Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 48, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639722

RESUMO

N-glycosylation is implicated in cancers and aberrant N-glycosylation is recognized as a hallmark of cancer. Here, we mapped and compared the site-specific N-glycoproteomes of colon cancer HCT116 cells and isogenic non-tumorigenic DNMT1/3b double knockout (DKO1) cells using Fbs1-GYR N-glycopeptide enrichment technology and trapped ion mobility spectrometry. Many significant changes in site-specific N-glycosylation were revealed, providing a molecular basis for further elucidation of the role of N-glycosylation in protein function. HCT116 cells display hypersialylation especially in cell surface membrane proteins. Both HCT116 and DKO1 show an abundance of paucimannose and 80% of paucimannose-rich proteins are annotated to reside in exosomes. The most striking N-glycosylation alteration was the degree of mannose-6-phosphate (M6P) modification. N-glycoproteomic analyses revealed that HCT116 displays hyper-M6P modification, which was orthogonally validated by M6P immunodetection. Significant observed differences in N-glycosylation patterns of the major M6P receptor, CI-MPR in HCT116 and DKO1 may contribute to the hyper-M6P phenotype of HCT116 cells. This comparative site-specific N-glycoproteome analysis provides a pool of potential N-glycosylation-related cancer biomarkers, but also gives insights into the M6P pathway in cancer.


Assuntos
Manosefosfatos , Neoplasias , Humanos , Glicosilação , Manosefosfatos/química , Manosefosfatos/metabolismo , Neoplasias/genética
2.
Chembiochem ; 22(2): 434-440, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32864819

RESUMO

Mannose-6-phosphate (M6P) is recognized by the mannose-6-phosphate receptor and plays an important role in the transport of cargo to the endosomes, making it an attractive tool to improve endosomal trafficking of vaccines. We describe herein the assembly of peptide antigen conjugates carrying clusters of mannose-6-C-phosphonates (M6Po). The M6Po's are stable M6P mimics that are resistant to cleavage of the phosphate group by endogenous phosphatases. Two different strategies for the incorporation of the M6Po clusters in the conjugate have been developed: the first relies on a "post-assembly" click approach employing an M6Po bearing an alkyne functionality; the second hinges on an M6Po C-glycoside amino acid building block that can be used in solid-phase peptide synthesis. The generated conjugates were further equipped with a TLR7 ligand to stimulate dendritic cell (DC) maturation. While antigen presentation is hindered by the presence of the M6Po clusters, the incorporation of the M6Po clusters leads to increased activation of DCs, thus demonstrating their potential in improving vaccine adjuvanticity by intraendosomally active TLR ligands.


Assuntos
Antígenos/metabolismo , Manosefosfatos/metabolismo , Peptídeos/metabolismo , Receptores Toll-Like/metabolismo , Antígenos/química , Humanos , Ligantes , Manosefosfatos/química , Estrutura Molecular , Peptídeos/química , Receptores Toll-Like/química
3.
Protein Expr Purif ; 170: 105589, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32027983

RESUMO

The cation-independent mannose-6-phosphate receptor (CI-M6PR, aka insulin-like growth factor II receptor or IGFIIR) is a membrane protein that plays a central role in the trafficking of lysosomal acid hydrolases into lysosomes via mannose-6-phosphate (M6P) binding domains. In order to maintain cellular metabolic/catabolic homeostasis, newly synthesized lysosomal acid hydrolases are required to bind to M6PR for transit. Acid hydrolases secreted by cells can also be internalized via M6PR residing on the cell membrane and are transported to the lysosomes, a feature that enables enzyme replacement therapy for the treatment of several lysosomal storage disorders. Therefore, a thorough characterization of this receptor is critical to the development of lysosomal enzyme-based therapeutics that utilize M6PR for drug delivery to the lysosome. However, the extracellular domain (ECD) of M6PR is highly complex, containing 15-mannose receptor homology (MRH) domains. In addition, homodimerization of the receptor can occur at the membrane, making its characterization challenging. In this study, a novel human M6PR (hM6PR)-overexpressing cell line originally established for hM6PR cellular uptake assay was utilized for production of hM6PR-ECD, and a novel small molecule biomimetic (aminophenyl-M6P) affinity resin was developed for the purification of M6PR-ECD. The affinity-purified hM6PR-ECD was monomeric, contained 14 intact MRH domains (1-14) and a partial MRH domain 15, and was successfully employed in ELISA-based and surface plasmon resonance-based binding assays to demonstrate its ligand-binding functionality, making it suitable for the evaluation of biotherapeutics that utilize M6PR for cellular internalization.


Assuntos
Aminofenóis/química , Materiais Biomiméticos/química , Membrana Celular/enzimologia , Manosefosfatos/química , Receptor IGF Tipo 2/isolamento & purificação , Sequência de Aminoácidos , Aminofenóis/metabolismo , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Cromatografia de Afinidade , Ensaios Enzimáticos , Ensaio de Imunoadsorção Enzimática , Fibroblastos/química , Fibroblastos/enzimologia , Expressão Gênica , Humanos , Cinética , Manosefosfatos/metabolismo , Domínios Proteicos , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície
4.
Anal Chem ; 91(18): 11589-11597, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31398006

RESUMO

Mannose-6-phosphate (M6P) glycosylation is an important post-translational modification (PTM) and plays a crucial role in transferring lysosomal hydrolases to lysosome, and is involved in several other biological processes. Aberrant M6P modifications have been implicated in lysosomal storage diseases and numerous other disorders including Alzheimer's disease and cancer. Research on profiling of intact M6P glycopeptides remains challenging due to its extremely low stoichiometry. Here we propose a dual-mode affinity approach to enrich M6P glycopeptides by dual-functional titanium(IV) immobilized metal affinity chromatography [Ti(IV)-IMAC] materials. In combination with state-of-the-art mass spectrometry and database search engine, we profiled 237 intact M6P glycopeptides corresponding to 81 M6P glycoproteins in five types of tissues in mouse, representing the first large-scale profiling of M6P glycosylation in mouse samples. The analysis of M6P glycoforms revealed the predominant glycan substrates of this PTM. Gene ontology analysis showed that overrepresented M6P glycoproteins were lysosomal-associated proteins. However, there were still substantial M6P glycoproteins that possessed different subcellular locations and molecular functions. Deep mining of their roles implicated in lysosomal and nonlysosomal function can provide new insights into functional roles of this important yet poorly studied modification.


Assuntos
Glicopeptídeos/análise , Glicoproteínas/análise , Manosefosfatos/química , Titânio/química , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade/métodos , Ontologia Genética , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Camundongos , Processamento de Proteína Pós-Traducional , Software , Espectrometria de Massas em Tandem
5.
Int J Mol Sci ; 20(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181759

RESUMO

The aim of the present work is the development of highly efficient targeting molecules to specifically address mesoporous silica nanoparticles (MSNs) designed for the photodynamic therapy (PDT) of prostate cancer. We chose the strategy to develop a novel compound that allows the improvement of the targeting of the cation-independent mannose 6-phosphate receptor, which is overexpressed in prostate cancer. This original sugar, a dimannoside-carboxylate (M6C-Man) grafted on the surface of MSN for PDT applications, leads to a higher endocytosis and thus increases the efficacy of MSNs.


Assuntos
Fotoquimioterapia/métodos , Neoplasias da Próstata/metabolismo , Receptor IGF Tipo 2/metabolismo , Linhagem Celular Tumoral , Endocitose , Humanos , Masculino , Manosefosfatos/administração & dosagem , Manosefosfatos/química , Manosefosfatos/farmacologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/metabolismo , Dióxido de Silício/química
6.
J Drug Target ; 26(3): 242-251, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28795851

RESUMO

Liposomes are versatile platforms to carry anticancer drugs in targeted drug delivery; they can be surface modified by different strategies and, when coupled with targeting ligands, are able to increase cellular internalisation and organelle-specific drug delivery. An interesting strategy of antitumoral therapy could involve the use of lysosomotropic ligand-targeted liposomes loaded with molecules, which can induce lysosomal membrane permeabilization (LMP), leakage of cathepsins into the cytoplasm and subsequent apoptosis. We have previously demonstrated the ability of liposomes functionalised with a mannose-6-phosphate to reach lysosomes; in this research we compare the behaviour of M6P-modified and non-functionalised liposomes in MCF7 tumour cell and in HDF normal cells. With this aim, we first demonstrated by Western blotting the overexpression of mannose-6-phosphate/insulin-like growth factor (M6P/IGF-II) receptor in MCF7. Then, we prepared calcein-loaded liposomes and we revealed the increased uptake of M6P-functionalised liposomes in MCF7 cells respect to HDF cells by flow cytometry analysis. Finally, we loaded functionalised and not functionalised liposomes with N-hexanoyl-d-erythro-sphingosine (C6Cer), able to initiate LMP-induced apoptosis; after having studied the stability of both vesicles in the presence of serum by Dynamic Light Scattering and Spectrophotometric turbidity measurements, we showed that ceramide-loaded M6P-liposomes significantly increased apoptosis in MCF7 with respect to HDF cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Lisossomos/química , Manosefosfatos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Ceramidas/administração & dosagem , Ceramidas/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Manosefosfatos/administração & dosagem , Manosefosfatos/biossíntese , Micelas , Receptor IGF Tipo 2/biossíntese
7.
Oncotarget ; 7(38): 62386-62410, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27694692

RESUMO

The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) binds M6P-capped ligands and IGF-II at different binding sites within the ectodomain and mediates ligand internalization and trafficking to the lysosome. Multivalent M6P-based ligands can cross-bridge the M6P/IGF2R, which increases the rate of receptor internalization, permitting IGF-II binding as a passenger ligand and subsequent trafficking to the lysosome, where the IGF-II is degraded. This unique feature of the receptor may be exploited to design novel therapeutic agents against IGF-II-dependent cancers that will lead to decreased bioavailable IGF-II within the tumor microenvironment. We have designed a panel of M6P-based ligands that bind to the M6P/IGF2R with high affinity in a bivalent manner and cause decreased cell viability. We present evidence that our ligands bind through the M6P-binding sites of the receptor and facilitate internalization and degradation of IGF-II from conditioned medium to mediate this cellular response. To our knowledge, this is the first panel of synthetic bivalent ligands for the M6P/IGF2R that can take advantage of the ligand-receptor interactions of the M6P/IGF2R to provide proof-of-principle evidence for the feasibility of novel chemotherapeutic agents that decrease IGF-II-dependent growth of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Fator de Crescimento Insulin-Like II/metabolismo , Manosefosfatos/farmacologia , Neoplasias/tratamento farmacológico , Receptor IGF Tipo 2/metabolismo , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ligantes , Lisossomos/metabolismo , Manosefosfatos/química , Camundongos , Estrutura Molecular , Neoplasias/patologia , Multimerização Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos
8.
J Am Chem Soc ; 138(38): 12472-85, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27500601

RESUMO

Mannose-6-phosphate (M6P)-terminated oligosaccharides are important signals for M6P-receptor-mediated targeting of newly synthesized hydrolases from Golgi to lysosomes, but the precise structural requirement for the M6P ligand-receptor recognition has not been fully understood due to the difficulties in obtaining homogeneous M6P-containing glycoproteins. We describe here a chemoenzymatic synthesis of homogeneous phosphoglycoproteins carrying natural M6P-containing N-glycans. The method includes the chemical synthesis of glycan oxazolines with varied number and location of the M6P moieties and their transfer to the GlcNAc-protein by an endoglycosynthase to provide homogeneous M6P-containing glycoproteins. Simultaneous attachment of two M6P-oligosaccahrides to a cyclic polypeptide was also accomplished to yield bivalent M6P-glycopeptides. Surface plasmon resonance binding studies reveal that a single M6P moiety located at the low α-1,3-branch of the oligomannose context is sufficient for a high-affinity binding to receptor CI-MPR, while the presence of a M6P moiety at the α-1,6-branch is dispensable. In addition, a binding study with the bivalent cyclic and linear polypeptides reveals that a close proximity of two M6P-oligosaccharide ligands is critical to achieve high affinity for the CI-MPR receptor. Taken together, the present study indicates that the location and valency of the M6P moieties and the right oligosaccharide context are all critical for high-affinity binding with the major M6P receptor. The chemoenzymatic method described here provides a new avenue for glycosylation remodeling of recombinant enzymes to enhance the uptake and delivery of enzymes to lysosomes in enzyme replacement therapy for the treatment of lysosomal storage diseases.


Assuntos
Glicoproteínas/síntese química , Manosefosfatos/química , Receptor IGF Tipo 2/metabolismo , Ribonucleases/metabolismo , Animais , Configuração de Carboidratos , Bovinos , Glicoproteínas/química , Glicoproteínas/metabolismo , Mutação , Fosforilação , Ligação Proteica , Receptor IGF Tipo 2/química , Ribonucleases/química
9.
Bioorg Med Chem Lett ; 26(2): 636-639, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631320

RESUMO

Two novel compounds with mannose-derived structure, bearing a tetrazole (compound 3) and a sulfone group (compound 4) in terminal position, have been prepared from methyl α-d-mannopyranoside in reduced number of steps. The angiogenic activity of 3 and 4 has been screened using the chick chorioallantoic membrane (CAM) method. Tetrazole 3 has been identified to possess a promising bioactivity, being identified as angiogenesis inhibitor, with 68% of neovascular vessels when compared to control (PBS).


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Manosefosfatos/química , Manosefosfatos/farmacologia , Tetrazóis/química , Tetrazóis/farmacologia , Animais , Galinhas , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Halogenação , Modelos Moleculares , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia
10.
Immunol Lett ; 165(2): 90-101, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25929803

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a progressive decline in lung function which can be attributed to excessive scarring, inflammation and airway remodelling. Mannose-6-phosphate (M6P) is a strong inhibitor of fibrosis and its administration has been associated with beneficial effects in tendon repair surgery as well as nerve repair after injury. Given this promising therapeutic approach we developed an improved analogue of M6P, namely PXS64, and explored its anti-fibrotic effects in vitro. Normal human lung fibroblasts (NHLF) and human lung fibroblast 19 cells (HF19) were exposed to active recombinant human TGF-ß1 to induce increases in fibrotic markers. rhTGF-ß1 increased constitutive protein levels of fibronectin and collagen in the NHLF cells, whereas HF19 cells showed increased levels of fibronectin, collagen as well as αSMA (alpha smooth muscle actin). PXS64 demonstrated a robust inhibitory effect on all proteins analysed. IPF patient fibroblasts treated with PXS64 presented an improved phenotype in terms of their morphological appearance, as well as a decrease in fibrotic markers (collagen, CTGF, TGF-ß3, tenascin C, αSMA and THBS1). To explore the cell signalling pathways involved in the anti-fibrotic effects of PXS64, proteomics analysis with iTRAQ labelling was performed and the data demonstrated a specific antagonistic effect on the TGF-ß1 pathway. This study shows that PXS64 effectively inhibits the production of extracellular matrix, as well as myofibroblast differentiation during fibrosis. These results suggest that PXS64 influences tissue remodelling by inhibiting TGF-ß1 signalling in NHLF and HF19 cell lines, as well as in IPF patient fibroblasts. Thus PXS64 is a potential candidate for preclinical application in pulmonary fibrosis.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Manosefosfatos/uso terapêutico , Manosídeos/uso terapêutico , Organofosfonatos/uso terapêutico , Pró-Fármacos/farmacologia , Actinas/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Disponibilidade Biológica , Biomarcadores/metabolismo , Linhagem Celular , Colágeno/metabolismo , Fibroblastos/imunologia , Fibronectinas/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Manosefosfatos/química , Manosídeos/química , Camundongos , Camundongos Knockout , Organofosfonatos/química , Pró-Fármacos/síntese química , Proteômica , Transdução de Sinais , Tenascina/metabolismo , Fator de Crescimento Transformador beta1/imunologia
11.
Angew Chem Int Ed Engl ; 54(20): 5952-6, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25802144

RESUMO

The development of personalized and non-invasive cancer therapies based on new targets combined with nanodevices is a major challenge in nanomedicine. In this work, the over-expression of a membrane lectin, the cation-independent mannose 6-phosphate receptor (M6PR), was specifically demonstrated in prostate cancer cell lines and tissues. To efficiently target this lectin a mannose-6-phosphate analogue was synthesized in six steps and grafted onto the surface of functionalized mesoporous silica nanoparticles (MSNs). These MSNs were used for in vitro and ex vivo photodynamic therapy to treat prostate cancer cell lines and primary cell cultures prepared from patient biopsies. The results demonstrated the efficiency of M6PR targeting for prostate cancer theranostic.


Assuntos
Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Receptor IGF Tipo 2/antagonistas & inibidores , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Humanos , Masculino , Manosefosfatos/síntese química , Manosefosfatos/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula , Fotoquimioterapia , Porosidade , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptor IGF Tipo 2/genética , Dióxido de Silício/química , Propriedades de Superfície
12.
Angew Chem Int Ed Engl ; 53(41): 10975-8, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25163608

RESUMO

The ubiquitously expressed mannose-6-phosphate receptors (MPRs) are a promising class of receptors for targeted compound delivery into the endolysosomal compartments of a variety of cell types. The development of a synthetic, multivalent, mannose-6-phosphate (M6P) glycopeptide-based MPR ligand is described. The conjugation of this ligand to fluorescent DCG-04, an activity-based probe for cysteine cathepsins, enabled fluorescent readout of its receptor-targeting properties. The resulting M6P-cluster-BODIPY-DCG-04 probe was shown to efficiently label cathepsins in cell lysates as well as in live cells. Furthermore, the introduction of the 6-O-phosphates leads to a completely altered uptake profile in COS and dendritic cells compared to a mannose-containing ligand. Competition with mannose-6-phosphate abolished all uptake of the probe in COS cells, and we conclude that the mannose-6-phosphate cluster targets the MPR and ensures the targeted delivery of cargo bound to the cluster into the endolysosomal pathway.


Assuntos
Catepsinas/metabolismo , Endossomos/metabolismo , Receptor IGF Tipo 2/química , Animais , Compostos de Boro/química , Células COS , Catepsinas/química , Chlorocebus aethiops , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Corantes Fluorescentes/química , Glicopeptídeos/síntese química , Glicopeptídeos/química , Leucina/análogos & derivados , Leucina/química , Ligantes , Manosefosfatos/química , Camundongos , Ligação Proteica
13.
J Biol Chem ; 289(18): 12232-44, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24573685

RESUMO

The overproduction of polysaccharide alginate is responsible for the formation of mucus in the lungs of cystic fibrosis patients. Histidine kinase KinB of the KinB-AlgB two-component system in Pseudomonas aeruginosa acts as a negative regulator of alginate biosynthesis. The modular architecture of KinB is similar to other histidine kinases. However, its periplasmic signal sensor domain is unique and is found only in the Pseudomonas genus. Here, we present the first crystal structures of the KinB sensor domain. The domain is a dimer in solution, and in the crystal it shows an atypical dimer of a helix-swapped four-helix bundle. A positively charged cavity is formed on the dimer interface and involves several strictly conserved residues, including Arg-60. A phosphate anion is bound asymmetrically in one of the structures. In silico docking identified several monophosphorylated sugars, including ß-D-fructose 6-phosphate and ß-D-mannose 6-phosphate, a precursor and an intermediate of alginate synthesis, respectively, as potential KinB ligands. Ligand binding was confirmed experimentally. Conformational transition from a symmetric to an asymmetric structure and decreasing dimer stability caused by ligand binding may be a part of the signal transduction mechanism of the KinB-AlgB two-component system.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/metabolismo , Alginatos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Dicroísmo Circular , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Frutosefosfatos/química , Frutosefosfatos/metabolismo , Ácido Glucurônico/biossíntese , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Histidina Quinase , Ligantes , Manosefosfatos/química , Manosefosfatos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
14.
Molecules ; 19(1): 1120-49, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24445341

RESUMO

Herein, the preparation of neoglycoconjugates bearing mannose-6-phosphate analogues is described by: (a) synthesis of a cyclic sulfate precursor to access the carbohydrate head-group by nucleophilic displacement with an appropriate nucleophile; (b) introduction of spacers on the mannose-6-phosphate analogues via Huisgen's cycloaddition, the Julia reaction, or the thiol-ene reaction under ultrasound activation. With the resulting compounds in hand, gold nanoparticles could be functionalized with various carbohydrate derivatives (glycoconjugates) and then tested for angiogenic activity. It was observed that the length and flexibility of the spacer separating the sugar analogue from the nanoparticle have little influence on the biological response. One particular nanoparticle system substantially inhibits blood vessel growth in contrast to activation by the corresponding monomeric glycoconjugate, thereby demonstrating the importance of multivalency in angiogenic activity.


Assuntos
Indutores da Angiogênese/síntese química , Ouro/química , Manosefosfatos/química , Nanopartículas Metálicas/química , Indutores da Angiogênese/farmacologia , Animais , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Química Click , Reação de Cicloadição , Halogenação , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho da Partícula
16.
J Biol Chem ; 286(28): 24855-64, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21613225

RESUMO

In addition to soluble acid hydrolases, many nonlysosomal proteins have been shown to bear mannose 6-phosphate (Man-6-P) residues. Quantification of the extent of mannose phosphorylation and the relevance to physiological function, however, remain poorly defined. In this study, we investigated the mannose phosphorylation status of leukemia inhibitory factor (LIF), a previously identified high affinity ligand for the cation-independent mannose 6-phosphate receptor (CI-MPR), and we analyzed the effects of this modification on its secretion and uptake in cultured cells. When media from LIF-overexpressing cells were fractionated using a CI-MPR affinity column, 35-45% of the total LIF molecules were bound and specifically eluted with free Man-6-P thus confirming LIF as a bona fide Man-6-P-modified protein. Surprisingly, mass spectrometric analysis of LIF glycopeptides enriched on the CI-MPR column revealed that all six N-glycan sites could be Man-6-P-modified. The relative utilization of these sites, however, was not uniform. Analysis of glycan-deleted LIF mutants demonstrated that loss of glycans bearing the majority of Man-6-P residues leads to higher steady-state levels of secreted LIF. Using mouse embryonic stem cells, we showed that the mannose phosphorylation of LIF mediates its internalization thereby reducing extracellular levels and stimulating embryonic stem cell differentiation. Finally, immunofluorescence experiments indicate that LIF is targeted directly to lysosomes following its biosynthesis, providing another mechanism whereby mannose phosphorylation serves to control extracellular levels of LIF. Failure to modify LIF in the context of mucolipidosis II and its subsequent accumulation in the extracellular space may have important implications for disease pathogenesis.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Fator Inibidor de Leucemia/metabolismo , Lisossomos/metabolismo , Manose/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Células-Tronco Embrionárias/citologia , Glicosilação , Células HeLa , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/isolamento & purificação , Lisossomos/genética , Manose/genética , Manosefosfatos/química , Espectrometria de Massas , Camundongos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Mutação , Transporte Proteico/fisiologia
18.
Bioconjug Chem ; 21(11): 2119-27, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20964335

RESUMO

Previously, we successfully conjugated galactosylated poly(ethylene glycol) (Gal-PEG) to oligonucleotides (ODNs) via an acid labile ester linker (Zhu et al., Bioconjugate Chem. 2008, 19, 290-8). In this study, sense strands of siRNA were conjugated to Gal-PEG and mannose 6-phosphate poly(ethylene glycol) (M6P-PEG) for targeted delivery of siRNAs to hepatocytes and hepatic stellate cells (HSCs), respectively. These siRNA conjugates were purified by ion exchange chromatography and verified by gel retardation assay. To evaluate their RNAi functions, the validated siRNA duplexes targeting firefly luciferase and transforming growth factor beta 1 (TGF-ß1) mRNA were conjugated to Gal-PEG and M6P-PEG, and their gene silencing efficiencies were determined after transfection into HepG2 and HSC-T6 cells. The disulfide bond between PEG and siRNA was cleaved by dithiothreitol, leading to the release of intact siRNA. Both Gal-PEG-siRNA and M6P-PEG-siRNA conjugates could silence luciferase gene expression by about 40% without any transfection reagents, while the gene silencing effects reached more than 98% with the help of cationic liposomes at the same dose. Conjugation of TGF-ß1 siRNA with Gal-PEG and M6P-PEG could silence endogenous TGF-ß1 gene expression as well. In conclusion, these siRNA conjugates have the potential for targeted delivery of siRNAs to hepatocytes and hepatic stellate cells for efficient gene silencing in vivo.


Assuntos
Técnicas de Transferência de Genes , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Linhagem Celular Tumoral , Galactose/química , Células Estreladas do Fígado/enzimologia , Hepatócitos/enzimologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Manosefosfatos/química , Estrutura Molecular , Polietilenoglicóis/química , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
19.
J Biol Chem ; 285(31): 23936-44, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20489197

RESUMO

GlcNAc-1-phosphotransferase is a Golgi-resident 540-kDa complex of three subunits, alpha(2)beta(2)gamma(2), that catalyze the first step in the formation of the mannose 6-phosphate (M6P) recognition marker on lysosomal enzymes. Anti-M6P antibody analysis shows that human primary macrophages fail to generate M6P residues. Here we have explored the sorting and intracellular targeting of cathepsin D as a model, and the expression of the GlcNAc-1-phosphotransferase complex in macrophages. Newly synthesized cathepsin D is transported to lysosomes in an M6P-independent manner in association with membranes whereas the majority is secreted. Realtime PCR analysis revealed a 3-10-fold higher GlcNAc-1-phosphotransferase subunit mRNA levels in macrophages than in fibroblasts or HeLa cells. At the protein level, the gamma-subunit but not the beta-subunit was found to be proteolytically cleaved into three fragments which form irregular 97-kDa disulfide-linked oligomers in macrophages. Size exclusion chromatography showed that the gamma-subunit fragments lost the capability to assemble with other GlcNAc-1-phosphotransferase subunits to higher molecular complexes. These findings demonstrate that proteolytic processing of the gamma-subunit represents a novel mechanism to regulate GlcNAc-1-phosphotransferase activity and the subsequent sorting of lysosomal enzymes.


Assuntos
Lisossomos/enzimologia , Macrófagos/enzimologia , Manosefosfatos/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Animais , Transporte Biológico , Células COS , Catepsina D/química , Chlorocebus aethiops , Cromatografia/métodos , Células HeLa , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Modelos Biológicos , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia
20.
Expert Opin Drug Deliv ; 6(5): 531-41, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19413460

RESUMO

Liver fibrosis and its end stage disease cirrhosis are a major cause of mortality and morbidity around the world. There is no effective pharmaceutical intervention for liver fibrosis at present. Many drugs that show potent antifibrotic activities in vitro often show only minor effects in vivo because of insufficient concentrations of drugs accumulating around the target cell and their adverse effects as a result of affecting other non-target cells. Hepatic stellate cells (HSC) play a critical role in the fibrogenesis of liver, so they are the target cells of antifibrotic therapy. Several kinds of targeted delivery system that could target the receptors expressed on HSC have been designed, and have shown an attractive targeted potential in vivo. After being carried by these delivery systems, many agents showed a powerful antifibrotic effect in animal models of liver fibrosis. These targeted delivery systems provide a new pathway for the therapy of liver fibrosis. The characteristics of theses targeted carriers are reviewed in this paper.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Dependovirus/metabolismo , Células Endoteliais/metabolismo , Terapia Genética/métodos , Células Estreladas do Fígado/imunologia , Humanos , Células de Kupffer/metabolismo , Cirrose Hepática/imunologia , Manosefosfatos/química , Manosefosfatos/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/agonistas , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Sinaptofisina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA