natl Acad Sci U S A ; 119(29): e2205498119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858344

RESUMO

HLA class I (HLA-I) allotypes vary widely in their dependence on tapasin (TAPBP), an integral component of the peptide-loading complex, to present peptides on the cell surface. We identified two single-nucleotide polymorphisms that regulate TAPBP messenger RNA (mRNA) expression in Africans, rs111686073 (G/C) and rs59097151 (A/G), located in an AP-2α transcription factor binding site and a microRNA (miR)-4486 binding site, respectively. rs111686073G and rs59097151A induced significantly higher TAPBP mRNA expression relative to the alternative alleles due to higher affinity for AP-2α and abrogation of miR-4486 binding, respectively. These variants associated with lower Plasmodium falciparum parasite prevalence and lower incidence of clinical malaria specifically among individuals carrying tapasin-dependent HLA-I allotypes, presumably by augmenting peptide loading, whereas tapasin-independent allotypes associated with relative protection, regardless of imputed TAPBP mRNA expression levels. Thus, an attenuated course of malaria may occur through enhanced breadth and/or magnitude of antigen presentation, an important consideration when evaluating vaccine efficacy.


Assuntos
Antígenos de Histocompatibilidade Classe I , Malária Falciparum , Proteínas de Membrana Transportadoras , Plasmodium falciparum , Sítios de Ligação , Variação Genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , MicroRNAs/metabolismo , Peptídeos/imunologia , Plasmodium falciparum/imunologia , RNA Mensageiro/genética , Fator de Transcrição AP-2/metabolismo
9.
Eur J Immunol ; 52(8): 1273-1284, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35503749

RESUMO

Endemic Burkitt lymphoma (eBL) is characterized by an oncogenic IGH/c-MYC translocation and Epstein-Barr virus (EBV) positivity, and is epidemiologically linked to Plasmodium falciparum malaria. Both EBV and malaria are thought to contribute to eBL by inducing the expression of activation-induced cytidine deaminase (AID), an enzyme involved in the IGH/c-MYC translocation. AID/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) family enzymes have recently emerged as potent mutagenic sources in a variety of cancers, but apart from AID, their involvement in eBL and their regulation by EBV and P. falciparum is unknown. Here, we show that upon inoculation with EBV, human B cells strongly upregulate the expression of enzymatically active APOBEC3B and APOBEC3G. In addition, we found significantly increased levels of APOBEC3A in B cells of malaria patients, which correlated with parasite load. Interestingly, despite the fact that APOBEC3A, APOBEC3B, and APOBEC3G caused c-MYC mutations when overexpressed in HEK293T cells, a mutational enrichment in eBL tumors was only detected in AID motifs. This suggests that even though the EBV- and P. falciparum-directed immune response triggers the expression and activity of several AID/APOBEC members, only the upregulation of AID has oncogenic consequences, while the induction of the APOBEC3 subfamily may primarily have immunoprotective functions.


Assuntos
Desaminases APOBEC , Linfoma de Burkitt , Citidina Desaminase , Infecções por Vírus Epstein-Barr , Malária Falciparum , Desaminases APOBEC/genética , Desaminase APOBEC-3G , Linfoma de Burkitt/enzimologia , Linfoma de Burkitt/genética , Citidina Desaminase/genética , Infecções por Vírus Epstein-Barr/enzimologia , Infecções por Vírus Epstein-Barr/genética , Células HEK293 , Herpesvirus Humano 4 , Humanos , Malária Falciparum/enzimologia , Malária Falciparum/genética , Antígenos de Histocompatibilidade Menor , Mutagênicos
10.
Pan Afr Med J ; 43: 80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590995

RESUMO

Introduction: specific mutations on the Plasmodium falciparum dihydropteroate synthase (Pfdhps) gene mediate sulphadoxine/pyrimethamine (SP) resistance and thus, pose a threat to the efficacy of SP-Intermittent Preventive Therapy (SP-IPT) in malaria chemoprevention in children, including those with sickle cell anaemia (SCA). This study determined the distinct pattern and prevalence of Pfdhps mutations in children with SCA and in those with homozygous haemoglobin A (HbAA) in Benin City, Nigeria; showing the impact of haemoglobin phenotype. Methods: this was a cross-sectional study involving children with SCA and HbAA. Those with successfully amplified Pfdhps genes were included in the study. Point mutations and mutant haplotypes of the Pfdhps gene were identified. Parasite density (PD) was determined by estimating the parasite numbers/µl of blood from the thick film. Descriptive, univariable and multivariable analysis were used appropriately. Results: a total of 146 children: 71 with SCA and 75 with HbAA were recruited, with a mean age of 46.6 ± 13.0 and 36.4 ± 17.6 respectively; proportion of males were 45(63.4%) and 43(57.3%) respectively. I431V, S436A, A437G, A581G, and A613G mutations were present; but the K540E mutation was absent. ISGKAA 41(28.1%) and VAGKGS 61(41.8%) were the most prevalent mutant haplotypes in this study. The prevalence of VAGKGS haplotype 43(57.3%) was significantly higher in HbAA group compared to that 18(25.4%) in the SCA group (p < 0.001). The prevalence of ISGKAA in SCA group 25(35.2%) was significantly higher than that 16(21.3%) in the HbAA group (p=0.032). HbAA phenotype was the only significant predictor for the presence of the VAGKGS mutant haplotype (aOR: 3.0, 95%CI: 1.375 to 6.499; p=0.006). Conclusion: the HbAA phenotype was a significant predictor for the occurrence of the quintuple mutant haplotype (VAGKGS). The K540E mutation was absent; thus, SP-IPT can be explored in children younger than five years with SCA.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Masculino , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Estudos Transversais , Di-Hidropteroato Sintase/genética , Combinação de Medicamentos , Resistência a Medicamentos/genética , Genótipo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Mutação , Nigéria/epidemiologia , Plasmodium falciparum/genética , Prevalência , Pirimetamina , Sulfadoxina
11.
J Biol Chem ; 297(6): 101391, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762909

RESUMO

Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant subfragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80-85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.


Assuntos
Antígenos de Protozoários/metabolismo , Sulfatos de Condroitina/metabolismo , Glicocálix/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/genética , Feminino , Glicocálix/química , Glicocálix/genética , Células HEK293 , Células HeLa , Humanos , Malária Falciparum/genética , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Placenta/metabolismo , Plasmodium falciparum/genética , Gravidez , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
12.
Immunotherapy ; 13(16): 1345-1353, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34424053

RESUMO

Extensive research conducted on mouse-human chimeras has advanced our understanding on infectious diseases including the human-malaria parasite, Plasmodium falciparum. In vitro culture of asexual-blood stage infection of P. falciparum does not answer all questions related to parasitology, pharmacology and immunology, and complex life cycle, complicated genome, evolution of drug resistance and poor diagnosis makes it difficult to understand the patho-biology of parasite. Unavailability of effective-vaccine and issues of drug resistance advocates the use of human cell/tissues reconstituted immunodeficient-mice to P. falciparum. A number of immunodeficient-strains (TK/NOG, FRG/NOD, NOD/SCID/IL-2 receptor γ chain null, NOD severe combined immunodeficiency gamma [NSG] mouse and NOD.Rag1-/- IL2Rγ-/-  [NRG; DRAG]) are used for humanization purposes. Additionally, human-hematopoietic stem cells (CD34 reconstituted-NSG [human immune system]) mice support the engraftment and repopulation of immune effecters to study systemic inflammatory diseases.


Assuntos
Malária Falciparum/imunologia , Malária Falciparum/terapia , Plasmodium falciparum/imunologia , Animais , Modelos Animais de Doenças , Humanos , Malária Falciparum/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID
13.
J Infect Dis ; 224(12): 2105-2112, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34010401

RESUMO

BACKGROUND: Placental malaria has been associated with increased cord blood maternal microchimerism (MMc), which in turn may affect susceptibility to malaria in the offspring. We sought to determine the impact of maternal peripheral Plasmodium falciparum parasitemia during pregnancy on MMc and to determine whether maternal cells expand during primary parasitemia in the offspring. METHODS: We conducted a nested cohort study of maternal-infant pairs from a prior pregnancy malaria chemoprevention study. Maternal microchimerism was measured by quantitative polymerase chain reaction targeting a maternal-specific marker in genomic DNA from cord blood, first P falciparum parasitemia, and preparasitemia. Logistic and negative binomial regression were used to assess the impact of maternal peripheral parasitemia, symptomatic malaria, and placental malaria on cord blood MMc. Generalized estimating equations were used to assess predictors of MMc during infancy. RESULTS: Early maternal parasitemia was associated with increased detection of cord blood MMc (adjusted odds ratio = 3.91, P = .03), whereas late parasitemia, symptomatic malaria, and placental malaria were not. The first parasitemia episode in the infant was not associated with increased MMc relative to preparasitemia. CONCLUSIONS: Maternal parasitemia early in pregnancy may increase the amount of MMc acquired by the fetus. Future work should investigate the impact of this MMc on immune responses in the offspring.


Assuntos
Quimerismo/estatística & dados numéricos , Malária Falciparum/genética , Doenças Placentárias/genética , Plasmodium falciparum/isolamento & purificação , Complicações Parasitárias na Gravidez/genética , Adolescente , Adulto , Estudos de Coortes , Suscetibilidade a Doenças , Feminino , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Saúde Materna , Parasitemia/epidemiologia , Placenta/parasitologia , Doenças Placentárias/epidemiologia , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia
14.
Sci Rep ; 11(1): 3680, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574457

RESUMO

The Plasmodium falciparum erythrocyte-membrane-protein-1 (PF3D7_1150400/PF11_0521) contains both domain cassette DC13 and DBLß3 domain binding to EPCR and ICAM-1 receptors, respectively. This type of PfEMP1 proteins with dual binding specificity mediate specific interactions with brain micro-vessels endothelium leading to the development of cerebral malaria (CM). Using plasma collected from children at time of hospital admission and after 30 days, we study an acquisition of IgG response to PF3D7_1150400/PF11_0521 DC13 and DBLß3_D4 recombinant constructs, and five peptides located within these constructs, specifically in DBLα1.7_D2 and DBLß3_D4 domains. We found significant IgG responses against the entire DC13, PF11_0521_DBLß3_D4 domain, and peptides. The responses varied against different peptides and depended on the clinical status of children. The response was stronger at day 30, and mostly did not differ between CM and uncomplicated malaria (UM) groups. Specifically, the DBLß3 B3-34 peptide that contains essential residues involved in the interaction between PF11_0521 DBLß3_D4 domain and ICAM-1 receptor demonstrated significant increase in reactivity to IgG1 and IgG3 antibodies at convalescence. Further, IgG reactivity in CM group at time of admission against functionally active (ICAM-1-binding) PF11_0521 DBLß3_D4 domain was associated with protection against severe anemia. These results support development of vaccine based on the PF3D7_1150400/PF11_0521 structures to prevent CM.


Assuntos
Imunoglobulina G/sangue , Malária Cerebral/imunologia , Malária Falciparum/imunologia , Peptídeos/imunologia , Proteínas de Protozoários/imunologia , Anemia/complicações , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/sangue , Antígenos de Protozoários/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/patologia , Pré-Escolar , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/parasitologia , Eritrócitos/parasitologia , Feminino , Humanos , Imunoglobulina G/imunologia , Lactente , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Malária Cerebral/sangue , Malária Cerebral/genética , Malária Cerebral/parasitologia , Malária Falciparum/sangue , Malária Falciparum/genética , Malária Falciparum/parasitologia , Masculino , Peptídeos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Ligação Proteica/genética , Ligação Proteica/imunologia , Proteínas de Protozoários/genética
15.
Sci Rep ; 11(1): 471, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436791

RESUMO

In 2005, the Nigerian Federal Ministry of Health revised the treatment policy for uncomplicated malaria with the introduction of artemisinin-based combination therapies (ACTs). This policy change discouraged the use of Sulphadoxine-pyrimethamine (SP) as the second-line treatment of uncomplicated falciparum malaria. However, SP is used as an intermittent preventive treatment of malaria in pregnancy (IPTp) and seasonal malaria chemoprevention (SMC) in children aged 3-59 months. There have been increasing reports of SP resistance especially in the non-pregnant population in Nigeria, thus, the need to continually monitor the efficacy of SP as IPTp and SMC by estimating polymorphisms in dihydropteroate synthetase (dhps) and dihydrofolate reductase (dhfr) genes associated with SP resistance. The high resolution-melting (HRM) assay was used to investigate polymorphisms in codons 51, 59, 108 and 164 of the dhfr gene and codons 437, 540, 581 and 613 of the dhps gene. DNA was extracted from 271 dried bloodspot filter paper samples obtained from children (< 5 years old) with uncomplicated malaria. The dhfr triple mutant I51R59N108, dhps double mutant G437G581 and quadruple dhfr I51R59N108 + dhps G437 mutant haplotypes were observed in 80.8%, 13.7% and 52.8% parasites, respectively. Although the quintuple dhfr I51R59N108 + dhps G437E540 and sextuple dhfr I51R59N108 + dhps G437E540G581 mutant haplotypes linked with in-vivo and in-vitro SP resistance were not detected, constant surveillance of these haplotypes should be done in the country to detect any change in prevalence.


Assuntos
Di-Hidropteroato Sintase/genética , Resistência a Medicamentos/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética , Antígenos de Protozoários/genética , Antimaláricos/uso terapêutico , Pré-Escolar , Combinação de Medicamentos , Feminino , Genótipo , Haplótipos , Humanos , Lactente , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Masculino , Proteína 1 de Superfície de Merozoito/genética , Nigéria/epidemiologia , Reação em Cadeia da Polimerase/métodos , Vigilância da População , Pirimetamina/uso terapêutico , Análise de Sequência de DNA/métodos , Sulfadoxina/uso terapêutico
16.
Trop Med Int Health ; 26(3): 366-373, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33191564

RESUMO

OBJECTIVES: Infection with Plasmodium falciparum parasites may result in a wide spectrum of symptoms ranging from asymptomatic to mild or severe. A number of factors are associated with this heterogeneous response to P. falciparum infection. In the present study, associations of sub-microscopic asymptomatic P. falciparum with Schistosoma species and TNF (rs1800629) polymorphism were investigated. METHODS: 361 clinically healthy primary school children were microscopically screened for S. haematobium, S. mansoni and P. falciparum. Sub-microscopic asymptomatic P. falciparum infections were determined by PCR. Genotypic profiles were identified using ARMS-PCR. Logistic regression was used to assess the association of sub-microscopic asymptomatic P. falciparum with Schistosoma species and TNF (rs1800629) polymorphism. RESULTS: 17.2% of the children were infected with S. mansoni, and 27.4% were infected with S. haematobium. Microscopic examination of thick smears detected only one child infected with P. falciparum. Based on PCR results, 46.1% were infected with sub-microscopic asymptomatic P. falciparum. Children carrying heterozygous AG (OR: 16.964, 95% CI: 0.496-586.547) and homozygous GG (OR: 2.280, 95% CI: 0.111-46.796) genotypes of rs1800629 were associated with an increased likelihood of sub-microscopic asymptomatic P. falciparum infections compared with those carrying homozygous AA genotype. Children without S. haematobium infections (OR: 1.051, 95% CI: 0.146-8.985) and S. mansoni (OR: 2.658, 95% CI: 0.498-14.184) also had an increased likelihood (risk) of being infected with sub-microscopic asymptomatic P. falciparum compared with the Schistosoma-infected groups. However, all the associations observed were not statistical significant. CONCLUSION: No associations were observed between rs1800629 and schistosomiasis with sub-microscopic asymptomatic P. falciparum infections. This study also reports a high prevalence of sub-microscopic asymptomatic P. falciparum infection concomitant with low malaria transmission.


OBJECTIFS: L'infection par les parasites P. falciparum peut entraîner un large éventail de présentations allant d'asymptomatiques à bénignes ou sévères. Un certain nombre de facteurs sont associés à cette réaction hétérogène à l'infection à P. falciparum. Dans la présente étude, les associations entre la présentation asymptomatique sous-microscopique de P. falciparum avec les espèces de Schistosoma et le polymorphisme du TNF (rs1800629) ont été investiguées. MÉTHODES: 364 écoliers du primaire en bonne santé clinique ont subi microscopique pour S. haematobium, S. mansoni et P. falciparum. Les infections asymptomatiques sous-microscopiques à P. falciparum ont été déterminées par PCR. Les profils génotypiques ont été identifiés en utilisant ARMS-PCR. La régression logistique a été utilisée pour évaluer l'association entre la présentation asymptomatique sous-microscopique de P. falciparum avec les espèces de Schistosoma et le polymorphisme du TNF (rs1800629). RÉSULTATS: Parmi les enfants, 17,2% étaient infectés par S. mansoni et 27,4% étaient infectés par S. haematobium. L'examen microscopique de frottis épais n'a détecté qu'un seul enfant infecté par P. falciparum. D'après les résultats de la PCR, 46,1% étaient infectés par P. falciparum asymptomatique sous-microscopique. Les enfants porteurs des génotypes hétérozygotes AG (OR: 16,964 ; IC95%: 0,496-586,547) et homozygotes GG (OR: 2,280 ; IC95%: 0,111-46,796) de rs1800629 étaient associés à une probabilité accrue d'infections asymptomatiques sous-microscopiques à P. falciparum par rapport à ceux porteurs du génotype homozygote AA. Les enfants sans infection à S. haematobium (OR: 1,051 ; IC95%: 0,146-8,985) et S. mansoni (OR: 2,658 ; IC95%: 0,498 à 14,184) présentaient également une probabilité (risque) accrue d'être infectés par P. falciparum asymptomatique sous-microscopique par rapport à ceux infectés par Schistosoma. Cependant, toutes les associations observées n'étaient pas statistiquement significatives. CONCLUSION: Aucune association n'a été observée entre le rs1800629 et la schistosomiase avec des infections asymptomatiques sous-microscopiques à P. falciparum. Cette étude rapporte une prévalence élevée d' infection asymptomatique sous-microscopique à P. falciparum concomitante à une faible transmission du paludisme.


Assuntos
Genótipo , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Polimorfismo Genético , Esquistossomose/epidemiologia , Esquistossomose/genética , Fator de Necrose Tumoral alfa/genética , Adolescente , Animais , Infecções Assintomáticas , Criança , Estudos Transversais , Feminino , Humanos , Modelos Logísticos , Masculino , Técnicas de Diagnóstico Molecular , Plasmodium falciparum , Regiões Promotoras Genéticas , Schistosoma haematobium , Schistosoma mansoni , Zimbábue/epidemiologia
17.
Front Immunol ; 11: 575103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123155

RESUMO

We have previously shown that a variant of the TNFSF13B gene that we called BAFF-var increases the production of the cytokine BAFF, upregulating humoral immunity and increasing the risk for certain autoimmune diseases. In addition, genetic population signatures revealed that BAFF-var was evolutionarily advantageous, most likely by increasing resistance to malaria infection, which is a prime candidate for selective pressure. To evaluate whether the increased soluble BAFF (sBAFF) production confers protection, we experimentally assessed the role of BAFF-var in response to malaria antigens. Lysates of erythrocytes infected with Plasmodium falciparum (iRBCs) or left uninfected (uRBCs, control) were used to treat peripheral blood mononuclear cells (PBMCs) with distinct BAFF genotypes. The PBMCs purified from BAFF-var donors and treated with iRBCs showed different levels of specific cells, immunoglobulins, and cytokines as compared with BAFF-WT. In particular, a relevant differential effect on mucosal immunity B subpopulations have been observed. These findings point to specific immune cells and molecules through which the evolutionary selected BAFF-var may have improved fitness during P. falciparum infection.


Assuntos
Fator Ativador de Células B/metabolismo , Linfócitos B/metabolismo , Eritrócitos/parasitologia , Evolução Molecular , Imunidade nas Mucosas , Malária Falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Fator Ativador de Células B/genética , Linfócitos B/imunologia , Linfócitos B/parasitologia , Células Cultivadas , Feminino , Aptidão Genética , Genótipo , Interações Hospedeiro-Parasita , Humanos , Itália , Malária Falciparum/sangue , Malária Falciparum/genética , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Regulação para Cima
18.
Nat Commun ; 11(1): 5093, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037226

RESUMO

The mechanisms behind the ability of Plasmodium falciparum to evade host immune system are poorly understood and are a major roadblock in achieving malaria elimination. Here, we use integrative genomic profiling and a longitudinal pediatric cohort in Burkina Faso to demonstrate the role of post-transcriptional regulation in host immune response in malaria. We report a strong signature of miRNA expression differentiation associated with P. falciparum infection (127 out of 320 miRNAs, B-H FDR 5%) and parasitemia (72 miRNAs, B-H FDR 5%). Integrative miRNA-mRNA analysis implicates several infection-responsive miRNAs (e.g., miR-16-5p, miR-15a-5p and miR-181c-5p) promoting lymphocyte cell death. miRNA cis-eQTL analysis using whole-genome sequencing data identified 1,376 genetic variants associated with the expression of 34 miRNAs (B-H FDR 5%). We report a protective effect of rs114136945 minor allele on parasitemia mediated through miR-598-3p expression. These results highlight the impact of post-transcriptional regulation, immune cell death processes and host genetic regulatory control in malaria.


Assuntos
Evasão da Resposta Imune/genética , Malária Falciparum/genética , Malária Falciparum/imunologia , MicroRNAs/genética , Plasmodium falciparum/patogenicidade , Burkina Faso , Criança , Pré-Escolar , Regulação da Expressão Gênica , Genoma Humano , Humanos , Estudos Longitudinais , Parasitemia/genética , Parasitemia/imunologia , Plasmodium falciparum/imunologia , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Sequenciamento Completo do Genoma
19.
Sci Rep ; 10(1): 6573, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313230

RESUMO

Plasmodium falciparum merozoite invasion into erythrocytes is an essential step of the blood-stage cycle, survival of parasites, and malaria pathogenesis. P. falciparum merozoite Rh5 interacting protein (PfRipr) forms a complex with Rh5 and CyRPA in sequential molecular events leading to erythrocyte invasion. Recently we described PfRipr as a conserved protein that induces strain-transcending growth inhibitory antibodies in in vitro assays. However, being a large and complex protein of 1086 amino acids (aa) with 87 cysteine residues, PfRipr is difficult to express in conventional expression systems towards vaccine development. In this study we sought to identify the most potent region of PfRipr that could be developed to overcome difficulties related to protein expression, as well as to elucidate the invasion inhibitory mechanism of anti-PfRipr antibodies. Using the wheat germ cell-free system, Ecto- PfRipr and truncates of approximately 200 aa were expressed as soluble proteins. We demonstrate that antibodies against PfRipr truncate 5 (PfRipr_5: C720-D934), a region within the PfRipr C-terminal EGF-like domains, potently inhibit merozoite invasion. Furthermore, the antibodies strongly block PfRipr/Rh5 interaction, as well as that between PfRipr and its erythrocyte-surface receptor, SEMA7A. Taken together, PfRipr_5 is a potential candidate for further development as a blood-stage malaria vaccine.


Assuntos
Anticorpos/farmacologia , Antígenos CD/genética , Proteínas de Transporte/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Semaforinas/genética , Anticorpos/genética , Anticorpos/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Proteínas de Transporte/imunologia , Eritrócitos/parasitologia , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica/genética , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Merozoítos/genética , Merozoítos/patogenicidade , Plasmodium falciparum/patogenicidade , Ligação Proteica/imunologia , Proteínas de Protozoários/imunologia
20.
Sci Adv ; 6(10): eaax6346, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181339

RESUMO

Placental malaria (PM) is associated with severe inflammation leading to abortion, preterm delivery, and intrauterine growth restriction. Innate immunity responses play critical roles, but the mechanisms underlying placental immunopathology are still unclear. Here, we investigated the role of inflammasome activation in PM by scrutinizing human placenta samples from an endemic area and ablating inflammasome components in a PM mouse model. The reduction in birth weight in babies from infected mothers is paralleled by increased placental expression of AIM2 and NLRP3 inflammasomes. Using genetic dissection, we reveal that inflammasome activation pathways are involved in the production and detrimental action of interleukin-1ß (IL-1ß) in the infected placenta. The IL-1R pharmacological antagonist Anakinra improved pregnancy outcomes by restoring fetal growth and reducing resorption in an experimental model. These findings unveil that IL-1ß-mediated signaling is a determinant of PM pathogenesis, suggesting that IL-1R antagonists can improve clinical outcomes of malaria infection in pregnancy.


Assuntos
Inflamassomos/efeitos dos fármacos , Interleucina-1beta/imunologia , Malária Falciparum/imunologia , Malária/imunologia , Plasmodium falciparum/patogenicidade , Complicações Parasitárias na Gravidez/imunologia , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 1/genética , Caspase 1/imunologia , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Fatores Imunológicos/farmacologia , Inflamassomos/genética , Inflamassomos/imunologia , Interferon gama/genética , Interferon gama/imunologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Malária/tratamento farmacológico , Malária/genética , Malária/parasitologia , Malária Falciparum/genética , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Plasmodium berghei/imunologia , Plasmodium berghei/patogenicidade , Plasmodium falciparum/imunologia , Gravidez , Complicações Parasitárias na Gravidez/genética , Complicações Parasitárias na Gravidez/parasitologia , Complicações Parasitárias na Gravidez/prevenção & controle , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Células THP-1 , Trofoblastos/efeitos dos fármacos , Trofoblastos/imunologia , Trofoblastos/parasitologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA