Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Front Immunol ; 15: 1372584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745665

RESUMO

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Assuntos
Dependovirus , Vetores Genéticos , Vacinas Antimaláricas , Malária Vivax , Plasmodium vivax , Animais , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium vivax/imunologia , Plasmodium vivax/genética , Malária Vivax/prevenção & controle , Malária Vivax/transmissão , Malária Vivax/imunologia , Camundongos , Dependovirus/genética , Dependovirus/imunologia , Feminino , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Modelos Animais de Doenças , Vaccinia virus/genética , Vaccinia virus/imunologia , Humanos , Camundongos Endogâmicos BALB C , Imunização Secundária , Eficácia de Vacinas
2.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802961

RESUMO

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Assuntos
Antígenos de Protozoários , Colágeno Tipo I , Fibroblastos , Plasmodium vivax , Transdução de Sinais , Baço , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Fibroblastos/parasitologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Animais , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Baço/imunologia , Baço/parasitologia , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Camundongos , Humanos , Malária Vivax/parasitologia , Malária Vivax/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/imunologia , Triptofano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biologia Computacional
3.
PLoS One ; 16(11): e0258637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34727117

RESUMO

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito B/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Peptídeos/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adulto , Sequência de Aminoácidos , Formação de Anticorpos/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina G/imunologia , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Estrutura Secundária de Proteína
4.
mBio ; 12(4): e0124721, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311577

RESUMO

Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Monócitos/metabolismo , Monócitos/patologia , Plasmodium vivax/imunologia , Reticulócitos/parasitologia , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Idoso , Feminino , Expressão Gênica , Glicólise , Humanos , Malária Vivax/imunologia , Malária Vivax/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Monócitos/citologia , Monócitos/imunologia , Fagossomos/imunologia , Fagossomos/parasitologia , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Adulto Jovem
5.
Genes (Basel) ; 12(1)2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379267

RESUMO

Plasmodium vivax Cysteine-Rich Protective Antigen (CyRPA) is a merozoite protein participating in the parasite invasion of human reticulocytes. During natural P. vivax infection, antibody responses against PvCyRPA have been detected. In children, low anti-CyRPA antibody titers correlated with clinical protection, which suggests this protein as a potential vaccine candidate. This work analyzed the genetic and amino acid diversity of pvcyrpa in Mexican and global parasites. Consensus coding sequences of pvcyrpa were obtained from seven isolates. Other sequences were extracted from a repository. Maximum likelihood phylogenetic trees, genetic diversity parameters, linkage disequilibrium (LD), and neutrality tests were analyzed, and the potential amino acid polymorphism participation in B-cell epitopes was investigated. In 22 sequences from Southern Mexico, two synonymous and 21 nonsynonymous mutations defined nine private haplotypes. These parasites had the highest LD-R2 index and the lowest nucleotide diversity compared to isolates from South America or Asia. The nucleotide diversity and Tajima's D values varied across the coding gene. The exon-1 sequence had greater diversity and Rm values than those of exon-2. Exon-1 had significant positive values for Tajima's D, ß-α values, and for the Z (HA: dN > dS) and MK tests. These patterns were similar for parasites of different origin. The polymorphic amino acid residues at PvCyRPA resembled the conformational B-cell peptides reported in PfCyRPA. Diversity at pvcyrpa exon-1 is caused by mutation and recombination. This seems to be maintained by balancing selection, likely due to selective immune pressure, all of which merit further study.


Assuntos
Antígenos de Protozoários/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Recombinação Genética/imunologia , Seleção Genética/imunologia , Antígenos de Protozoários/imunologia , Cisteína/genética , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Éxons/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Malária Vivax/imunologia , Malária Vivax/parasitologia , Mutação , Plasmodium vivax/imunologia , Plasmodium vivax/patogenicidade , Polimorfismo Genético/imunologia , Proteínas de Protozoários/imunologia , Análise de Sequência de DNA
6.
Sci Rep ; 10(1): 16706, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028898

RESUMO

Plasmodium vivax is the most prevalent cause of malaria outside of Africa. P. vivax biology and pathogenesis are still poorly understood. The role of one highly occurring phenotype in particular where infected reticulocytes cytoadhere to noninfected normocytes, forming rosettes, remains unknown. Here, using a range of ex vivo approaches, we showed that P. vivax rosetting rates were enhanced by plasma of infected patients and that total immunoglobulin M levels correlated with rosetting frequency. Moreover, rosetting rates were also correlated with parasitemia, IL-6 and IL-10 levels in infected patients. Transcriptomic analysis of peripheral leukocytes from P. vivax-infected patients with low or moderated rosetting rates identified differentially expressed genes related to human host phagocytosis pathway. In addition, phagocytosis assay showed that rosetting parasites were less phagocyted. Collectively, these results showed that rosette formation plays a role in host immune response by hampering leukocyte phagocytosis. Thus, these findings suggest that rosetting could be an effective P. vivax immune evasion strategy.


Assuntos
Malária Vivax/parasitologia , Parasitemia/imunologia , Fagocitose/imunologia , Plasmodium vivax/imunologia , Formação de Roseta , Humanos , Imunoglobulina M/sangue , Interleucina-10/sangue , Interleucina-6/sangue , Malária Vivax/sangue , Malária Vivax/imunologia , Parasitemia/sangue
7.
Iran J Immunol ; 17(3): 250-254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32996902

RESUMO

Afebrile Plasmodium vivax disease is believed to be extremely rare; and so is the association of a secondary immune thrombocytopenia due to Plasmodiun vivax malaria. This is a case of malaria presenting in an atypical manner. A middle aged male (31 years) came with occasional bleeding around gums, small petechial haemorrhages over chest and abdomen, and blood in stools for a few months, but no fever. In addition, the cervical lymph nodes were slightly enlarged. Spleen was 3 cm below costal margin. Platelets were found to have markedly decreased with clusters of megakaryocytes in the bone marrow. A possibility of Immune thrombocytopenic purpura was considered and immunoglobulin started intravenously, however platelet counts remained low. Later, in a follow up smear, trophozoites of P. vivax were discovered. Antimalarial drugs (Artesunate) were administrated for the patient along with IV immunoglobulins, to which he responded. It was revealed by flow cytometry that the ratio of helper to cytotoxic cells was reversed (0.9). This highlighted a rare case of afebrile malaria in association with immune dysregulation. Accordingly, malaria, though uncommon, could trigger immune thrombocytopenia.


Assuntos
Artesunato/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Malária Vivax/diagnóstico , Plasmodium vivax/fisiologia , Trombocitopenia/diagnóstico , Adulto , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/imunologia , Masculino , Trombocitopenia/tratamento farmacológico , Trombocitopenia/imunologia
8.
Trends Parasitol ; 36(5): 447-458, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32298632

RESUMO

Estimation of Plasmodium vivax biomass based on circulating biomarkers indicates the existence of a predominant biomass outside of the circulation that is not captured by peripheral parasitemia, in particular in patients with complicated outcomes. A series of recent studies have suggested that the hematopoietic niche of the bone marrow (BM) is a major reservoir for parasite replication and the development of transmission stages. However, significant knowledge gaps remain in our understanding of host-parasite interactions, pathophysiology, and the implications for treatment and diagnosis of such a reservoir. Here, we discuss the current status of this emerging research field in the context of P. vivax.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Malária Vivax/imunologia , Malária Vivax/parasitologia , Biomassa , Medula Óssea/imunologia , Medula Óssea/parasitologia , Hematopoese/imunologia , Humanos , Malária Vivax/transmissão , Plasmodium vivax/fisiologia , Pesquisa/tendências , Reticulócitos/imunologia , Reticulócitos/parasitologia
9.
Parasite Immunol ; 42(5): e12705, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32096238

RESUMO

Although antibodies are considered critical for malaria protection, little is known about the mechanisms/factors that maintain humoral immunity, especially regarding the induction and maintenance of memory B cells over time. In Brazilian endemic areas, this is the first time that the profile of antibody responses and the occurrence of antigen-specific memory B cells (MBC) against P vivax were investigated during acute malaria and up to six months after parasite clearance. For this, we selected two peptides, PvAMA-1(S290-K307) and PvMSP-9(E795-A808) , which represent the apical membrane antigen-1 and merozoite surface protein-9 of P vivax, respectively. Both peptides were previously described as containing linear B-cell epitopes. Our findings were as follows: 1-both peptides were recognized by IgG antibodies at a high frequency (between 24% and 81%) in all study groups; 2-in the absence of infection, the IgG levels remained stable throughout 6 months of follow-up; and 3-PvAMA-1(S290-K307) and PvMSP-9(E795-A808) -specific MBCs were detected in all individual groups in the absence of reinfection throughout the follow-up period, suggesting long-lived MBC. However, no positive association was observed between malaria-specific antibody levels and frequency of MBCs over time. Taken together, these results suggest that peptides can be, in the future, an alternative strategy to polypeptidic vaccine formulation.


Assuntos
Anticorpos Antiprotozoários/imunologia , Epitopos de Linfócito B/imunologia , Malária Vivax/imunologia , Plasmodium vivax/crescimento & desenvolvimento , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Brasil , Epitopos de Linfócito B/genética , Humanos , Imunidade Humoral , Imunoglobulina G/imunologia , Memória Imunológica , Malária Vivax/genética , Malária Vivax/parasitologia , Peptídeos/imunologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética
10.
Mem. Inst. Oswaldo Cruz ; 115: e200080, 2020. tab, graf
Artigo em Inglês | LILACS, SES-SP | ID: biblio-1135269

RESUMO

BACKGROUND Thrombocytopenia in malaria involves platelet destruction and consumption; however, the cellular response underlying this phenomenon has still not been elucidated. OBJECTIVE To find associations between platelet indices and unbalanced Th1/Th2/Th17 cytokines as a response to thrombocytopenia in Plasmodium vivax infected (Pv-MAL) patients. METHODS Platelet counts and quantification of Th1/Th2/Th17 cytokine levels were compared in 77 patients with uncomplicated P. vivax malaria and 37 healthy donors from the same area (endemic control group - ENCG). FINDINGS Thrombocytopenia was the main manifestation in 55 patients, but was not associated with parasitaemia. The Pv-MAL patients showed increases in the mean platelet volume (MPV), which may be consistent with larger or megaplatelets. Contrary to the findings regarding the endemic control group, MPV and platelet distribution width (PDW) did not show an inverse correlation, due the increase in the heterogeneity of platelet width. In addition, the Pv-MAL patients presented increased IL-1β and reduced IL-12p70 and IL-2 serum concentrations. Furthermore, the reduction of these cytokines was associated with PDW values. MAIN CONCLUSIONS Our data demonstrate that an increase in MPV and the association between reductions of IL-2 and IL-12 and PDW values may be an immune response to thrombocytopenia in uncomplicated P. vivax malaria.


Assuntos
Humanos , Plasmodium vivax/imunologia , Trombocitopenia/patologia , Trombocitopenia/sangue , Subpopulações de Linfócitos/imunologia , Malária Vivax/imunologia , Malária Vivax/patologia , Trombocitopenia/parasitologia , Interleucina-2/sangue , Malária Vivax/parasitologia , Malária Vivax/sangue , Interleucina-12/sangue
11.
Front Immunol ; 10: 2230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620136

RESUMO

Thrombospondin-related adhesive protein (TRAP) is essential for sporozoite motility and the invasion of mosquitoes' salivary gland and vertebrate's hepatocyte and is, thus, considered a promising pre-erythrocytic vaccine candidate. Despite the existence of a few reports on naturally acquired immune response against Plasmodium vivax TRAP (PvTRAP), it has never been explored so far in the Amazon region, so results are conflicting. Here, we characterized the (IgG and IgG subclass) antibody reactivity against recombinant PvTRAP in a cross-sectional study of 299 individuals exposed to malaria infection in three municipalities (Cruzeiro do Sul, Mâncio Lima and Guajará) from the Acre state of the Brazilian Amazon. In addition, the full PvTRAP sequence was screened for B-cell epitopes using in silico and in vitro approaches. Firstly, we confirmed that PvTRAP is naturally immunogenic in the cohort population since 49% of the individuals were IgG-responders to it. The observed immune responses were mainly driven by cytophilic IgG1 over all other sublcasses and the IgG levels that was corelated with age and time of residence in the studied area (p < 0.05). Interestingly, only the levels of specific anti-TRAP IgG3 seemed to be associated with protection, as IgG3 responders presented a significantly higher time elapse since the last malaria episode than those recorded for IgG3 non-responders. Regarding the B-cell epitope mapping, among the 148 responders to PvTRAP, four predicted epitopes were confirmed by recognition of antibodies (PvTRAPR197-H227; PvTRAPE237-T258; PvTRAPP344-G374; and PvTRAPE439-K454). Nevertheless, the frequency of responders against these peptides were low and did not show a clear correlation with the antibody response against the corresponding antigen. Moreover, none of the linear confirmed epitopes were located in the binding regions of PvTRAP in respect to the host cell ligand. Collectively, our data confirm the PvTRAP immunogenicity among Amazon inhabitants, while suggesting that the main important B-cell epitopes are not linear.


Assuntos
Formação de Anticorpos/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Vacinas Sintéticas/imunologia , Adulto , Sequência de Aminoácidos , Anticorpos Antiprotozoários/imunologia , Brasil , Estudos de Coortes , Estudos Transversais , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/imunologia , Masculino , Peptídeos/imunologia , Esporozoítos/imunologia , Trombospondinas/imunologia
12.
Mem. Inst. Oswaldo Cruz ; 114: e190145, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1040609

RESUMO

Anti-α-Gal responses may exert a protective effect in falciparum malaria. However, the biological role of such antibodies is still unknown during Plasmodium vivax infections. We investigated IgG and IgM responses to α-Gal in individuals with vivax malaria. Anti-α-Gal IgG and IgM levels were higher in these patients than in controls, but no significant correlation was found between parasitaemia and anti-α-Gal response, nor between this response and ABO blood group status. This is the first study to investigate anti-α-Gal antibodies in P. vivax-infected patients; a larger survey is necessary to achieve a better understanding of host immune response during vivax malaria.


Assuntos
Humanos , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Plasmodium vivax/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Anticorpos Anti-Idiotípicos/sangue , Malária Vivax/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Anticorpos Anti-Idiotípicos/metabolismo , Malária Vivax/imunologia , Pessoa de Meia-Idade
13.
Am J Trop Med Hyg ; 99(4): 827-832, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141395

RESUMO

In August 2017, the National Institute of Allergy and Infectious Diseases convened a meeting, entitled "Understanding the Liver-Stage Biology of Malaria Parasites to Enable and Accelerate the Development of a Highly Efficacious Vaccine," to discuss the needs and strategies to develop a highly efficacious, whole organism-based vaccine targeting the liver stage of malaria parasites. It was concluded that attenuated sporozoite platforms have proven to be promising approaches, and that late-arresting sporozoites could potentially offer greater vaccine performance than early-arresting sporozoites against malaria. New knowledge and emerging technologies have made the development of late-arresting sporozoites feasible. Highly integrated approaches involving liver-stage research, "omics" studies, and cutting-edge genetic editing technologies, combined with in vitro culture systems or unique animal models, are needed to accelerate the discovery of candidates for a late-arresting, genetically attenuated parasite vaccine.


Assuntos
Fígado/imunologia , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Esporozoítos/imunologia , Animais , Modelos Animais de Doenças , Raios gama , Engenharia Genética/métodos , Humanos , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Vivax/imunologia , Malária Vivax/parasitologia , Camundongos , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Plasmodium berghei/efeitos da radiação , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos da radiação , Plasmodium vivax/química , Plasmodium vivax/genética , Plasmodium vivax/efeitos da radiação , Plasmodium yoelii/química , Plasmodium yoelii/genética , Plasmodium yoelii/imunologia , Plasmodium yoelii/efeitos da radiação , Esporozoítos/química , Esporozoítos/genética , Esporozoítos/efeitos da radiação , Vacinas Atenuadas
14.
Parasite Immunol ; 40(10): e12580, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30102786

RESUMO

B cell-mediated humoral responses are essential for controlling malarial infection. Studies have addressed the effects of Plasmodium falciparum infection on peripheral B-cell subsets but not much is known for P. vivax infection. Furthermore, majority of the studies investigate changes during acute infection, but not after parasite clearance. In this prospective study, we analysed peripheral B-cell profiles and antibody responses during acute P. vivax infection and upon recovery (30 days post-treatment) in a low-transmission area in India. Dengue patients were included as febrile-condition controls. Both dengue and malaria patients showed a transient increase in atypical memory B cells during acute infection. However, transient B cell-activating factor (BAFF)-independent increase in the percentage of total and activated immature B cells was observed in malaria patients. Naïve B cells from malaria patients also showed increased TLR4 expression. Total IgM levels remained unchanged during acute infection but increased significantly at recovery. Serum antibody profiling showed a parasite-specific IgM response that persisted at recovery. A persistent IgM autoantibody response was also observed in malaria but not dengue patients. Our data suggest that in hypoendemic regions acute P. vivax infection skews peripheral B-cell subsets and results in a persistent parasite-specific and autoreactive IgM response.


Assuntos
Anticorpos Antiprotozoários/sangue , Subpopulações de Linfócitos B/imunologia , Imunoglobulina M/sangue , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Adulto , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos , Fator Ativador de Células B/metabolismo , Feminino , Humanos , Imunoglobulina M/imunologia , Índia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Receptor 4 Toll-Like/biossíntese
15.
Malar J ; 17(1): 303, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30126413

RESUMO

BACKGROUND: The mechanisms of activation and regulation of T lymphocytes and their cytokines in malaria caused by Plasmodium vivax are complex and poorly understood. Previous data suggest that T cells balance protective immune responses with immune mediated pathology in malaria. This study investigates the lymphocytic profile of patients infected with P. vivax by identifying and quantifying the specific sub-populations of Th1, Th2, Th17 and Treg cells and observing the correlation between parasitaemia and the number of platelets. METHODS: A cross-sectional study was carried out in an endemic area of the state of Acre, Brazil. In order to obtain identification and quantification of lymphocyte sub-populations through flow cytometry, blood samples were collected from 50 individuals infected with P. vivax and 20 non-infected controls. To differentiate Th1 from Th2, the presence of cytokines IL-4 and TNF was examined by enzyme-linked immunosorbent assay. Utilizing the Mann-Whitney and Spearman coefficient tests, comparison and correlation analysis were rendered to test the parasitaemia and the number of platelets relationship. RESULTS: The data indicate that individuals infected with P. vivax present a significant reduction in Th1, Th2 and Th17 cell sub-populations when compared to the non-infected control group. A negative correlation exists between parasitaemia and platelet counts in individuals infected with P. vivax. There is no correlation of parasitaemia or thrombocytopaenia with any sub-population of T lymphocytes analysed. Interestingly, patients with serum Th1 cytokine profile present inversely proportional parasitaemia to the increase in the number of Th1, Th2, Th17 and Treg cells while patients with serum Th2 cytokine profile present directly proportional parasitaemia to the increase in number of Th1 and Th2 cells. Regarding the number of platelets, patients with serum Th1 cytokine profile show a correlation directly proportional to the Th17 sub-population. In contrast, platelet counts are directly proportional only to Treg and activated Treg cells in patients with serum Th2 cytokine profile. CONCLUSIONS: During the P. vivax infection patients with serum Th1 versus Th2 cytokine profile present different biological mechanisms for activating the immune system against parasite load.


Assuntos
Subpopulações de Linfócitos/imunologia , Malária Vivax/imunologia , Malária Vivax/patologia , Parasitemia/imunologia , Parasitemia/patologia , Plasmodium vivax/imunologia , Trombocitopenia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Interleucina-4/sangue , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
16.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986894

RESUMO

Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Here, two leading P. vivax preerythrocytic vaccine candidate antigens, the P. vivax circumsporozoite protein (PvCSP) and the thrombospondin-related adhesion protein (PvTRAP) were delivered as a combined vaccine. This strategy provided a dose-sparing effect, with 100% sterile protection in mice using doses that individually conferred low or no protection, as with the unadjuvanted antigens PvTRAP (0%) and PvCSP (50%), and reached protection similar to that of adjuvanted components. Efficacy against malaria infection was assessed using a new mouse challenge model consisting of a double-transgenic Plasmodium berghei parasite simultaneously expressing PvCSP and PvTRAP used in mice immunized with the virus-like particle (VLP) Rv21 previously reported to induce high efficacy in mice using Matrix-M adjuvant, while PvTRAP was concomitantly administered in chimpanzee adenovirus and modified vaccinia virus Ankara (MVA) vectors (viral-vectored TRAP, or vvTRAP) to support effective induction of T cells. We examined immunity elicited by these vaccines in the context of two adjuvants approved for human use (AddaVax and Matrix-M). Matrix-M supported the highest anti-PvCSP antibody titers when combined with Rv21, and, interestingly, mixing PvCSP Rv21 and PvTRAP viral vectors enhanced immunity to malaria over levels provided by single vaccines.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adenoviridae/genética , Adjuvantes Imunológicos , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Feminino , Vetores Genéticos , Malária Vivax/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Polissorbatos/administração & dosagem , Proteínas de Protozoários/administração & dosagem , Saponinas/administração & dosagem , Esqualeno/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vaccinia virus/genética
17.
Sci Rep ; 8(1): 10511, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002416

RESUMO

Plasmodium vivax merozoite invasion is restricted to Duffy positive reticulocytes. Merozoite interaction with the Duffy antigen is mediated by the P. vivax Duffy binding protein (PvDBP). The receptor-binding domain of PvDBP maps to an N-terminal cysteine-rich region referred to as region II (PvDBPII). In addition, a family of P. vivax reticulocyte binding proteins (PvRBPs) mediates interactions with reticulocyte receptors. The receptor binding domain of P. vivax reticulocyte binding protein 1a (PvRBP1a) maps to a 30 kD region (PvRBP1a30). Antibodies raised against recombinant PvRBP1a30 and PvDBPII recognize the native P. vivax antigens and inhibit their binding to host receptors. Rabbit IgG purified from sera raised against PvRBP1a30 and PvDBPII were tested individually and in combination for inhibition of reticulocyte invasion by P. vivax field isolates. While anti-PvDBPII rabbit IgG inhibits invasion, anti-PvRBP1a30 rabbit IgG does not show significant invasion inhibitory activity. Combining antibodies against PvDBPII and PvRBP1a30 also does not increase invasion inhibitory activity. These studies suggest that although PvRBP1a mediates reticulocyte invasion by P. vivax merozoites, it may not be useful to include PvRBP1a30 in a blood stage vaccine for P. vivax malaria. In contrast, these studies validate PvDBPII as a promising blood stage vaccine candidate for P. vivax malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Reticulócitos/parasitologia , Animais , Anticorpos Antiprotozoários/administração & dosagem , Anticorpos Antiprotozoários/isolamento & purificação , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Bioensaio/métodos , Células COS , Chlorocebus aethiops , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Vacinas Antimaláricas/administração & dosagem , Malária Vivax/imunologia , Malária Vivax/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Merozoítos/imunologia , Merozoítos/patogenicidade , Camundongos , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Coelhos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Reticulócitos/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-29868512

RESUMO

Malaria caused by Plasmodium vivax is a neglected disease which is responsible for the highest morbidity in both Americas and Asia. Despite continuous public health efforts to prevent malarial infection, an effective antimalarial vaccine is still urgently needed. P. vivax vaccine development involves analyzing naturally-infected patients' immune response to the specific proteins involved in red blood cell invasion. The P. vivax rhoptry neck protein 2 (PvRON2) is a highly conserved protein which is expressed in late schizont rhoptries; it interacts directly with AMA-1 and might be involved in moving-junction formation. Bioinformatics approaches were used here to select B- and T-cell epitopes. Eleven high-affinity binding peptides were selected using the NetMHCIIpan-3.0 in silico prediction tool; their in vitro binding to HLA-DRB1*0401, HLA-DRB1*0701, HLA-DRB1*1101 or HLA-DRB1*1302 was experimentally assessed. Four peptides (39152 (HLA-DRB1*04 and 11), 39047 (HLA-DRB1*07), 39154 (HLADRB1*13) and universal peptide 39153) evoked a naturally-acquired T-cell immune response in P. vivax-exposed individuals from two endemic areas in Colombia. All four peptides had an SI greater than 2 in proliferation assays; however, only peptides 39154 and 39153 had significant differences compared to the control group. Peptide 39047 was able to significantly stimulate TNF and IL-10 production while 39154 stimulated TNF production. Allele-specific peptides (but not the universal one) were able to stimulate IL-6 production; however, none induced IFN-γ production. The Bepipred 1.0 tool was used for selecting four B-cell epitopes in silico regarding humoral response. Peptide 39041 was the only one recognized by P. vivax-exposed individuals' sera and had significant differences concerning IgG subclasses; an IgG2 > IgG4 profile was observed for this peptide, agreeing with a protection-inducing role against P. falciparum and P. vivax as previously described for antigens such as RESA and MSP2. The bioinformatics results and in vitro evaluation reported here highlighted two T-cell epitopes (39047 and 39154) being recognized by memory cells and a B-cell epitope (39041) identified by P. vivax-exposed individuals' sera which could be used as potential candidates when designing a subunit-based vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Cadeias HLA-DRB1/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Proliferação de Células , Colômbia , Biologia Computacional , Citocinas/metabolismo , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Concentração Inibidora 50 , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Malária Vivax/imunologia , Malária Vivax/prevenção & controle , Peptídeos/imunologia , Plasmodium falciparum/imunologia
19.
Mol Immunol ; 97: 82-93, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29602073

RESUMO

BACKGROUND: The combinatorial effects of Plasmodium infection, perturbation of inflammatory responses and the dichotomic role of TNF promoter polymorphism has potential clinical and physiological relevance during pregnancy. OBJECTIVE AND METHODS: This coordinated orchestration instigated us to investigate the circulating level of inflammatory cytokines (IL-1ß, TNF-α and IL-6) employing ELISA in a stratified group of samples and the plausible genetic association of TNF-α -308 G/A using PCR-RFLP/sequencing during Plasmodium vivax infection in pregnancy. RESULTS: We observed significantly elevated concentrations of IL-1ß were observed, followed by IL-6 and TNF-α in women with malaria (WWM) and in malaria in pregnancy (MIP). Further, elevated IL-1ß, followed by TNF-α and IL-6 were detected in the non-infected pregnancy group. The differential dynamics of inflammatory cytokine concentration during each trimester of pregnancy with and without P. vivax infection were detected. For the first time, a high level of IL-6 was observed in the first trimester of MIP and high IL-1ß in healthy pregnancies. In the second trimester, however, we observed a high level of IL-1ß in the MIP group compared to a sustained high level of IL-1ß in the healthy pregnancy group. In the third trimester, high IL-1ß was sustained in the MIP group and healthy pregnancies acquired a high TNF-α level. The genotypic distribution for the TNF-α promoter -308 G/A position was observed to be nonsignificant and mildly associated during MIP (OR = 1.4) and in WWM (OR = 1.2). Moreover, based on genotypic distribution, we observed a well-correlated and significantly elevated TNF-α concentration in the mutant homozygote genotype (AA; p = 0.001) followed by heterozygotes (GA; p = 0.0001) and ancestral genotypes (GG; p = 0.0001) in both MIP and WWM subjects. CONCLUSION: The observation of elevated IL-1ß and IL-6 in MIP and TNF-α in WWM may be regarded as a prognostic inflammatory marker of infection and pregnancy. Most particularly, the TNF-α concentration and its polymorphic variability in the promoter region may indicate genetic susceptibility and mildly influence the risk for P. vivax infection during pregnancy and in women with malaria.


Assuntos
Interleucina-1beta/sangue , Interleucina-6/sangue , Malária Vivax/sangue , Malária Vivax/genética , Plasmodium vivax , Complicações Parasitárias na Gravidez , Fator de Necrose Tumoral alfa/genética , Adulto , Biomarcadores/sangue , Estudos Transversais , Doenças Endêmicas , Feminino , Predisposição Genética para Doença , Humanos , Índia/epidemiologia , Interleucina-1beta/fisiologia , Interleucina-6/fisiologia , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Pessoa de Meia-Idade , Plasmodium vivax/imunologia , Polimorfismo Genético , Gravidez , Complicações Parasitárias na Gravidez/sangue , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/genética , Complicações Parasitárias na Gravidez/imunologia , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/fisiologia , Adulto Jovem
20.
Sci Rep ; 8(1): 1118, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348479

RESUMO

Vaccine development against Plasmodium vivax malaria lags behind that for Plasmodium falciparum. To narrow this gap, we administered recombinant antigens based on P. vivax circumsporozoite protein (CSP) to mice. We expressed in Pichia pastoris two chimeric proteins by merging the three central repeat regions of different CSP alleles (VK210, VK247, and P. vivax-like). The first construct (yPvCSP-AllFL) contained the fused repeat regions flanked by N- and C-terminal regions. The second construct (yPvCSP-AllCT) contained the fused repeat regions and the C-terminal domain, plus RI region. Mice were vaccinated with three doses of yPvCSP in adjuvants Poly (I:C) or Montanide ISA720. We also used replication-defective adenovirus vectors expressing CSP of human serotype 5 (AdHu5) and chimpanzee serotype 68 (AdC68) for priming mice which were subsequently boosted twice with yPvCSP proteins in Poly (I:C) adjuvant. Regardless of the regime used, immunized mice generated high IgG titres specific to all CSP alleles. After challenge with P. berghei ANKA transgenic parasites expressing Pb/PvVK210 or Pb/PvVK247 sporozoites, significant time delays for parasitemia were observed in all vaccinated mice. These vaccine formulations should be clinically tried for their potential as protective universal vaccine against P. vivax malaria.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Imunização , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinas Antimaláricas/genética , Malária Vivax/mortalidade , Camundongos , Plasmodium vivax/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA