Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 886
Filtrar
1.
Anal Chem ; 96(16): 6459-6466, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592893

RESUMO

Cysteine (Cys) and its oxidized form, cystine (Cys2), play crucial roles in biological systems and have considerable applications in cell culture. However, Cys in cell culture media is easily oxidized to Cys2, leading to solubility issues. Traditional analytical methods struggle to maintain the oxidation states of Cys and Cys2 during analysis, posing a significant challenge to accurately measuring and controlling these compounds. To effectively control the Cys and Cys2 levels, a rapid and accurate analytical method is required. Here, we screened derivatizing reagents that can react with Cys even under acidic conditions to realize a novel analytical method for simultaneously determining Cys and Cys2 levels. Diethyl 2-methylenemalonate (EMM) was found to possess the desired traits. EMM, characterized by its dual electron-withdrawing attributes, allowed for a rapid reaction with Cys under acidic conditions, preserving intact information for understanding the functions of target compounds. Combined with LC-MS/MS and an internal standard, this method provided high analytical accuracy in a short analytical time of 9 min. Using the developed method, the rapid oxidation of Cys in cell culture media was observed with the headspace of the storage container considerably influencing Cys oxidation and Cys2 precipitation rates. The developed method enabled the direct and simplified analysis of Cys behavior in practical media samples and could be used in formulating new media compositions, ensuring quality assurance, and real-time analysis of Cys and Cys2 in cell culture supernatants. This novel approach holds the potential to further enhance the media performance by enabling the timely optimal addition of Cys.


Assuntos
Meios de Cultura , Cisteína , Cistina , Compostos de Sulfidrila , Espectrometria de Massas em Tandem , Cisteína/química , Cisteína/análise , Espectrometria de Massas em Tandem/métodos , Cistina/química , Cistina/análogos & derivados , Cistina/análise , Meios de Cultura/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/análise , Química Click , Malonatos/química , Humanos , Cromatografia Líquida/métodos , Oxirredução , Espectrometria de Massa com Cromatografia Líquida
2.
ACS Appl Mater Interfaces ; 16(10): 12188-12201, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38288981

RESUMO

Myocardial infarction (MI) is the leading cause of death worldwide. The most effective way to treat myocardial infarction is to rescue ischemic cardiomyocytes. After an ischemic event, the overproduction of reactive oxygen species (ROS) is a key driver of myocardial injury. The produced ROS affects mitochondrial function and induces apoptosis in cardiomyocytes. This was accomplished by constructing platelet-membrane-encapsulated ROS-responsive drug-releasing nanoparticles (PMN@NIC-MalNPs) to deliver malonate and niclosamide (NIC). The results revealed that PMN@NIC-MalNPs degraded and released malonate and niclosamide in a high-level ROS microenvironment, effectively reducing the oxidative stress and apoptosis rate. By enhancing basal mitochondrial oxygen consumption rate (OCR), adenosine triphosphate (ATP) production, and spare respiratory capacity (SRC) in vitro, reduced the oxidative stress levels and restored mitochondrial function. In vivo studies revealed that the PMN@NIC-MalNPs improved cardiac dysfunction, inhibited succinate dehydrogenase (SDH) activity, increased ATP production, and reduced the myocardial infarct size in myocardial infarction model mice. Further, transcriptome analysis and Western blot revealed that PMN@NIC-MalNPs prevented apoptosis by activating the expressions of the signal transducer and activator of transcription 3 (STAT3) and Bcl-2, and inhibiting the expression of Bax. Thus, this study provides a novel therapeutic solution for treating myocardial infarction and predicting the viability of an antioxidant and antiapoptotic therapeutic solution in the treatment of myocardial injury.


Assuntos
Infarto do Miocárdio , Fator de Transcrição STAT3 , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Niclosamida/metabolismo , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Malonatos/metabolismo , Malonatos/farmacologia , Malonatos/uso terapêutico , Apoptose
3.
Biochem Pharmacol ; 219: 115950, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043718

RESUMO

Metabolic network intertwines with cancerous signaling and drug responses. Malonate is a prevailing metabolite in cancer and a competitive inhibitor of succinate dehydrogenase (SDH). Recent studies showed that malonate induced reactive oxygen species (ROS)-dependent apoptosis in neuroblastoma cells, but protected cells from ischemia-reperfusion injury. We here revealed that malonate differentially regulated cell death and survival in cancer cells. While high-dose malonate triggered ROS-dependent apoptosis, the low-dose malonate induced autophagy and conferred resistance to multiple chemotherapeutic agents. Mechanistically, our results showed that malonate increased p53 stability and transcriptionally up-regulated autophagy modulator DRAM (damage-regulated autophagy modulator), thus promoting autophagy. We further proved that autophagy is required for malonate-associated chemoresistance. Collectively, our findings suggest that malonate plays a double-edge function in cancer response to stressors, and highlights a pro-cancer impact of p53-induced autophagy in response to malonate.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Apoptose , Autofagia , Malonatos/farmacologia , Linhagem Celular Tumoral
4.
J Trauma Acute Care Surg ; 96(3): 386-393, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934622

RESUMO

BACKGROUND: Succinate is a proinflammatory citric acid cycle metabolite that accumulates in tissues during pathophysiological states. Oxidation of succinate after ischemia-reperfusion leads to reversal of the electron transport chain and generation of reactive oxygen species. Dimethyl malonate (DMM) is a competitive inhibitor of succinate dehydrogenase, which has been shown to reduce succinate accumulation. We hypothesized that DMM would protect against inflammation in a murine model of ARDS. METHODS: C57BL/6 mice were given ARDS via 67.7 µg of intratracheally administered lipopolysaccharide. Dimethyl malonate (50 mg/kg) was administered via tail vein injection 30 minutes after injury, then daily for 3 days. The animals were sacrificed on day 4 after bronchoalveolar lavage (BAL). Bronchoalveolar lavage cell counts were performed to examine cellular influx. Supernatant protein was quantified via Bradford protein assay. Animals receiving DMM (n = 8) were compared with those receiving sham injection (n = 8). Cells were fixed and stained with FITC-labeled wheat germ agglutinin to quantify the endothelial glycocalyx (EGX). RESULTS: Total cell counts in BAL was less for animals receiving DMM (6.93 × 10 6 vs. 2.46 × 10 6 , p = 0.04). The DMM group had less BAL macrophages (168.6 vs. 85.1, p = 0.04) and lymphocytes (527.7 vs. 248.3; p = 0.04). Dimethyl malonate-treated animals had less protein leak in BAL than sham treated (1.48 vs. 1.15 µg/µl, p = 0.03). Treatment with DMM resulted in greater staining intensity of the EGX in the lung when compared with sham (12,016 vs. 15,186 arbitrary units, p = 0.03). Untreated animals had a greater degree of weight loss than treated animals (3.7% vs. 1.1%, p = 0.04). Dimethyl malonate prevented the upregulation of monocyte chemoattractant protein-1 (1.66 vs. 0.92 RE, p = 0.02) and ICAM-1 (1.40 vs. 1.01 RE, p = 0.05). CONCLUSION: Dimethyl malonate reduces lung inflammation and capillary leak in ARDS. This may be mediated by protection of the EGX and inhibition of monocyte chemoattractant protein-1 and ICAM-1. Dimethyl malonate may be a novel therapeutic for ARDS.


Assuntos
Quimiocina CCL2 , Malonatos , Síndrome do Desconforto Respiratório , Camundongos , Animais , Molécula 1 de Adesão Intercelular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/prevenção & controle , Succinatos
5.
J Nat Prod ; 86(3): 550-556, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36897305

RESUMO

The lichen natural products pulvinamide, rhizocarpic acid, and epanorin have been synthesized and characterized spectroscopically and by X-ray crystallography. The syntheses, by ring-opening of pulvinic acid dilactone (PAD), may well be biomimetic, given the well-known occurrence of PAD in lichen. The enantiomers, ent-rhizocarpic acid and ent-epanorin, and corresponding carboxylic acids, norrhizocarpic acid and norepanorin, were similarly prepared. All compounds were assessed for growth inhibitory activity against selected bacteria, fungi, a protist, a mammalian tumor cell line, and normal cells. Rhizocarpic acid is weakly antibacterial (Bacillus subtilis MIC = 50 µg/mL) and possesses modest but selective antitumor activity (NS-1 murine myeloma MIC = 3.1 µg/mL) with >10-fold potency relative to its enantiomer (MIC = 50 µg/mL).


Assuntos
Líquens , Animais , Camundongos , Antibacterianos/química , Bactérias , Fungos , Líquens/química , Malonatos/metabolismo , Mamíferos , Testes de Sensibilidade Microbiana
6.
Appl Microbiol Biotechnol ; 107(2-3): 663-676, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525041

RESUMO

Our previous study's introduction of the malonic acid assimilation pathway into Escherichia coli enabled biosynthesis of 3-Hydroxypropionate (3-HP) from malonate. However, the relatively low uptake activity of tripartite ATP-independent periplasmic (TRAP) malonic acid transporter (MatPQM) is considered rate-limiting in malonate utilization. Here, to improve the transport performance of this importer, MatP variants were obtained via directed evolution and a novel developed enzyme-inhibition-based high throughput screening approach. This plate chromogenic screening method is based on the fact that malonic acid inhibits both of succinate dehydrogenase activity and further the capability of the reduction of methylene-blue to methylene-white. The best mutant E103G/S194G/Y218H/L235P/N272S showed twofold increased transport efficiency compared to the wild-type. ITC assay and structural analysis revealed that increased binding affinity of the mutant to the ligand was the reason for improved uptake activity of MatPQM. Finally, the engineered strain harboring the evolved mutant produced 20.08 g/L 3-HP with the yield of 0.87 mol/mol malonate in a bioreactor. Therefore, the well-established directed evolution strategy can be regarded as the reference work for other TRAP-type transporters engineering. And, this transporter mutant with enhanced malonic acid uptake activity has broad applications in the microbial biosynthesis of malonyl-CoA-derived valuable compounds in bacteria. KEY POINTS: • We reported directed evolution of a TRAP-type malonic acid transporter. • We found the enhanced malonate uptake activity of mutant lies in improved affinity. • We enhanced 3-HP bioproduction with high yield by employing the best mutant.


Assuntos
Malonatos , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Trifosfato de Adenosina/metabolismo
7.
J Org Chem ; 87(18): 12182-12195, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36069733

RESUMO

Nowadays, design of the new chiral ligands for organometallic catalysts is often based on the step-by-step increase in their complexity to improve efficiency. Herein we describe that simple in situ addition of the fluoride source to the asymmetric organometallic catalyst can improve not only activity but also enantioselectivity. Bromide-nickel diimine complexes were found to catalyze asymmetric Michael addition in low yields and ee, but activation with fluoride leads to a significant improvement in catalyst performance. The developed approach was applied to prepare several enantioenriched GABA analogues.


Assuntos
Malonatos , Níquel , Brometos , Catálise , Fluoretos , Ácido gama-Aminobutírico
8.
Chembiochem ; 23(19): e202200398, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35924883

RESUMO

Cancer is one of the main causes of death worldwide. Platinum complexes (i. e., cisplatin, carboplatin, and others) are currently heavily used for the treatment of different types of cancer, but unwanted effects occur. Ruthenium complexes have been shown to be potential promising alternatives to these metal-based drugs. In this work, we performed a structure-activity relationship (SAR) study on two small series of Ru(II) polypyridyl complexes of the type [Ru(L1)2 (O^O)]Cln (3-8), where L1 is 4,7-diphenyl-1,10-phenantroline (DIP) or 1,10-phenantroline (phen), and O^O is a symmetrical anionic dioxo ligand: oxalate (ox, n=0), malonate (mal, n=0), or acetylacetonate (acac, n=1). These two self-consistent series of compounds allowed us to perform a systematic investigation for establishing how the nature of the ligands and the charge affect the anticancer properties of the complexes. Cytotoxicity tests on different cell lines demonstrated that some of the six compounds 3-8 have a promising anticancer activity. More specifically, the cationic complex [Ru(DIP)2 (η2 -acac)]Cl (4) has IC50 values in the mid-nanomolar concentration range, lower than those of cisplatin on the same cell lines. Interestingly, [Ru(DIP)2 (η2 -acac)]Cl was found to localize mainly in the mitochondria, whereas a smaller fraction was detected in the nucleus. Overall, our SAR investigation demonstrates the importance of combining the positive charge of the complex with the highly lipophilic diimine ligand DIP.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Antineoplásicos/farmacologia , Carboplatina , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Malonatos , Oxalatos , Platina , Rutênio/farmacologia , Relação Estrutura-Atividade
9.
J Physiol Sci ; 72(1): 15, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850611

RESUMO

It has been reported that wild-type p53-induced gene 1 (Wig1), which is downstream of p53, regulates the expression of mutant huntingtin protein (mHtt) in Huntington's disease (HD) patients and transgenic mouse brains. Intrastriatal injection of malonic acid in rats is often used as a model to study the pathological changes of Huntington's disease, and this model has the advantages of a fast preparation and low cost. Therefore, in this study, we used intrastriatal injections of 6 µM malonic acid in rats to evaluate the effect of tolfenamic acid on motor and cognitive deficits and the effect of 6 mg/kg and 32 mg/kg tolfenamic acid on p53 and its downstream targets, such as Wig1. The results showed that 32 mg/kg tolfenamic acid attenuated motor and spatial memory dysfunction, prevented Nox1-mediated reactive oxygen species (ROS) production, and downregulated the activity of p53 by increasing the phosphorylation level at the Ser378 site and decreasing the acetylation level at the Lys382 site. Tolfenamic acid reduced mouse double minute 2 (Mdm2), phosphatase and tensin homologue (Pten), P53-upregulated modulator of apoptosis (Puma) and Bcl2-associated X (Bax) at the mRNA level to inhibit apoptosis and downregulated sestrin 2 (Sesn2) and hypoxia inducible factor 1, alpha subunit (Hif-1α) mRNA levels to exert antioxidative stress effects. In addition, 32 mg/kg tolfenamic acid played a role in neuroprotection by decreasing the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL)-positive cell numbers. However, there was no difference in the Wig mRNA level among all groups, and tolfenamic acid could not decrease the protein level of Wig1. In conclusion, tolfenamic acid inhibited the ROS-generating oxidase Nox1-regulated p53 activity and attenuated motor and spatial memory deficits in malonic acid-injected rats.


Assuntos
Doença de Huntington , Proteína Supressora de Tumor p53 , Animais , Apoptose , Doença de Huntington/genética , Doença de Huntington/patologia , Malonatos , Camundongos , Oxirredutases/metabolismo , Oxirredutases/farmacologia , RNA Mensageiro , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia
10.
J Inorg Biochem ; 231: 111773, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35279446

RESUMO

Four Pt(II) complexes of the general formula [Pt(L)(5,6-epoxy-1,10-phen)], where L is an anion of either malonic acid (mal, Pt1), 2-methylmalonic acid (Me-mal, Pt2), 2,2-dimethylmalonic acid (Me2-mal, Pt3) or 1,1-cyclobutanedicarboxylic acid (CBDCA, Pt4) and 5,6-epoxy-1,10-phen is 5,6-epoxy-5,6-dihydro-1,10-phenanthroline, were synthesized and characterized by elemental microanalysis and different spectroscopic techniques. The crystal structure of anhydrous Pt3 complex was determined by single crystal X-ray diffraction. The in vitro anticancer activity of the platinum(II) complexes was investigated in human and murine cancer cell lines as well as in a normal murine cell line by MTT assay. The results show that the investigated platinum(II) complexes exhibit potent cytotoxic activity against murine breast carcinoma cells (4T1), human (HCT116) and murine (CT26) colorectal carcinoma cells. The Pt3 complex shows stronger selectivity against cancer cells compared to other platinum(II) complexes tested and thus exhibits beneficial antitumor activity, mainly by inducing apoptosis and inhibiting cell proliferation and migration. The Pt3 complex also exhibits significant in vivo antitumor activity in the orthotopical 4T1 tumor model without detected liver, kidney, lung, and heart toxicity. All the results indicate that these novel platinum(II) complexes have good antitumor activity on breast and colorectal cancer and have the potential to become possible candidates for cancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Malonatos/farmacologia , Camundongos , Platina/química , Platina/farmacologia
11.
J Trauma Acute Care Surg ; 93(1): 13-20, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234713

RESUMO

BACKGROUND: Succinate (SI) is a citric acid cycle metabolite that accumulates in tissues during hemorrhagic shock (HS) due to electron transport chain uncoupling. Dimethyl malonate (DMM) is a competitive inhibitor of SI dehydrogenase, which has been shown to reduce SI accumulation and protect against reperfusion injury. Whether DMM can be therapeutic after severe HS is unknown. We hypothesized that DMM would prevent SI buildup during resuscitation (RES) in a swine model of HS, leading to better physiological recovery after RES. METHODS: The carotid arteries of Yorkshire pigs were cannulated with a 5-Fr catheter. After placement of a Swan-Ganz catheter and femoral arterial line, the carotid catheters were opened and the animals were exsanguinated to a mean arterial pressure (MAP) of 45 mm. After 30 minutes in the shock state, the animals were resuscitated to a MAP of 60 mm using lactated ringers. A MAP above 60 mm was maintained throughout RES. One group received 10 mg/kg of DMM (n = 6), while the control received sham injections (n = 6). The primary end-point was SI levels. Secondary end-points included cardiac function and lactate. RESULTS: Succinate levels increased from baseline to the 20-minute RES point in control, while the DMM cohort remained unchanged. The DMM group required less intravenous fluid to maintain a MAP above 60 (450.0 vs. 229.0 mL; p = 0.01). The DMM group had higher pulmonary capillary wedge pressure at the 20-minute and 40-minute RES points. The DMM group had better recovery of cardiac output and index during RES, while the control had no improvement. While lactate levels were similar, DMM may lead to increased ionized calcium levels. DISCUSSION: Dimethyl malonate slows SI accumulation during HS and helps preserve cardiac filling pressures and function during RES. In addition, DMM may protect against depletion of ionized calcium. Dimethyl malonate may have therapeutic potential during HS.


Assuntos
Choque Hemorrágico , Animais , Cálcio , Modelos Animais de Doenças , Humanos , Lactatos , Malonatos , Ressuscitação , Ácido Succínico , Suínos
12.
Neuroreport ; 32(14): 1161-1169, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34334775

RESUMO

OBJECTIVES: After ischemic stroke, microglia will be activated and play a key role in neuroinflammation and the destruction of the blood-brain barrier (BBB), and activated microglia could polarize into pro-inflammation M1 phenotype and anti-inflammation M2 phenotype. Dimethyl malonate (DMM) could reduce reactive oxygen species and we speculate DMM could regulate microglia to protect ischemic brain. METHODS: We used transient middle cerebral artery occlusion (tMCAO) mouse model to simulate ischemic stroke and adult male C57BL/6 mice were used in our study. 2,3,5-triphenyltetrazolium chloride staining was used to measure infarct volume. Evans Blue and Brain water content were used to evaluate the destruction of BBB. We used a five-point scale to assess the neurologic function of mice. Western blot and Immunofluorescence were used to measure microglia, pericytes and the expression of related proteins. RESULTS: DMM reduced cerebral infarct volume, Evans blue leakage, brain water content and improved neurologic deficits after tMCAO. The number of activated microglia and M1 microglia were decreased and the number of M2 microglia and pericytes were increased after DMM treatment. The expression of tumor necrosis factor-α was reduced while protein levels of IL-10 and ZO-1 were increased through DMM treatment. CONCLUSIONS: DMM could regulate activation and polarization of microglia to inhibit neuroinflammation and protect BBB.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , AVC Isquêmico/patologia , Malonatos/farmacologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias
13.
Neurochem Int ; 149: 105123, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224804

RESUMO

This study explored the role of succinate accumulation in the oxidative stress and iron accumulation in both pentylenetetrazol (PTZ)-induced epileptogenesis and kainic acid (KA)-induced status epilepticus (SE). The levels of succinate, oxidative stress, iron content, iron-related protein expression, and the severity of neuronal injury and seizures were measured in both models. We found that increased concentrations of succinate were associated with increased levels of oxidative stress, iron content, iron regulator protein, and iron importer divalent metal transporter 1, as well as decreased levels of iron exporter ferropotin 1. Aggravated neuronal injury was observed in the hippocampi and cortices of both models. The cell-permeable molecule dimethyl malonate (DM), a competitive inhibitor of succinate dehydrogenase (SDH), significantly attenuated succinate accumulation, reduced the oxidative stress and iron levels, and mitigated the severity of the seizures and neuronal injury. Our results thus indicate that the accumulation of succinate due to the reverse catalysis of SDH may exacerbate oxidative stress and thus induce iron accumulation and neuronal injury in both models. Targeting succinate accumulation may achieve neuroprotective and anti-seizure effects.


Assuntos
Ferro/metabolismo , Ácido Caínico/toxicidade , Estresse Oxidativo/fisiologia , Pentilenotetrazol/toxicidade , Convulsões/metabolismo , Estado Epiléptico/metabolismo , Ácido Succínico/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Malonatos/farmacologia , Malonatos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
14.
Angew Chem Int Ed Engl ; 60(36): 19957-19964, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34164914

RESUMO

Aminomalonate (Ama) is a widespread structural motif in Nature, whereas its biosynthetic route is only partially understood. In this study, we show that a radical S-adenosylmethionine (rSAM) enzyme involved in cyclophane biosynthesis exhibits remarkable catalytic promiscuity. This enzyme, named three-residue cyclophane forming enzyme (3-CyFE), mainly produces cyclophane in vivo, whereas it produces formylglycine (FGly) as a major product and barely produce cyclophane in vitro. Importantly, the enzyme can further oxidize FGly to produce Ama. Bioinformatic study revealed that 3-CyFEs have evolved from a common ancestor with anaerobic sulfatase maturases (anSMEs), and possess a similar set of catalytic residues with anSMEs. Remarkably, the enzyme does not need leader peptide for activity and is fully active on a truncated peptide containing only 5 amino acids of the core sequence. Our work discloses the first ribosomal path towards Ama formation, providing a possible hint for the rich occurrence of Ama in Nature.


Assuntos
Malonatos/metabolismo , Peptídeos/metabolismo , S-Adenosilmetionina/metabolismo , Sulfatases/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Malonatos/química , Estrutura Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/química , Sulfatases/química
15.
Langmuir ; 37(18): 5475-5482, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33913723

RESUMO

Supramolecular chemotherapy is a strategy that is currently used to improve the therapeutic efficacy of traditional chemotherapy while mitigating side effects. Heptaplatin, a platinum chemotherapeutic antitumor drug in colorectal tumors, is traditionally used in the clinic. However, its side effects and low efficiency in killing tumors remain unresolved. Herein, a facile supramolecular chemotherapy platform on account of the host-guest chemistry between cucurbit[7]uril and the commercially available heptaplatin was studied. At pH 7.4, heptaplatin showed a strong binding to the cucurbit[7]uril nanocarrier by 1H NMR, whose Ka was (1.38 ± 0.06) × 106 M-1 by isothermal titration calorimetry (ITC). At pH 6.0 in a tumor microenvironment, overexpressed spermine can exchange competitively heptaplatin from heptaplatin-CB[7]. This supramolecular complex achieved higher antitumor activity on colorectal tumor cells and lower cytotoxicity than the drug alone on colorectal normal cells. Furthermore, the antitumor mechanisms of supramolecular complex were investigated by apoptosis, cell cycle, and spermine synthase. It was found that heptaplatin-CB[7] consumed more colorectal tumorous intracellular spermine by the spermine synthase assay (413.85 ± 0.004 pg/mL); hepataplatin-CB[7] caused early apoptosis (87.73%) of colorectal tumor cells; heptaplatin-CB[7] induced an inhibitory response in the G1 phase of the tumor cell cycle. These findings demonstrated that heptaplatin-CB[7] had higher antitumor activity toward human colorectal tumor cells but lower cytotoxicity toward human colorectal normal cells. It is expected to promote the supramolecular chemotherapy and translational development of the nanocomplex into the clinical field.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Neoplasias Colorretais , Neoplasias Colorretais/tratamento farmacológico , Humanos , Imidazóis , Malonatos , Compostos Organoplatínicos , Microambiente Tumoral
16.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805945

RESUMO

The aberrant activation of a signal transducer and activator of transcription 3 (STAT3) restrains type I interferon (IFN) α/ß-induced antiviral responses and is associated with the development of cancer. Designing specific STAT3 inhibitors will thus provide new options for use as IFN therapy. Herein, we identified a novel small molecule, dimethyl 2-(4-(2-(methyl(phenyl(p-tolyl)methyl)amino)ethoxy)benzyl)malonate (CIB-6), which can inhibit the IFN-α-induced interferon stimulated response element (ISRE) luciferase reporter (IC50 value = 6.4 µM) and potentiate the antiproliferative effect of IFN-α in human hepatocellular carcinoma (HCC) cells. CIB-6 was found to bind to the STAT3 Src homology 2 (SH2) domain, thereby selectively inhibiting STAT3 phosphorylation without affecting Janus kinases and STAT1/2. CIB-6 also inhibited the migration and invasion of HCC cells by inhibiting the epithelial-mesenchymal transition (EMT) process. Mechanistically, CIB-6 reduced the expression of ß-catenin (an EMT key protein) via upregulating ß-transducin repeat-containing protein (ß-TrCP) and curbed nuclear factor kappa-B (NF-κB) activation through restricting the phosphorylation of the inhibitor of NF-κB (IκB) kinase (IKK) via STAT3 inhibition. Treatment with CIB-6 significantly retarded tumor growth in nude mice with SK-HEP-1 xenografts. In addition, clinical sample analysis revealed that lower ß-TrCP and higher ß-catenin expression could affect the median survival time of HCC patients. Our findings suggest that CIB-6 could be a new therapeutic strategy for HCC therapy through STAT3-mediated ß-TrCP/ß-catenin/NF-κB axis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Malonatos/farmacologia , Fator de Transcrição STAT3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Fosforilação , Proteínas Recombinantes/química , Elementos de Resposta , Transducina , Regulação para Cima
17.
Dalton Trans ; 50(13): 4583-4592, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33705511

RESUMO

The discovery of novel anticancer chemotherapeutics is fundamental to treat cancer more efficiently. Towards this goal, two dyads consisting of a gold porphyrin appended to organotin(iv) entities were synthesized and their physicochemical and biological properties were characterized. One dyad contains a gold porphyrin connected to a tin(iv) cation via a malonate and two phenyl ligands (AuP-SnPh2), while the other contains two tin(iv) cations each chelated to one carboxylic acid group of the malonate and three phenyl ligands (AuP-Sn2Ph6). The mode of chelation of Sn(iv) to the malonate was elucidated by IR spectroscopy and 119Sn NMR. In the solid state, the complexes exist as coordination polymers in which the tin is penta-coordinated and bridged to two different malonate units. In solution the chemical shifts of 119Sn signals indicate that the tin complexes are in the form of monomeric species associated with a tetra-coordinated tin cation. The therapeutic potential of these new compounds was assessed by determining their cytotoxic activities on human breast cancer cells (MCF-7) and on healthy human fibroblasts (FS 20-68). The study reveals that the dyads are more potent anticancer drugs than the mixture of their individual components (gold porphyrin and reference tin complexes). Therefore, the covalent link of organotin complexes to a gold porphyrin induces a synergistic cytotoxic effect. The dyad AuP-SnPh2 shows high cytotoxicity (0.13 µM) against MCF-7 along with good selectivity for cancer cells versus healthy cells. Finally, it was also shown that the dyad AuP-Sn2Ph6 exhibits a very high anticancer activity (LC50 = 0.024 µM), but the presence of two tin units induces strong cytotoxicity on healthy cells too (LC50 = 0.032 µM). This study underscores, thus, the potential of the association of gold porphyrin and organotin complexes to develop anticancer metallo-drugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ouro/farmacologia , Malonatos/farmacologia , Porfirinas/farmacologia , Estanho/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Humanos , Malonatos/química , Estrutura Molecular , Porfirinas/química , Relação Estrutura-Atividade , Estanho/química , Células Tumorais Cultivadas
18.
Circulation ; 143(20): 1973-1986, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666092

RESUMO

BACKGROUND: Neonatal mouse cardiomyocytes undergo a metabolic switch from glycolysis to oxidative phosphorylation, which results in a significant increase in reactive oxygen species production that induces DNA damage. These cellular changes contribute to cardiomyocyte cell cycle exit and loss of the capacity for cardiac regeneration. The mechanisms that regulate this metabolic switch and the increase in reactive oxygen species production have been relatively unexplored. Current evidence suggests that elevated reactive oxygen species production in ischemic tissues occurs as a result of accumulation of the mitochondrial metabolite succinate during ischemia via succinate dehydrogenase (SDH), and this succinate is rapidly oxidized at reperfusion. Mutations in SDH in familial cancer syndromes have been demonstrated to promote a metabolic shift into glycolytic metabolism, suggesting a potential role for SDH in regulating cellular metabolism. Whether succinate and SDH regulate cardiomyocyte cell cycle activity and the cardiac metabolic state remains unclear. METHODS: Here, we investigated the role of succinate and SDH inhibition in regulation of postnatal cardiomyocyte cell cycle activity and heart regeneration. RESULTS: Our results demonstrate that injection of succinate into neonatal mice results in inhibition of cardiomyocyte proliferation and regeneration. Our evidence also shows that inhibition of SDH by malonate treatment after birth extends the window of cardiomyocyte proliferation and regeneration in juvenile mice. Remarkably, extending malonate treatment to the adult mouse heart after myocardial infarction injury results in a robust regenerative response within 4 weeks after injury via promoting adult cardiomyocyte proliferation and revascularization. Our metabolite analysis after SDH inhibition by malonate induces dynamic changes in adult cardiac metabolism. CONCLUSIONS: Inhibition of SDH by malonate promotes adult cardiomyocyte proliferation, revascularization, and heart regeneration via metabolic reprogramming. These findings support a potentially important new therapeutic approach for human heart failure.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Malonatos/uso terapêutico , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Proliferação de Células , Humanos , Masculino , Malonatos/farmacologia , Camundongos , Transdução de Sinais
19.
Nat Commun ; 12(1): 299, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436637

RESUMO

Chiral acetylenic derivatives are found in many bioactive compounds and are versatile functional groups in organic chemistry. Here, we describe an enantioselective nickel/Lewis acid-catalyzed asymmetric propargylic substitution reaction from simple achiral materials under mild condition. The introduction of a Lewis acid cocatalyst is crucial to the efficiency of the transformation. Notably, we investigate this asymmetric propargylic substitution reaction for the development of a range of structurally diverse natural products. The power of this strategy is highlighted by the collective synthesis of seven biologically active compounds: (-)-Thiohexital, (+)-Thiopental, (+)-Pentobarbital, (-)-AMG 837, (+)-Phenoxanol, (+)-Citralis, and (-)-Citralis Nitrile.


Assuntos
Alcinos/síntese química , Ácidos de Lewis/química , Níquel/química , Preparações Farmacêuticas/síntese química , Alquilação , Catálise , Ésteres/química , Malonatos/química , Estereoisomerismo
20.
ACS Appl Bio Mater ; 4(6): 5251-5265, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007007

RESUMO

Designing multifunctional linkers is crucial for tricomponent theranostic targeted nanomedicine development as they are essential to enrich polymeric systems with different functional moieties. Herein, we have obtained a hetero-trifunctional linker from malonic acid and demonstrated its implication as an amphiphilic targeted nanotheranostic system (CB DX UN PG FL). We synthesized it with varying hydrophilic segment to fine-tune the hydrophobic/hydrophilic ratio to optimize its self-assembly. pH-responsive hydrazone-linked doxorubicin was conjugated to the backbone (UN PG FL) containing folate as a targeting ligand. Cobalt carbonyl complex was used for T2-weighted magnetic resonance imaging (MRI). Electron micrographs of optimized molecule CB DX UN PG(4 kDa)FL in an aqueous system have demonstrated about 50-60 nm-sized uniform micelles. The relaxivity study and the one-dimensional (1D) imaging experiments clearly revealed the effect of the nanotheranostics system on transverse relaxation (T2) of water molecules, which validated the system as a T2-weighted MRI contrast agent. The detailed in vitro biological studies validated the targeted delivery and anticancer potential of CB DX UN PG(4 kDa)FL. Combining the data on transverse relaxation, folate mediated uptake, and anticancer activity, the designed molecule will have a significant impact on the development of targeted theranostic.


Assuntos
Neoplasias da Mama , Nanomedicina Teranóstica , Neoplasias da Mama/diagnóstico por imagem , Feminino , Ácido Fólico , Humanos , Malonatos , Nanomedicina Teranóstica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA