Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 163(1): 101-115, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385626

RESUMO

Thyroid hormones (THs) are essential for brain development, but few rodent models exist that link TH inefficiency to apical neurodevelopmental endpoints. We have previously described a structural anomaly, a heterotopia, in the brains of rats treated in utero with propylthiouracil (PTU). However, how the timing of an exposure relates to this birth defect is unknown. This study seeks to understand how various temporal treatments of the mother relates to TH insufficiency and adverse neurodevelopment of the offspring. Pregnant rats were exposed to PTU (0 or 3 ppm) through the drinking water from gestational day 6 until postnatal day (PN) 14. On PN2 a subset of pups was cross-fostered to a dam of the opposite treatment, to create 4 conditions: pups exposed to PTU prenatally, postnatally, during both periods, or not at all (control). Both PTU and TH concentrations were characterized in the mother and offspring over time, to capture the dynamics of a developmental xenobiotic exposure. Brains of offspring were examined for heterotopia presence and severity, and adult littermates were assessed for memory impairments. Heterotopia were observed under conditions of prenatal exposure, and its severity increased in animals in the most prolonged exposure group. This malformation was also permanent, but not sex biased. In contrast, behavioral impairments were limited to males, and only in animals exposed to PTU during both the gestational and postnatal periods. This suggests a distinct TH-dependent etiology for both phenotypes, and illustrates how timing of hypothyroxinemia can induce abnormal brain structure and function.


Assuntos
Hipotireoidismo/sangue , Deficiências da Aprendizagem/sangue , Malformações do Desenvolvimento Cortical/sangue , Efeitos Tardios da Exposição Pré-Natal/sangue , Hormônios Tireóideos/deficiência , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Estudos Cross-Over , Feminino , Hipotireoidismo/embriologia , Hipotireoidismo/fisiopatologia , Deficiências da Aprendizagem/fisiopatologia , Masculino , Malformações do Desenvolvimento Cortical/embriologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Propiltiouracila/sangue , Propiltiouracila/toxicidade , Hormônios Tireóideos/sangue
2.
J Vis Exp ; (130)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286390

RESUMO

Birth defects that involve the cerebral cortex - also known as malformations of cortical development (MCD) - are important causes of intellectual disability and account for 20-40% of drug-resistant epilepsy in childhood. High-resolution brain imaging has facilitated in vivo identification of a large group of MCD phenotypes. Despite the advances in brain imaging, genomic analysis and generation of animal models, a straightforward workflow to systematically prioritize candidate genes and to test functional effects of putative mutations is missing. To overcome this problem, an experimental strategy enabling the identification of novel causative genes for MCD was developed and validated. This strategy is based on identifying candidate genomic regions or genes via array-CGH or whole-exome sequencing and characterizing the effects of their inactivation or of overexpression of specific mutations in developing rodent brains via in utero electroporation. This approach led to the identification of the C6orf70 gene, encoding for a putative vesicular protein, to the pathogenesis of periventricular nodular heterotopia, a MCD caused by defective neuronal migration.


Assuntos
Encéfalo/patologia , Hibridização Genômica Comparativa/métodos , Eletroporação/métodos , Sequenciamento do Exoma/métodos , Malformações do Desenvolvimento Cortical/genética , Animais , Química Encefálica , DNA/sangue , DNA/genética , DNA/isolamento & purificação , Modelos Animais de Doenças , Feminino , Humanos , Malformações do Desenvolvimento Cortical/sangue , Malformações do Desenvolvimento Cortical/patologia , Gravidez , Ratos
3.
Genet Test Mol Biomarkers ; 21(1): 3-9, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27824513

RESUMO

BACKGROUND: Epilepsy remains one of the most common clinical neurological disorders. About a third of patients with epilepsy are refractory to drug treatment, mainly as a result of focal cortical dysplasia (FCD). In this study, we analyzed the aberrant expression of microRNAs (miRNAs) in the cortex and plasma of FCD patients. METHODS: Cortical samples were collected from nine patients with refractory epilepsy caused by FCD who underwent surgery, and from eight volunteers (control group) undergoing emergency surgery for hypertensive cerebral hemorrhage. miRNA expression in the cortex was detected by microarray analysis and miR-323a-5p expression levels in the cortex were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). We also collected plasma samples from 30 patients with refractory epilepsy caused by FCD and from 23 healthy controls, and compared differential expression of miR-323a-5p in the plasma using qRT-PCR. RESULTS: miRNA microarray analysis showed that expression of miR-323a-5p was upregulated in the FCD group compared with the control group, and miR-323a-5p expression levels in the cortex analyzed by qRT-PCR supported those obtained by microarray analysis. Plasma levels of miR-323a-5p were significantly higher in patient plasma compared with the healthy controls, as determined by qRT-PCR. Furthermore, expression of miR-323a-5p was positively correlated with the duration of epilepsy (p = 0.014) and seizure frequency (p = 0.043). The effectiveness of surgery in patients with FCD was significantly poorer in patients with high plasma levels of miR-323a-5p compared with those with low levels. CONCLUSIONS: The expression of miR-323a-5p was significantly elevated in the cortex and plasma of FCD patients. These results suggest that abnormal expression of miR-323a-5p could be used for improving the current diagnosis of FCD and monitoring treatment responses in patients with FCD.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Malformações do Desenvolvimento Cortical/genética , MicroRNAs/biossíntese , Adulto , Estudos de Casos e Controles , Epilepsia Resistente a Medicamentos/sangue , Epilepsia Resistente a Medicamentos/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Malformações do Desenvolvimento Cortical/sangue , Malformações do Desenvolvimento Cortical/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA