Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
J Plant Physiol ; 299: 154277, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843655

RESUMO

Glomerella leaf spot (GLS), caused by Colletotrichum fructicola (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of MdHB-7 overexpressing (MdHB-7-OE) and interference (MdHB-7-RNAi) transgenic plants with Cf revealed that MdHB-7, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in MdHB-7-OE plants than in 'GL-3' plants; the content of ABA and the expression of ABA biosynthesis genes were higher in MdHB-7-OE plants than in 'GL-3' plants. Further analysis indicated that the content of phenolics and chitinase and ß-1, 3 glucanase activities were lower and H2O2 accumulation was higher in MdHB-7-OE plants than in 'GL-3' plants. The opposite patterns were observed in MdHB-7-RNAi apple plants. Overall, our results indicate that MdHB-7 plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H2O2.


Assuntos
Colletotrichum , Resistência à Doença , Malus , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Malus/genética , Malus/microbiologia , Malus/metabolismo , Malus/imunologia , Colletotrichum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética
2.
J Agric Food Chem ; 72(22): 12798-12809, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38772384

RESUMO

Patulin (PAT) is a mycotoxin produced by Penicillium species, which often contaminates fruit and fruit-derived products, posing a threat to human health and food safety. This work aims to investigate the detoxification of PAT by Kluyveromyces marxianus YG-4 (K. marxianus YG-4) and its application in apple juice. The results revealed that the detoxification effect of K. marxianus YG-4 on PAT includes adsorption and degradation. The adsorption binding sites were polysaccharides, proteins, and some lipids on the cell wall of K. marxianus YG-4, and the adsorption groups were hydroxyl groups, amino acid side chains, carboxyl groups, and ester groups, which were combined through strong forces (ion interactions, electrostatic interactions, and hydrogen bonding) and not easily eluted. The degradation active substance was an intracellular enzyme, and the degradation product was desoxypatulinic acid (DPA) without cytotoxicity. K. marxianus YG-4 can also effectively adsorb and degrade PAT in apple juice. The contents of organic acids and polyphenols significantly increased after detoxification, significantly improving the quality of apple juice. The detoxification ability of K. marxianus YG-4 toward PAT would be a novel approach for the elimination of PAT contamination.


Assuntos
Sucos de Frutas e Vegetais , Kluyveromyces , Malus , Patulina , Kluyveromyces/metabolismo , Kluyveromyces/química , Patulina/metabolismo , Patulina/química , Malus/química , Malus/metabolismo , Sucos de Frutas e Vegetais/análise , Contaminação de Alimentos/análise , Adsorção
3.
New Phytol ; 242(3): 1238-1256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426393

RESUMO

Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.


Assuntos
Malus , Polifenóis , Malus/metabolismo , Florizina/metabolismo , Flavonoides/metabolismo , Estresse Fisiológico/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
4.
Plant Cell Environ ; 47(7): 2510-2525, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38514902

RESUMO

The micronutrient iron plays a crucial role in the growth and development of plants, necessitating meticulous regulation for its absorption by plants. Prior research has demonstrated that the transcription factor MxZR3.1 restricts iron absorption in apple rootstocks; however, the precise mechanism by which MxZR3.1 contributes to the regulation of iron homoeostasis in apple rootstocks remains unexplored. Here, MxMPK3-2, a protein kinase, was discovered to interact with MxZR3.1. Y2H, bimolecular fluorescence complementation and pull down experiments were used to confirm the interaction. Phosphorylation and cell semi-degradation tests have shown that MxZR3.1 can be used as a substrate of MxMPK3-2, which leads to the MxZR3.1 protein being more stable. In addition, through tobacco transient transformation (LUC and GUS) experiments, it was confirmed that MxZR3.1 significantly inhibited the activity of the MxHA2 promoter, while MxMPK3-2 mediated phosphorylation at the Ser94 site of MxZR3.1 further inhibited the activity of the MxHA2 promoter. It is tightly controlled to absorb iron during normal growth and development of apple rootstocks due to the regulatory effect of the MxMPK3-2-MxZR3.1 module on MxHA2 transcription level. Consequently, this research has revealed the molecular basis of how the MxMPK3-2-MxZR3.1 module in apple rootstocks controls iron homoeostasis by regulating the MxHA2 promoter's activity.


Assuntos
Homeostase , Ferro , Malus , Proteínas de Plantas , Raízes de Plantas , Malus/metabolismo , Malus/genética , Fosforilação , Ferro/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
Plant Physiol ; 194(4): 2755-2770, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38235781

RESUMO

Apple Valsa canker (AVC) is a devastating disease of apple (Malus × domestica), caused by Valsa mali (Vm). The Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1 (CAP) superfamily protein PATHOGENESIS-RELATED PROTEIN 1-LIKE PROTEIN c (VmPR1c) plays an important role in the pathogenicity of Vm. However, the mechanisms through which it exerts its virulence function in Vm-apple interactions remain unclear. In this study, we identified an apple valine-glutamine (VQ)-motif-containing protein, MdVQ29, as a VmPR1c target protein. MdVQ29-overexpressing transgenic apple plants showed substantially enhanced AVC resistance as compared with the wild type. MdVQ29 interacted with the transcription factor MdWRKY23, which was further shown to bind to the promoter of the jasmonic acid (JA) signaling-related gene CORONATINE INSENSITIVE 1 (MdCOI1) and activate its expression to activate the JA signaling pathway. Disease evaluation in lesion areas on infected leaves showed that MdVQ29 positively modulated apple resistance in a MdWRKY23-dependent manner. Furthermore, MdVQ29 promoted the transcriptional activity of MdWRKY23 toward MdCOI1. In addition, VmPR1c suppressed the MdVQ29-enhanced transcriptional activation activity of MdWRKY23 by promoting the degradation of MdVQ29 and inhibiting MdVQ29 expression and the MdVQ29-MdWRKY23 interaction, thereby interfering with the JA signaling pathway and facilitating Vm infection. Overall, our results demonstrate that VmPR1c targets MdVQ29 to manipulate the JA signaling pathway to regulate immunity. Thus, this study provides an important theoretical basis and guidance for mining and utilizing disease-resistance genetic resources for genetically improving apples.


Assuntos
Ascomicetos , Ciclopentanos , Malus , Oxilipinas , Malus/genética , Malus/metabolismo , Glutamina/metabolismo , Valina/metabolismo , Transdução de Sinais , Doenças das Plantas/genética
6.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38224320

RESUMO

The level of cadmium (Cd) accumulation in orchard soils is increasing, and excess Cd will cause serious damage to plants. Melatonin is a potent natural antioxidant and has a potential role in alleviating Cd stress. This study aimed to investigate the effects of exogenous melatonin on a root endophyte bacteria community and metabolite composition under Cd stress. The results showed that melatonin significantly scavenged the reactive oxygen species and restored the photosynthetic system (manifested by the improved photosynthetic parameters, total chlorophyll content and the chlorophyll fluorescence parameters (Fv/Fm)), increased the activity of antioxidant enzymes (the activities of catalase, superoxide dismutase, peroxidase and ascorbate oxidase) and reduced the concentration of Cd in the roots and leaves of apple plants. High-throughput sequencing showed that melatonin increased the endophytic bacterial community richness significantly and changed the community structure under Cd stress. The abundance of some potentially beneficial endophytic bacteria (Ohtaekwangia, Streptomyces, Tabrizicola and Azovibrio) increased significantly, indicating that the plants may absorb potentially beneficial microorganisms to resist Cd stress. The metabolomics results showed that melatonin significantly changed the composition of root metabolites, and the relative abundance of some metabolites decreased, suggesting that melatonin may resist Cd stress by depleting root metabolites. In addition, co-occurrence network analysis indicated that some potentially beneficial endophytes may be influenced by specific metabolites. These results provide a theoretical basis for studying the effects of melatonin on the endophytic bacterial community and metabolic composition in apple plants.


Assuntos
Malus , Melatonina , Melatonina/farmacologia , Antioxidantes/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Malus/metabolismo , Clorofila/metabolismo
7.
Plant Physiol ; 195(1): 502-517, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243831

RESUMO

Apple Valsa canker, caused by the ascomycete fungus Valsa mali, employs virulence effectors to disturb host immunity and poses a substantial threat to the apple industry. However, our understanding of how V. mali effectors regulate host defense responses remains limited. Here, we identified the V. mali effector Vm_04797, which was upregulated during the early infection stage. Vm_04797, a secreted protein, suppressed Inverted formin 1 (INF1)-triggered cell death in Nicotiana benthamiana and performed virulence functions inside plant cells. Vm_04797 deletion mutants showed substantially reduced virulence toward apple. The adaptor protein MdAP-2ß positively regulated apple Valsa canker resistance and was targeted and degraded by Vm_04797 via the ubiquitination pathway. The in vitro analysis suggested that Vm_04797 possesses E3 ubiquitin ligase activity. Further analysis revealed that MdAP-2ß is involved in autophagy by interacting with Malus domestica autophagy protein 16 MdATG16 and promoting its accumulation. By degrading MdAP-2ß, Vm_04797 inhibited autophagic flux, thereby disrupting the defense response mediated by autophagy. Our findings provide insights into the molecular mechanisms employed by the effectors of E3 ubiquitin ligase activity in ascomycete fungi to regulate host immunity.


Assuntos
Ascomicetos , Autofagia , Proteínas Fúngicas , Malus , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Doenças das Plantas/microbiologia , Malus/microbiologia , Malus/metabolismo , Malus/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/metabolismo , Interações Hospedeiro-Patógeno , Virulência , Imunidade Vegetal/genética , Ubiquitinação , Resistência à Doença/genética
8.
Biosci Biotechnol Biochem ; 88(4): 345-351, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38059864

RESUMO

Procyanidins are one of the polyphenols consisting of multiple flavan-3-ols (eg epicatechin). They have a complex chemical structure, with the degree of polymerization and linked position of flavan-3-ols varying among various foods, such as apples and chocolate. Physiological functional studies of procyanidins have investigated their mechanisms in cells and animals based on their antioxidant effects. Recently, the intestinal environment, including the intestinal microflora, has played an important role in the energy metabolism and health status of the host. Regulation of the intestinal environment by dietary polyphenols is becoming a new concept in health functions, and we have begun to investigate the mechanism of apple procyanidins, focusing on the gut microbiota and metabolites in our functional research. In this minireview, we will discuss the effects of procyanidin ingestion on the gut microbiota and metabolites.


Assuntos
Biflavonoides , Catequina , Malus , Proantocianidinas , Animais , Proantocianidinas/química , Polifenóis , Malus/metabolismo , Flavonoides/química
9.
J Sci Food Agric ; 104(5): 2888-2896, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38018275

RESUMO

BACKGROUND: The effect of bamboo leaf extract (BLE) on controlling the browning of fresh-cut apple stored at 4 °C was investigated. Browning index, H2 O2 content, O2 - production rate, malondialdehyde (MDA) contents, total phenolic content (TPC) and soluble quinone content (SQC), the activities of polyphenol oxidase (PPO), peroxidase (POD), lipoxygenase (LOX), superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), DPPH (2,2-diphenyl-2-picryl-hydrazyl) and ABTS [2,2-azinobis(3-ethylbenzothiazoline- 6-sulfonic acid)] radical scavenging activities, and the expression of genes related to browning were all investigated. RESULTS: BLE effectively alleviated the surface browning of fresh-cut apple, accompanied by a reduction in SQC, LOX activity, H2 O2 , O2 - production rate and MDA accumulation. Furthermore, BLE treatment enhanced the TPC, enzymatic (SOD, CAT, APX and POD) and non-enzymatic antioxidant activities. Principal component analysis and Pearson correlation analysis found the browning inhibition by BLE is not through the reduction of phenolic substrates and PPO activity. CONCLUSION: BLE controls the browning of fresh-cut apple by increasing the antioxidant capacity to scavenge ROS, which could alleviate oxidative damage and maintain the membrane integrity. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Malus , Antioxidantes/análise , Malus/metabolismo , Metabolismo dos Lipídeos , Peroxidase/metabolismo , Peroxidases/metabolismo , Superóxido Dismutase/metabolismo , Fenóis/química , Ascorbato Peroxidases/metabolismo , Extratos Vegetais/farmacologia
10.
Physiol Plant ; 175(5): e14037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882303

RESUMO

Water deficit episodes impact apple (Malus domestica) productivity through challenging the trees' water status, the influence of extreme high temperature climate has become increasingly prominent in recent years. Rootstocks can bestow specific properties on the fruit trees such as the resistance to drought stress. However, the related hydraulic mechanisms in response to water deficit have not been fully understood. Herein, five rootstocks (SH6, GM256, M9, M26, and MM106) were examined under water limitation. The hydraulic conductance of root (Kroot), shoots (Kshoot), and stems (Kstem-shoot) in the five rootstocks reduced slightly during drought stress. Whereas the leaf water potential and photosynthesis of five rootstocks decreased dramatically when they were exposed to drought stress. Additionally, the Kshoot and Kstem-shoot were strongly correlated with the total plant leaf area. Aquaporins (AQPs) involved in the symplastic water transport pathway, the PIP2:1, TIP1:1, and TIP2:2 mRNA levels of all genotypic rootstocks showed significant regulation under drought stress. We examined the relationships among photosynthesis, apoplastic, and symplastic water movement pathways to achieve a comprehensive understanding of rootstocks' hydraulic strategy for improving drought adaptation. The PIP2:1 and TIP2:1 in leaves were more sensitive to root hydraulic conductance in response to drought stress. Furthermore, the coordinated relationship existed in leaf-specific conductance of shoot (Kl -shoot) and transpiration rate (Tr) under drought stress in the rootstocks. Overall, the drought resistance in the five dwarfing rootstocks is associated with the rapid re-establishment of water-related traits, and the effect of the canopy on the drought resistance in apple rootstocks merits much more attention.


Assuntos
Malus , Água , Água/metabolismo , Malus/genética , Malus/metabolismo , Folhas de Planta/metabolismo , Secas , Árvores/metabolismo , Aclimatação
11.
Food Res Int ; 173(Pt 2): 113448, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803774

RESUMO

In the last few years, there has been a growing interest in the more efficient utilization of agricultural and food by-products. Apples are among the most processed fruits in the world that generate huge quantities of processing waste biomasses. Therefore, the objective of this study was to improve the nutritional value of apple pomaces with γ-linolenic acid (GLA) and carotenoid pigments by solid-state fermentation (SSF) using two Zygomycetes fungi (Actinomucor elegans and Umbelopsis isabellina). The impact of fermentation periods on the polyphenol content and antioxidant capacity of the bioprocessed apple pomace was also investigated. The accumulated lipids were composed primarily of neutral fractions (mostly triacylglycerols). SSF with U. isabellina yielded a 12.72% higher GLA content than with A. elegans (3.85 g GLA/kg DW of pomace). Contrary to the lipogenic capacity, A. elegans showed higher carotenoids and phenolic antioxidants productivity than U. isabellina. The maximum concentrations for ß-carotene (433.11 µg/g DW of pomace-SSF with A. elegans and 237.68 µg/g DW of pomace-SSF with U. isabellina), lutein (374.48 µg/g DW- A. elegans and 179.04 µg/g DW- U. isabellina) and zeaxanthin (247.35 µg/g DW- A. elegans and 120.41 µg/g DW- U. isabellina) were registered on the 12th day of SSFs. In the case of SSF with A. elegans, the amount of total phenolics increased significantly (27%) by day 4 from the initial value (2670.38 µg of gallic acid equivalents/g DW) before slowly decreasing for the remaining period of the fungal growth. The experimental findings showed that a prolonged fermentation (between 8 and 12 days) should be applied to obtain value-added apple pomaces (rich in GLA and carotenoids) with potential pharmaceutical and functional food applications. Moreover, the SSF processes of simultaneous bioaccumulation of valuable fatty acids, carotenoids and phenolic antioxidants proposed in the present study may open up new challenges for biotechnological production of industrially important biomolecules using abundant and unexploited apple pomaces.


Assuntos
Antioxidantes , Malus , Antioxidantes/metabolismo , Malus/metabolismo , Ácido gama-Linolênico , Fermentação , Biofortificação , Carotenoides , Fenóis
12.
Plant Biol (Stuttg) ; 25(6): 892-901, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37448174

RESUMO

As one of the major abiotic stresses restricting the development of global agriculture, saline-alkali stress causes osmotic stress, ion poisoning, ROS damage and high pH damage, which seriously restrict sustainable development of fruit industry. Therefore, it is essential to develop and cultivate saline-alkali-resistant apple rootstocks to improve the yield and quality of apples in China. Based on transcriptome data, MhANR (LOC114827797), which is significantly induced by saline-alkali stress, was cloned from Malus halliana. The physicochemical properties, evolutionary relationships and cis-acting elements were analysed. Subsequently, the tolerance of MhANR overexpression in Arabidopsis thaliana, tobacco, and apple calli to saline-alkali stress was verified through genetic transformation. Transgenic plants contained less Chl a, Chl b and proline, SOD, POD and CAT activity, and higher relative electrical conductivity (REC) compared to WT plants under saline-alkali stress. In addition, expression of saline-alkali stress-related genes in overexpressed apple calli were also lower than in WT calli, including the antioxidant genes (MhSOD and MhCAT^), the Na+ transporter genes (MhCAX5, MhCAX5, MhSOS1, MhALT1), and the H+ -ATPase genes (MhAHA2 and MhAHA8), while expression of the K+ transporter genes (MhSKOR and MhNHX4) were higher. Expression of MhANR reduced tolerance of A. thaliana, tobacco, and apple calli to saline-alkali stress by regulating osmoregulatory substances, chlorophyll content, antioxidant enzyme activity, and expression of saline-alkali stress-related genes. This research provides a theoretical basis for cultivating apple rootstocks with effective saline-alkali stress tolerance.


Assuntos
Arabidopsis , Malus , Malus/metabolismo , Antioxidantes/metabolismo , Álcalis/toxicidade , Álcalis/metabolismo , Estresse Fisiológico/genética , Clorofila/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Sci Rep ; 13(1): 11583, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463950

RESUMO

In grafted apple, rootstock-derived signals influence scion cold tolerance by initiating physiological changes to survive over the winter. To understand the underlying molecular interactions between scion and rootstock responsive to cold, we developed transcriptomics and metabolomics data in the stems of two scion/rootstock combinations, 'Gala'/'G202' (cold resistant rootstock) and 'Gala'/'M9' (cold susceptible rootstock). Outer layers of scion and rootstock stem, including vascular tissues, were collected from the field-grown grafted apple during the winter. The clustering of differentially expressed genes (DEGs) and gene ontology enrichment indicated distinct expression dynamics in the two graft combinations, which supports the dependency of scion cold tolerance on the rootstock genotypes. We identified 544 potentially mobile mRNAs of DEGs showing highly-correlated seasonal dynamics between scion and rootstock. The mobility of a subset of 544 mRNAs was validated by translocated genome-wide variants and the measurements of selected RNA mobility in tobacco and Arabidopsis. We detected orthologous genes of potentially mobile mRNAs in Arabidopsis thaliana, which belong to cold regulatory networks with RNA mobility. Together, our study provides a comprehensive insight into gene interactions and signal exchange between scion and rootstock responsive to cold. This will serve for future research to enhance cold tolerance of grafted tree crops.


Assuntos
Malus , Malus/genética , Malus/metabolismo , RNA/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Genótipo
14.
Food Funct ; 14(14): 6678-6689, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37403576

RESUMO

The intestine and its flora have established a strong link with each other and co-evolved to become a micro-ecological system that plays an important role in human health. Plant polyphenols have attracted a great deal of attention as potential interventions to regulate the intestinal microecology. In this study, we investigated the effects of apple peel polyphenol (APP) on the intestinal ecology by establishing an intestinal ecological dysregulation model using lincomycin hydrochloride-induced Balb/c mice. The results showed that APP enhanced the mechanical barrier function of mice by upregulating the expression of the tight junction proteins at the transcriptional and translational levels. In terms of the immune barrier, APP downregulated the protein and mRNA expression of TLR4 and NF-κB. As for the biological barrier, APP promoted the growth of beneficial bacteria as well as increasing the diversity of intestinal flora. In addition, APP treatment significantly increased the contents of short-chain fatty acids in mice. In conclusion, APP can alleviate intestinal inflammation and epithelial damage as well as inducing potentially beneficial changes in the intestinal microbiota, which helps to reveal the potential mechanisms of host-microbial interactions and polyphenol regulation of intestinal ecology.


Assuntos
Microbioma Gastrointestinal , Malus , Humanos , Camundongos , Animais , NF-kappa B/genética , Antibacterianos/farmacologia , Malus/metabolismo , Receptor 4 Toll-Like/genética , Proteínas de Junções Íntimas/metabolismo , Polifenóis/farmacologia , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Disbiose/genética
15.
Plant J ; 116(1): 69-86, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340905

RESUMO

Iron (Fe) deficiency significantly affects the growth and development, fruit yield and quality of apples. Apple roots respond to Fe deficiency stress by promoting H+ secretion, which acidifies the soil. In this study, the plasma membrane (PM) H+ -ATPase MxHA2 promoted H+ secretion and root acidification of apple rootstocks under Fe deficiency stress. H+ -ATPase MxHA2 is upregulated in Fe-efficient apple rootstock of Malus xiaojinensis at the transcription level. Fe deficiency also induced kinase MxMPK6-2, a positive regulator in Fe absorption that can interact with MxHA2. However, the mechanism involving these two factors under Fe deficiency stress is unclear. MxMPK6-2 overexpression in apple roots positively regulated PM H+ -ATPase activity, thus enhancing root acidification under Fe deficiency stress. Moreover, co-expression of MxMPK6-2 and MxHA2 in apple rootstocks further enhanced PM H+ -ATPase activity under Fe deficiency. MxMPK6-2 phosphorylated MxHA2 at the Ser909 site of C terminus, Thr320 and Thr412 sites of the Central loop region. Phosphorylation at the Ser909 and Thr320 promoted PM H+ -ATPase activity, while phosphorylation at Thr412 inhibited PM H+ -ATPase activity. MxMPK6-2 also phosphorylated the Fe deficiency-induced transcription factor MxbHLH104 at the Ser169 site, which then could bind to the promoter of MxHA2, thus enhancing MxHA2 upregulation. In conclusion, the MAP kinase MxMPK6-2-mediated phosphorylation directly and indirectly regulates PM H+ -ATPase MxHA2 activity at the protein post-translation and transcription levels, thus synergistically enhancing root acidification under Fe deficiency stress.


Assuntos
Malus , Malus/metabolismo , Fosforilação , Ferro/metabolismo , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373491

RESUMO

GDSL esterases/lipases are a subclass of lipolytic enzymes that play critical roles in plant growth and development, stress response, and pathogen defense. However, the GDSL esterase/lipase genes involved in the pathogen response of apple remain to be identified and characterized. Thus, in this study, we aimed to analyze the phenotypic difference between the resistant variety, Fuji, and susceptible variety, Gala, during infection with C. gloeosporioides, screen for anti-disease-associated proteins in Fuji leaves, and elucidate the underlying mechanisms. The results showed that GDSL esterase/lipase protein GELP1 contributed to C. gloeosporioides infection defense in apple. During C. gloeosporioides infection, GELP1 expression was significantly upregulated in Fuji. Fuji leaves exhibited a highly resistant phenotype compared with Gala leaves. The formation of infection hyphae of C. gloeosporioides was inhibited in Fuji. Moreover, recombinant His:GELP1 protein suppressed hyphal formation during infection in vitro. Transient expression in Nicotiana benthamiana showed that GELP1-eGFP localized to the endoplasmic reticulum and chloroplasts. GELP1 overexpression in GL-3 plants increased resistance to C. gloeosporioides. MdWRKY15 expression was upregulated in the transgenic lines. Notably, GELP1 transcript levels were elevated in GL-3 after salicylic acid treatment. These results suggest that GELP1 increases apple resistance to C. gloeosporioides by indirectly regulating salicylic acid biosynthesis.


Assuntos
Colletotrichum , Malus , Esterases/genética , Esterases/metabolismo , Lipase/metabolismo , Malus/genética , Malus/metabolismo , Colletotrichum/genética , Folhas de Planta/metabolismo , Ácido Salicílico/farmacologia , Doenças das Plantas/genética
17.
Plant Cell ; 35(8): 2887-2909, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37132483

RESUMO

The phytohormone ethylene plays an important role in promoting the softening of climacteric fruits, such as apples (Malus domestica); however, important aspects of the underlying regulatory mechanisms are not well understood. In this study, we identified apple MITOGEN-ACTIVATED PROTEIN KINASE 3 (MdMAPK3) as an important positive regulator of ethylene-induced apple fruit softening during storage. Specifically, we show that MdMAPK3 interacts with and phosphorylates the transcription factor NAM-ATAF1/2-CUC2 72 (MdNAC72), which functions as a transcriptional repressor of the cell wall degradation-related gene POLYGALACTURONASE1 (MdPG1). The increase in MdMAPK3 kinase activity was induced by ethylene, which promoted the phosphorylation of MdNAC72 by MdMAPK3. Additionally, MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdNAC72, resulting in its degradation via the 26S proteasome pathway, which was enhanced by ethylene-induced phosphorylation of MdNAC72 by MdMAPK3. The degradation of MdNAC72 increased the expression of MdPG1, which in turn promoted apple fruit softening. Notably, using variants of MdNAC72 that were mutated at specific phosphorylation sites, we observed that the phosphorylation state of MdNAC72 affected apple fruit softening during storage. This study thus reveals that the ethylene-MdMAPK3-MdNAC72-MdPUB24 module is involved in ethylene-induced apple fruit softening, providing insights into climacteric fruit softening.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/metabolismo , Fosforilação , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Food Funct ; 14(10): 4836-4846, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37129213

RESUMO

Apples are known to exhibit various beneficial effects on human health. In the present study, we investigated the effect of continuous intake of apple juice (AJ) on constipation status. A single dose of loperamide in rats as the constipation model markedly decreased the weight and number of fecal pellets compared to saline-administered rats as a control. After the administration of AJ twice a day for seven days, recovery of defecation close to that of the control was observed in loperamide-treated rats. In addition, the total bile acid content in the feces increased from day 4 after the administration of AJ. Among hepatic and intestinal transporters and enzymes that regulate bile acids, the mRNA expression of the apical sodium-dependent bile acid transporter (Asbt, slc10a2) was decreased by AJ in rats. Furthermore, the Asbt-mediated bile acid transport activity in the rat ileum decreased after AJ administration. Moreover, in human colonic cancer-derived Caco-2 cells, AJ exposure for 24 and 48 h decreased the expressions of ASBT mRNA and protein, and the uptake activity of taurocholic acid in both 7- and 21-d cultures. Several components of AJ, such as procyanidins, decreased the expression of ASBT in Caco-2 cells. In conclusion, ASBT downregulation is a possible mechanism responsible for the constipation-relieving effect of apples, and procyanidins may play a role in downregulating ASBT, which leads to the beneficial effects of apples against constipation. Although it is generally agreed that the common dietary compositions play a role in constipation relief, the novel specific mechanism of apples found in this study would facilitate understanding food functions.


Assuntos
Malus , Proantocianidinas , Simportadores , Ratos , Humanos , Animais , Malus/metabolismo , Loperamida/efeitos adversos , Proantocianidinas/farmacologia , Células CACO-2 , Simportadores/genética , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Íleo/metabolismo , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Int J Biol Macromol ; 242(Pt 2): 124790, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169049

RESUMO

Apple growth and yield are largely dependent on plant height and flowering characteristics. The BELL1-like homeobox (BLH) transcription factors regulate extensive plant biological processes. However, the BLH-mediated regulation of plant height and flowering in apple remains elusive. In the current study, 19 members of the MdBLH family were identified in the apple genome. Segmental duplication and purifying selection are the main reasons for the evolution of the MdBLH genes. A BLH1-like gene, MdBLH14, was isolated and functionally characterized. The MdBLH14 was preferentially expressed in flower buds, and downregulated during the floral induction period. The subcellular localization in tobacco leaves indicated that MdBLH14 is a nuclear protein. Overexpression of MdBLH14 in Arabidopsis led to a significant dwarfing and late-flowering phenotype by hindering active GA accumulation. Additionally, MdKNOX19, another member of the TALE superfamily, physically interacts with MdBLH14 and synergistically inhibits the expression of MdGA20ox3. This is the first report on the function of the MdBLH14 from apple, and its mechanism involving plant flower induction and growth. The data presented here provide a theoretical basis for genetically breeding new apple varieties.


Assuntos
Arabidopsis , Malus , Malus/genética , Malus/metabolismo , Genes Homeobox , Melhoramento Vegetal , Flores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Phytomedicine ; 115: 154820, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094426

RESUMO

BACKGROUND: Diabetes is a kind of metabolic syndrome (MetS) that seriously threatens human health globally. The leaf of star apple (Chrysophyllum cainito L.) is an incompletely explored folk medicine on diabetes. And, the effects and mechanisms on diabetes complicated glycolipid metabolism disorders are unknown till now. PURPOSE: This study aimed to investigate the constituents of star apple leaf polyphenol enriched-fraction (SAP), and elucidate their treatment effects and mechanism on diabetes and accompanied other MetS. METHODS: The components of SAP were tentatively identified by HPLC-Q-TOF-MS/MS. The antioxidant activity was determined by the scavenging of free radicals and hypoglycemic activities by inhibition of α-glucosidase in vitro. HepG2 cells were used for evaluating the alleviation effects of SAP on lipid accumulation. Streptozotocin and high-fat diet induced diabetic mice were grouped to evaluate the effects of different dosages of SAP. 16S rRNA was conducted to analysis gut microbiome-mediated glucose and lipid metabolism mechanism. RESULTS: It showed that myricitrin was one of the main active constituents of SAP. SAP not only showed low IC50 on -glucosidase (24.427± 0.626 µg/mL), OH·(3.680± 0.054 µg/mL) and ABTS· (9.155±0.234 µg/mL), but significantly induced the lipid accumulation in HepG2 cells (p < 0.05). SAP at 200 mg/kg·day significantly decreased the blood glucose, insulin and oral glucose tolerance test value (p < 0.05). The insulin resistance indexes and oxidative stress were alleviated after administration. SAP not only attenuated hepatic lipid deposition, but also reversed the hepatic glycogen storage. 16S rRNA sequencing results revealed that the interaction between SAP and gut microbiota led to the positive regulation of beneficial bacteria including Akkermansia, Unspecified S24_7, Alistipes and Unspecified_Ruminococcaceae, which might be one of the mechanisms of SAP on MetS. CONCLUSION: For the first time, this study explored the regulation effect of star apple leaf polyphenols on the hepatic glycolipid metabolism and studied the underlying mechanism from the view of gut microbiota. These findings indicated that SAP possesses great potential to serve as a complementary medicine for diabetes and associated MetS. It provided scientific evidence for folk complementary medicine on the treatment of diabetes-complicated multiple metabolic disorders.


Assuntos
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Malus , Síndrome Metabólica , Camundongos , Humanos , Animais , Síndrome Metabólica/tratamento farmacológico , Glucose/farmacologia , RNA Ribossômico 16S/genética , Malus/genética , Malus/metabolismo , Diabetes Mellitus Experimental/metabolismo , Metabolismo dos Lipídeos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Espectrometria de Massas em Tandem , Glicolipídeos , Folhas de Planta , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA