Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Sci Rep ; 14(1): 22159, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333557

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor, and the presence of glioma stem cells (GSCs) has been linked to its resistance to treatments and recurrence. Additionally, aberrant glycosylation has been implicated in the aggressiveness of cancers. However, the influence and underlying mechanism of N-glycosylation on the GSC phenotype and GBM malignancy remain elusive. Here, we performed an in-silico analysis approach on publicly available datasets to examine the function of N-glycosylation-related genes in GSCs and gliomas, accompanied by a qRT-PCR validation experiment. We found that high α-1,2-mannosidase MAN1C1 is associated with immunological functions and worse survival of glioma patients. Differential gene expression analysis and qRT-PCR validation revealed that MAN1C1 is highly expressed in GSCs. Furthermore, higher MAN1C1 expression predicts worse outcomes in glioma patients. Also, MAN1C1 expression is increased in the perinecrotic region of GBM and is associated with immunological and inflammatory functions, a hallmark of the GBM mesenchymal subtype. Further analysis confirmed that MAN1C1 expression is closely associated with infiltrating immune cells and disrupted immune response in the GBM microenvironment. These suggest that MAN1C1 is a potential biomarker for gliomas and may be important as an immunotherapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioma , Manosidases , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/imunologia , Prognóstico , Manosidases/metabolismo , Manosidases/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Glioma/imunologia , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/mortalidade , Masculino , Feminino , Glicosilação
2.
Int J Biol Macromol ; 278(Pt 2): 134858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163968

RESUMO

The iminosugar class of carbohydrate-active enzyme inhibitors has therapeutic applications in metabolic syndrome conditions, viral infections and cancer. Compared to chemical synthesis, microbial iminosugar production has benefits of cost, sustainability and optimization. In this study, the 1-deoxynojirimycin (DNJ) biosynthetic gene cluster from Bacillus velezensis MBLB0692, and its individual genes, were cloned into Corynebacterium glutamicum (Cg). Characterizations of the encoded aminotransferase GabT1, phosphatase Yktc1, and dehydrogenase GutB1, were performed with purified enzymes and whole cell biocatalysts bearing individual and clustered (TYB) genes. GabT1 showed a variable pattern in its half-reaction with a slow turnover. GutB1 was an alkaline dehydrogenase with a broad substrate specificity and no divalent ion dependency while the zinc-dependent phosphatase Yktc1 had substrate specificity that was both pH- and ion-dependent. The CgYktc1 and CgGutB1 whole cells were viable biocatalysts with wider ranges of substrates than their enzyme counterparts. The CgTYB cells produced mannosidase-inhibiting iminosugars corresponding to mannojirimycin dehydrate (162 m/z) and deoxymannojirimycin (164 m/z). Mannosidase inhibitors have been found to be effective in treating orphan diseases, cancer and viral infections, and their biosynthesis by recombinant C. glutamicum can be optimized for industrial production and novel drug development.


Assuntos
1-Desoxinojirimicina , Bacillus , Corynebacterium glutamicum , Família Multigênica , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/enzimologia , Bacillus/genética , Bacillus/enzimologia , Manosidases/genética , Manosidases/metabolismo , Manosidases/antagonistas & inibidores , Imino Açúcares/química , Especificidade por Substrato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Bioorg Chem ; 150: 107578, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955002

RESUMO

Development of novel anti-cancer therapeutics based on Golgi α-mannosidase II (GMII) inhibition is considerably impeded by an undesired co-inhibition of lysosomal α-mannosidase leading to severe side-effects. In this contribution, we describe a fully stereoselective synthesis of (5S)-5-[4-(halo)benzyl]swainsonines as highly potent and selective inhibitors of GMII. The synthesis starts from a previously reported aldehyde readily available from l-ribose, and the key features include an intramolecular reductive amination with substrate-controlled stereoselectivity and a late-stage derivatisation of the benzyl group via ipso-substitution. These novel swainsonine analogues were found to be nanomolar inhibitors of the Golgi-type α-mannosidase AMAN-2 (Ki = 23-75 nM) with excellent selectivity (selectivity index = 205-870) over the lysosomal-type Jack bean α-mannosidase. Finally, molecular docking and pKa calculations were performed to provide more insight into the structure of the inhibitor:enzyme complexes, and a pair interaction energy analysis (FMO-PIEDA) was carried out to rationalise the observed potency and selectivity of the inhibitors.


Assuntos
Inibidores Enzimáticos , Swainsonina , Humanos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Manosidases/antagonistas & inibidores , Manosidases/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Swainsonina/farmacologia , Swainsonina/síntese química , Swainsonina/química , Compostos de Benzil/química , Compostos de Benzil/farmacologia
4.
J Biol Chem ; 300(6): 107378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762179

RESUMO

The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.


Assuntos
Proteínas de Transporte de Cátions , Complexo de Golgi , Zinco , Humanos , Glicosilação , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Animais , Zinco/metabolismo , Camundongos , Complexo de Golgi/metabolismo , Manosidases/metabolismo , Manosidases/genética , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Transportador 8 de Zinco
5.
J Biomol Struct Dyn ; 42(5): 2714-2725, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37158092

RESUMO

The search for Golgi α-mannosidase II (GMII) potent and specific inhibitors has been a focus of many studies for the past three decades since this enzyme is a key target for cancer treatment. α-Mannosidases, such as those from Drosophila melanogaster or Jack bean, have been used as functional models of the human Golgi α-mannosidase II (hGMII) because mammalian mannosidases are difficult to purify and characterize experimentally. Meanwhile, computational studies have been seen as privileged tools able to explore assertive solutions to specific enzymes, providing molecular details of these macromolecules, their protonation states and their interactions. Thus, modelling techniques can successfully predict hGMII 3D structure with high confidence, speeding up the development of new hits. In this study, Drosophila melanogaster Golgi mannosidase II (dGMII) and a novel human model, developed in silico and equilibrated via molecular dynamics simulations, were both opposed for docking. Our findings highlight that the design of novel inhibitors should be carried out considering the human model's characteristics and the enzyme operating pH. A reliable model is evidenced, showing a good correlation between Ki/IC50 experimental data and theoretical ΔGbinding estimations in GMII, opening the possibility of optimizing the rational drug design of new derivatives.Communicated by Ramaswamy H. Sarma.


Assuntos
Drosophila melanogaster , Simulação de Dinâmica Molecular , Animais , Humanos , alfa-Manosidase/química , Drosophila melanogaster/metabolismo , Manosidases/química , Manosidases/metabolismo , Complexo de Golgi/metabolismo , Mamíferos/metabolismo
6.
J Integr Plant Biol ; 65(7): 1670-1686, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965189

RESUMO

The heavy metal cadmium (Cd) is detrimental to crop growth and threatens human health through the food chain. To cope with Cd toxicity, plants employ multiple strategies to decrease Cd uptake and its root-to-shoot translocation. However, genes that participate in the Cd-induced transcriptional regulatory network, including those encoding transcription factors, remain largely unidentified. In this study, we demonstrate that ENDO-BETA-MANNASE 7 (MAN7) is necessary for the response of Arabidopsis thaliana to toxic Cd levels. We show that MAN7 is responsible for mannase activity and modulates mannose content in the cell wall, which plays a role in Cd compartmentalization in the cell wall under Cd toxicity conditions. Additionally, the repression of root growth by Cd was partially reversed via exogenous application of mannose, suggesting that MAN7-mediated cell wall Cd redistribution depends on the mannose pathway. Notably, we identified a basic leucine zipper (bZIP) transcription factor, bZIP44, that acts upstream of MAN7 in response to Cd toxicity. Transient dual-luciferase assays indicated that bZIP44 directly binds to the MAN7 promoter region and activates its transcription. Loss of bZIP44 function was associated with greater sensitivity to Cd treatment and higher accumulation of the heavy metal in roots and shoots. Moreover, MAN7 overexpression relieved the inhibition of root elongation seen in the bzip44 mutant under Cd toxicity conditions. This study thus reveals a pathway showing that MAN7-associated Cd tolerance in Arabidopsis is controlled by bZIP44 upon Cd exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Manosidases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Manose , Manosidases/genética , Manosidases/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
7.
Biochem Biophys Res Commun ; 645: 61-70, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36680938

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignancy with high morbidity and mortality. Although circular RNAs (circRNAs) play important roles in various cancers including ESCC, the role of the circRNA mannosidase alpha class 1A member 2 (circMAN1A2) in ESCC has been rarely studied. This study aimed to explore the role of circMAN1A2 in ESCC. CircMAN1A2 expression in ESCC tissues and cells was evaluated, and the relationship between circMAN1A2 expression and prognosis in patients with ESCC was analyzed. C-C chemokine ligand 5 (CCL5) was found to be a downstream target of circMAN1A2 by analysing the Agilent Microarray. Next, we performed in vitro and in vivo xenotransplantation assays to explore the role of circMAN1A2 in ESCC. We observed that high circMAN1A2 expression is associated with poor prognosis in patients with ESCC. Suppression of circMAN1A2 expression inhibits the proliferation, migration, and invasiveness of ESCC via regulating CCL5. Our results suggest that circMAN1A2 can promote the progression of ESCC by regulating CCL5. Thus, circMAN1A2 might be a novel diagnostic biomarker of ESCC, and targeting circMAN1A2 using inhibitors could be a potential therapeutic strategy to treat ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Esofágicas/patologia , Ligantes , Manosidases/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
8.
Anticancer Drugs ; 34(1): 44-56, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066401

RESUMO

Papillary thyroid carcinoma (PTC) is a common malignancy in endocrine system globally. Accumulating articles have found that circular RNAs (circRNAs) were dysregulated, and they were involved in PTC development. The aim of this project was to explore the function and associated mechanism of circRNA mannosidase alpha class 1A member 2 (circMAN1A2) in PTC progression. The expression of RNA was determined by real-time quantitative PCR. Cell proliferation ability was analyzed by colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were assessed by wound healing assay and transwell invasion assay, respectively. Protein levels were determined by Western blot assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to confirm the interaction between microRNA-449a (miR-449a) and circMAN1A2 or metadherin (MTDH). Xenograft tumor model was utilized to explore the effect of circMAN1A2 silencing on tumor growth in vivo . CircMAN1A2 expression was elevated in PTC specimens and three PTC cell lines relative to adjacent normal specimens and Nthy-ori 3-1 cell line. CircMAN1A2 silencing inhibited the proliferation and motility of PTC cells. CircMAN1A2 acted as a molecular sponge of miR-449a, and circMAN1A2 knockdown suppressed PTC development partly through upregulating miR-449a. MiR-449a bound to the 3' untranslated region of MTDH, and miR-449a restrained PTC progression partly through down-regulating MTDH. CircMAN1A2 interference suppressed PTC progression in vivo . CircMAN1A2 contributed to the proliferation ability and motility of PTC cells through enhancing MTDH expression via sponging miR-449a.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/metabolismo , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regiões 3' não Traduzidas , Manosidases/genética , Manosidases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897761

RESUMO

Prostate cancer is the most common cancer in men, and it is primarily driven by androgen steroid hormones. The glycosylation enzyme EDEM3 is controlled by androgen signalling and is important for prostate cancer viability. EDEM3 is a mannosidase that trims mannose from mis-folded glycoproteins, tagging them for degradation through endoplasmic reticulum-associated degradation. Here, we find that EDEM3 is upregulated in prostate cancer, and this is linked to poorer disease-free survival. Depletion of EDEM3 from prostate cancer cells induces an ER stress transcriptomic signature, and EDEM3 overexpression is cyto-protective against ER stressors. EDEM3 expression also positively correlates with genes involved in the unfolded protein response in prostate cancer patients, and its expression can be induced through exposure to radiation. Importantly, the overexpression of EDEM3 promotes radio-resistance in prostate cancer cells and radio-resistance can be reduced through depletion of EDEM3. Our data thus implicate increased levels of EDEM3 with a role in prostate cancer pathology and reveal a new therapeutic opportunity to sensitise prostate tumours to radiotherapy.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Neoplasias da Próstata , Androgênios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Masculino , Manosidases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , alfa-Manosidase/metabolismo
10.
Angew Chem Int Ed Engl ; 60(22): 12313-12318, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33728787

RESUMO

An engineered cyanovirin-N homologue that exhibits specificity for high mannose N-glycans has been constructed to aid type I α 1,2-mannosidase inhibitor discovery and development. Engineering the lectins C-terminus permitted facile functionalization with fluorophores via a sortase and click strategy. The resulting lectin constructs exhibit specificity for cells presenting high mannose N-glycans. Importantly, these lectin constructs can also be applied to specifically assess changes in cell surface glycosylation induced by type I mannosidase inhibitors. Testing the utility of these lectin constructs led to the discovery of type I mannosidase inhibitors with nanomolar potency. Cumulatively, these findings reveal the specificity and utility of the functionalized cyanovirin-N homologue constructs, and highlight their potential in analytical contexts that require high mannose-specific lectins.


Assuntos
Lectinas/química , Manosidases/antagonistas & inibidores , Alcaloides/química , Alcaloides/metabolismo , Motivos de Aminoácidos , Aminoaciltransferases/química , Proteínas de Bactérias/química , Linhagem Celular , Cisteína Endopeptidases/química , Desenho de Fármacos , Corantes Fluorescentes/química , Glicosilação , Humanos , Lectinas/metabolismo , Manose/química , Manose/metabolismo , Manosidases/metabolismo , Microscopia de Fluorescência
11.
Cancer Sci ; 112(1): 254-264, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33141432

RESUMO

Diabetes is a major risk factor in the development and progression of several cancers including cholangiocarcinoma (CCA). However, the molecular mechanism by which hyperglycemia potentiates progression of CCA is not clearly understood. Here, we showed that a high glucose condition significantly increased reactive oxygen species (ROS) production and promoted aggressive phenotypes of CCA cells, including proliferation and migration activities. Mannosidase alpha class 2a member 2 (MAN2A2), was upregulated at both mRNA and protein levels in a high glucose- and ROS-dependent manner. In addition, cell proliferation and migration were significantly reduced by MAN2A2 knockdown. Based on our proteome and in silico analyses, we further found that chromodomain helicase DNA-binding protein 8 (CHD8) was induced by ROS signaling and regulated MAN2A2 expression. Overexpression of CHD8 increased MAN2A2 expression, while CHD8 knockdown dramatically reduced proliferation and migration as well as MAN2A2 expression in CCA cells. Moreover, both MAN2A2 and CHD8 were highly expressed with positive correlation in CCA tumor tissues. Collectively, these data suggested that high glucose conditions promote CCA progression through ROS-mediated upregulation of MAN2A2 and CHD8. Thus, glucose metabolism is a promising therapeutic target to control tumor progression in patients with CCA and diabetes.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Manosidases/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Colangiocarcinoma/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Hiperglicemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
12.
Proc Natl Acad Sci U S A ; 117(40): 24825-24836, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958677

RESUMO

The failure of polypeptides to achieve conformational maturation following biosynthesis can result in the formation of protein aggregates capable of disrupting essential cellular functions. In the secretory pathway, misfolded asparagine (N)-linked glycoproteins are selectively sorted for endoplasmic reticulum-associated degradation (ERAD) in response to the catalytic removal of terminal alpha-linked mannose units. Remarkably, ER mannosidase I/Man1b1, the first alpha-mannosidase implicated in this conventional N-glycan-mediated process, can also contribute to ERAD in an unconventional, catalysis-independent manner. To interrogate this functional dichotomy, the intracellular fates of two naturally occurring misfolded N-glycosylated variants of human alpha1-antitrypsin (AAT), Null Hong Kong (NHK), and Z (ATZ), in Man1b1 knockout HEK293T cells were monitored in response to mutated or truncated forms of transfected Man1b1. As expected, the conventional catalytic system requires an intact active site in the Man1b1 luminal domain. In contrast, the unconventional system is under the control of an evolutionarily extended N-terminal cytoplasmic tail. Also, N-glycans attached to misfolded AAT are not required for accelerated degradation mediated by the unconventional system, further demonstrating its catalysis-independent nature. We also established that both systems accelerate the proteasomal degradation of NHK in metabolic pulse-chase labeling studies. Taken together, these results have identified the previously unrecognized regulatory capacity of the Man1b1 cytoplasmic tail and provided insight into the functional dichotomy of Man1b1 as a component in the mammalian proteostasis network.


Assuntos
Manosidases/metabolismo , alfa 1-Antitripsina/química , Biocatálise , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Humanos , Manosidases/química , Manosidases/genética , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
13.
J Am Chem Soc ; 142(30): 13021-13029, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32605368

RESUMO

Golgi mannosidase II (GMII) catalyzes the sequential hydrolysis of two mannosyl residues from GlcNAcMan5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor for all complex N-glycans, including the branched N-glycans associated with cancer. Inhibitors of GMII are potential cancer therapeutics, but their usefulness is limited by off-target effects, which produce α-mannosidosis-like symptoms. Despite many structural and mechanistic studies of GMII, we still lack a potent and selective inhibitor of this enzyme. Here, we synthesized manno-epi-cyclophellitol epoxide and aziridines and demonstrate their covalent modification and time-dependent inhibition of GMII. Application of fluorescent manno-epi-cyclophellitol aziridine derivatives enabled activity-based protein profiling of α-mannosidases from both human cell lysate and mouse tissue extracts. Synthesized probes also facilitated a fluorescence polarization-based screen for dGMII inhibitors. We identified seven previously unknown inhibitors of GMII from a library of over 350 iminosugars and investigated their binding modalities through X-ray crystallography. Our results reveal previously unobserved inhibitor binding modes and promising scaffolds for the generation of selective GMII inhibitors.


Assuntos
Cicloexanóis/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Manosidases/antagonistas & inibidores , Cicloexanóis/síntese química , Cicloexanóis/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Manosidases/metabolismo , Estrutura Molecular
14.
Cell Adh Migr ; 14(1): 96-105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32419574

RESUMO

CD147 is a widely expressed matrix metalloproteinase inducer involved in the regulation of cell migration. The high glycosylation and ability to undergo oligomerization have been linked to CD147 function, yet there is limited understanding on the molecular mechanisms behind these processes. The current study demonstrates that the expression of Golgi α1,2-mannosidase I is key to maintaining the cell surface organization of CD147 during cell migration. Using an in vitro model of stratified human corneal epithelial wound healing, we show that CD147 is clustered within lateral plasma membranes at the leading edge of adjacent migrating cells. This localization correlates with a surge in matrix metalloproteinase activity and an increase in the expression of α1,2-mannosidase subtype IC (MAN1C1). Global inhibition of α1,2-mannosidase I activity with deoxymannojirimycin markedly attenuates the glycosylation of CD147 and disrupts its surface distribution at the leading edge, concomitantly reducing the expression of matrix metalloproteinase-9. Likewise, treatment with deoxymannojirimycin or siRNA-mediated knockdown of MAN1C1 impairs the ability of the carbohydrate-binding protein galectin-3 to stimulate CD147 clustering in unwounded cells. We conclude that the mannose-trimming activity of α1,2-mannosidase I coordinates the clustering and compartmentalization of CD147 that follows an epithelial injury.


Assuntos
Basigina/metabolismo , Movimento Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Complexo de Golgi/enzimologia , Manosidases/metabolismo , Membrana Celular/metabolismo , Epitélio Corneano/citologia , Galectina 3/metabolismo , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo
15.
Oncol Res Treat ; 43(6): 264-275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32403105

RESUMO

OBJECTIVE: Golgi alpha-mannosidase II (GM II) is one of the crucial enzymes in the process of N-glycan processing. The aim of our study was to examine the clinical significance of GM II in patients with clear cell renal cell carcinoma (ccRCC). METHODS: Quantitative reverse transcription polymerase chain reaction analysis and immunohistochemical staining were used to analyze GM II expression in patients with ccRCC. The clinical data of 62 patients with ccRCC were collected to analyze the clinical significance of GM II. The clinical significance among GM II expression, clinicopathological staging, and histological grade of ccRCC was explored. Survival analyses were performed to identify the relevance between the expression of GM II and the overall survival of patients with ccRCC. A uni-/multivariate Cox regression model was used to detect risk factors affecting the prognosis of patients with ccRCC. Subsequently, the proliferation and migration of ccRCC cells were detected after transfecting with GM II-short hairpin RNA (shRNA). RESULTS: The results of these comparisons suggested that GM II expression of ccRCC tissues was dramatically higher than that of para-carcinoma tissues (p < 0.05). GM II expression in the high-differentiation group was lower than that in the median- and low-differentiation groups (p < 0.05). GM II expression in stage I and II tissues was lower than that in stage III and IV tissues (p < 0.05). The expression levels of GM II in the group without lymph node metastasis were lower than those in the group with lymph node metastasis (p < 0.05). Survival analysis indicated that patients with ccRCC with high GM II expression generally had decreased overall survival. Uni-/multivariate Cox model analyses further suggested an association between GM II expression and prognosis of patients with breast cancer. High GM II expression is a potential and independent prognostic biomarker in ccRCC. The inhibition of GM II by transfecting with GM II-shRNA could reduce the proliferation and migration of ccRCC. CONCLUSION: GM II expression in human ccRCC tissues was upregulated compared with that found in normal human renal tissue, and GM II may promote the progression and migration of ccRCC. Furthermore, the GM II gene may be used as a promising tumor marker for the diagnosis and prognosis of ccRCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/patologia , Neoplasias Renais/enzimologia , Neoplasias Renais/patologia , Manosidases/metabolismo , Idoso , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Manosidases/genética , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida
16.
Bioorg Med Chem ; 28(11): 115492, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32291147

RESUMO

Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell-cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Complexo de Golgi/enzimologia , Manosidases/antagonistas & inibidores , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Manosidases/metabolismo , Estrutura Molecular , Imagem Óptica , Esferoides Celulares/metabolismo , Relação Estrutura-Atividade
17.
Cells ; 9(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028683

RESUMO

Amyloid-ß (Aß) peptides play a crucial role in the pathogenesis of Alzheimer's disease (AD). Aß production, aggregation, and clearance are thought to be important therapeutic targets for AD. Curcumin has been known to have an anti-amyloidogenic effect on AD. In the present study, we performed screening analysis using a curcumin derivative library with the aim of finding derivatives effective in suppressing Aß production with improved bioavailability of curcumin using CHO cells that stably express human amyloid-ß precursor protein and using human neuroblastoma SH-SY5Y cells. We found that the curcumin derivative GT863/PE859, which has been shown to have an inhibitory effect on Aß and tau aggregation in vivo, was more effective than curcumin itself in reducing Aß secretion. We further found that GT863 inhibited neither ß- nor γ-secretase activity, but did suppress γ-secretase-mediated cleavage in a substrate-dependent manner. We further found that GT863 suppressed N-linked glycosylation, including that of the γ-secretase subunit nicastrin. We also found that mannosidase inhibitors that block the mannose trimming step of N-glycosylation suppressed Aß production in a similar fashion, as was observed as a result of treatment with GT863. Collectively, these results suggest that GT863 downregulates N-glycosylation, resulting in suppression of Aß production without affecting secretase activity.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Curcumina/análogos & derivados , Curcumina/farmacologia , Alcaloides/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Células CHO , Cricetulus , Curcumina/química , Glicosilação , Humanos , Manosidases/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Especificidade por Substrato , Swainsonina/farmacologia
18.
Prep Biochem Biotechnol ; 49(9): 927-934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318309

RESUMO

The present work was aimed at studying the production of lignocellulolytic enzymes, namely cellulase, xylanase, pectinase, mannanase, and laccase by a newly isolated bacterium Sphingobacterium sp. ksn-11, utilizing various agro-residues as a substrate under submerged conditions. The production of lignocellulolytic enzymes was found to be maximum at the loading of 10%(w/v) agro-residues. The enzyme secretion was enhanced by two-fold at 2 mM CaCO3, optimum pH 7, and temperature 40°. The Field Emission Gun-Scanning Electron Microscope (FEG-SEM) results have shown the degradative effect of lignocellulases; cellulase, xylanase, mannanase, pectinase, and laccase on corn husk with 3.55 U/ml, 79.22 U/ml, 12.43 U/ml, 64.66 U/ml, and 21.12 U/ml of activity, respectively. The hydrolyzed corn husk found to be good adsorbent for polyphenols released during hydrolysis of corn husk providing suitable conditions for stability of lignocellulases. Sphingobacterium sp. ksn is proved to be a promising candidate for lignocellulolytic enzymes in view of demand for enzymes in the biofuel industry.


Assuntos
Lignina/metabolismo , Sphingobacterium/enzimologia , Celulase/metabolismo , Fermentação , Hidrólise , Microbiologia Industrial/métodos , Lacase/metabolismo , Manosidases/metabolismo , Poligalacturonase/metabolismo , Sphingobacterium/crescimento & desenvolvimento , Sphingobacterium/metabolismo , Xilosidases/metabolismo , Zea mays/metabolismo
19.
Int J Mol Sci ; 20(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621113

RESUMO

N-glycosylation has been shown to affect the pharmacokinetic properties of several classes of biologics, including monoclonal antibodies, blood factors, and lysosomal enzymes. In the last two decades, N-glycan engineering has been employed to achieve a N-glycosylation profile that is either more consistent or aligned with a specific improved activity (i.e., effector function or serum half-life). In particular, attention has focused on engineering processes in vivo or in vitro to alter the structure of the N-glycosylation of the Fc region of anti-cancer monoclonal antibodies in order to increase antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we applied the mannosidase I inhibitor kifunensine to the Nicotiana benthamiana transient expression platform to produce an afucosylated anti-CD20 antibody (rituximab). We determined the optimal concentration of kifunensine used in the infiltration solution, 0.375 µM, which was sufficient to produce exclusively oligomannose glycoforms, at a concentration 14 times lower than previously published levels. The resulting afucosylated rituximab revealed a 14-fold increase in ADCC activity targeting the lymphoma cell line Wil2-S when compared with rituximab produced in the absence of kifunensine. When applied to the cost-effective and scalable N. benthamiana transient expression platform, the use of kifunensine allows simple in-process glycan engineering without the need for transgenic hosts.


Assuntos
Alcaloides/farmacologia , Engenharia Metabólica/métodos , Nicotiana/metabolismo , Polissacarídeos/metabolismo , Rituximab/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antígenos CD20/metabolismo , Fucose/metabolismo , Glicosilação/efeitos dos fármacos , Manose/metabolismo , Manosidases/antagonistas & inibidores , Manosidases/metabolismo , Nicotiana/efeitos dos fármacos
20.
Gene ; 679: 314-319, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30218751

RESUMO

Bladder cancer (BC) has been regarded as the most common malignancy of the urinary system worldwide. With lack of investigations for molecular pathogenesis underlying that develop BC, the therapeutic efficacy of several therapeutic approaches existing is still unsatisfactory. Here, our study aimed to explore the potentially biological function of MAN1B1 on BC. In this study, MAN1B1 expression level in BC tissues and normal tissues was analyzed based on The Cancer Genome Atlas (TCGA) data and correlation between its expression and prognosis was determined using Kaplan-Meier analysis. Knockout of MAN1B1 was performed using silencing RNA and the efficacy of MAN1B1 knockout was identified using quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. The BC cells proliferation was assessed by Cell Counting Kit-8 (CCK8) assay, and then the cells apoptosis was detected by Annexin V-fluorescein isothiocyanate (Annexin V-FITC)/propidium iodide (PI) staining and flow cytometry following MAN1B1 knocked down by small interfering RNA. Protein kinase B (AKT) signaling was evaluated by detecting related markers, namely AKT, p-AKT, 4E-BP-1 and Bax using western blot assay. As a result, the MAN1B1 expression was higher in BC tissues than those in normal tissues, besides, its overexpression was associated with poor prognosis. Moreover, MAN1B1 reduction by silencing RNA approach resulted in BC cells proliferation suppression and BC cells apoptosis promotion. Finally, AKT signaling activity was inhibited by MAN1B1 silencing. Taken together, these results unraveled that MAN1B1 may act on an oncogenic action in BC, which improved the likelihood of MAN1B1 taking on a promising prognostic biomarker and a potential target for treating BC.


Assuntos
Manosidases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Estimativa de Kaplan-Meier , Manosidases/metabolismo , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA