Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
Medicine (Baltimore) ; 103(24): e38536, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875382

RESUMO

This study aims to analyze the effective components of Polygonum capitatum (PC) inhibiting Escherichia coli based on network pharmacology methods and predict its molecular mechanism of action. PC compounds and targets were collected from the TCMSP database, Swiss Target Prediction, and the literature. E coli targets were searched using the GeneCards database. The targets of E coli and the targets of the active ingredients of PC were taken as intersections to obtain the intersecting targets. The resulting overlapping targets were uploaded to the STRING database to construct the protein interaction network diagram of E coli target inhibition. The key targets for the inhibitory effect of PC on E coli were obtained. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by uploading key targets into the DAVID database. The results showed that there were 50 targets for PC to inhibit E coli. Among them, there are 5 core targets, mainly including AKT1, TNF, EGFR, JUN, and ESR1. A total of 196 gene ontology functional analysis results and 126 Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results were obtained. These include cellular response to cadmium-ion, cellular response to reactive oxygen species, pathways in cancer, prostate cancer, and PI3K-Akt signaling pathway. Molecular docking results indicate that Lutedin, Hirsutin, Flazin, and Ellagic acid in PC have high affinity for the target genes AKT1, TNF, MAPK3 and EGFR. PC exerts its inhibitory effect on E coli through multi-targets and multi-pathways, which provides a new basis for the new use of PC as an old medicine.


Assuntos
Escherichia coli , Simulação de Acoplamento Molecular , Farmacologia em Rede , Polygonum , Polygonum/química , Escherichia coli/efeitos dos fármacos , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química
2.
Medicine (Baltimore) ; 103(26): e38705, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941423

RESUMO

Rosacea is a chronic and recurrent inflammatory skin disease affecting the center of the face that causes burning and itching sensations and changes in aesthetics. Liang Xue Wu Hua Tang (LXWHT) is a classic herbal formulation that is efficacious and has been widely used in the clinical treatment of rosacea; however, the pharmacological mechanisms remain unclear. The aim of the present study was to investigate the mechanism of action of LXWHT using network pharmacology and molecular docking. The Traditional Chinese Medicine System Pharmacology database was searched to identify the active ingredients and pharmacological targets of LXWHT, and the GeneCard, Disgenet, and Gene Expression Omnibus databases were applied to screen rosacea-related targets. Cytoscape software was used to visualize the protein-protein interaction network, and network topology analysis was used to identify core targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed for the core targets. Molecular docking simulations and visualization were performed using Maestro and PyMOL, respectively. A total of 43 active compounds and 28 potential targets for LXWHT treatment of rosacea were selected for analysis. The Gene Ontology/Kyoto Encyclopedia of Genes and Genomes results indicated that LXWHT may exert therapeutic effects on rosacea by intervening in immune pathways including tumor necrosis factor pathway, interleukin-17 pathways, and Toll-like receptor signaling pathways. Chemokine ligand 2, interferon-γ, interleukin-1ß, peroxisome proliferator-activated receptor-γ, and matrix metallopeptidase 9 may be the core therapeutic target. Quercetin, stigmasterol, kaempferol, beta-sitosterol, luteolin, beta-carotene, baicalein, acetin, and isorhamnetin were predicted to be the key active ingredients. LXWHT may exert therapeutic effects in the treatment of rosacea by modulating immunity and angiogenesis, laying the foundation for further research.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Rosácea , Rosácea/tratamento farmacológico , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos
3.
Drug Des Devel Ther ; 18: 2405-2420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915868

RESUMO

Background: Chemotherapy-induced myelosuppression (CIM) is a common adverse reaction with a high incidence rate that seriously affects human health. Shengyu Decoction (SYD) is often used to treat CIM. However, its pharmacodynamic basis and therapeutic mechanisms remain unclear. Purpose: This study aimed to clarify the active components and mechanisms of SYD in CIM. Methods: LC-QTOF/MS was used to identify the absorbable components of SYD. A series of network pharmacology methods have been applied to explore hub targets and potential mechanisms. Molecular docking was used to identify the binding ability of potential active ingredients and hub targets. Finally, in vitro experiments were performed to validate these findings. Results: In this study, 33 absorbable prototype components were identified using LC-QTOF/MS. A total of 62 possible targets of SYD in myelosuppression were identified. KEGG pathway enrichment analyses showed that some signaling pathways such as PI3K-Akt and HIF-1 may be the mechanisms by which it functions. Among them, we verified the PI3K-Akt pathway. 6 Hub proteins were screened by Protein-protein interaction (PPI) network analysis. Molecular docking results showed that four absorbable components in SYD showed good binding with six Hub targets. The effectiveness of the four predicted compounds and the mechanism were verified in vitro. It has also been shown that the active component could promote the proliferation of bone marrow stromal cells (BMSCs) and block apoptosis of BMSCs, which may be related to the PI3K-Akt pathway. This result is consistent with the network pharmacology approach and molecular docking predictions. Conclusion: Our results provided not only the candidate active component of SYD, but also a new insights into mechanism of SYD in the treatment of CIM.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Humanos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Animais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos
4.
Sci Rep ; 14(1): 14183, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902425

RESUMO

The incidence of ulcerative colitis (UC) is on the rise globally. Shen-Zhu-Lian-Bai decoction (SZLBD) can relieve the clinical symptoms of UC. This study aimed to investigate the underlying molecular mechanism of SZLBD in the treatment of UC. The key treatment targets of SZLBD for UC were obtained based on the online database, and combined with the STRING database and Cytoscape 3.7.2 software, PPI network was constructed and visualized. The GEO database was utilized to validate the expression levels of core targets in UC. Metascape database GO functional annotation and KEGG pathway enrichment analysis. Molecular docking technology was used to verify the docking of core compounds with key targets. RT-qPCR and Western Blot were used to detect the expression of key targets in HCoEpiC cells for verification. After screening, 67 targets shared by SZLBD and UC were obtained. It is predicted that IL-6, IL-1B, and AKT1 might be the key targets of SZLBD in the treatment of UC. Quercetin was the main active ingredient. GEO results showed that the expression levels of IL-6, IL-1B and AKT1 were higher in the UC group compared to the control group. GO and KEGG analyses showed that these targets were related to apoptosis and inflammation. The results of molecular docking demonstrated that the AKT1 gene, a key target of quercetin, had the highest affinity of -9.2 kcal/mol. Cell experiments found that quercetin could affect the expression of IL-6, IL-1B, and AKT1. This study preliminarily explored and verified the mechanism of action of SZLBD in the treatment of UC, which provides a theoretical basis for subsequent in vivo mechanism studies.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interleucina-6/metabolismo , Quercetina/farmacologia , Quercetina/química , Interleucina-1beta/metabolismo
5.
Chem Biol Interact ; 396: 111058, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761877

RESUMO

Pterostilbene (PTE), a natural phenolic compound, has exhibited promising anticancer properties in the preclinical treatment of cervical cancer (CC). This study aims to comprehensively investigate the potential targets and mechanisms underlying PTE's anticancer effects in CC, thereby providing a theoretical foundation for its future clinical application and development. To accomplish this, we employed a range of methodologies, including network pharmacology, bioinformatics, and computer simulation, with specific techniques such as WGCNA, PPI network construction, ROC curve analysis, KM survival analysis, GO functional enrichment, KEGG pathway enrichment, molecular docking, MDS, and single-gene GSEA. Utilizing eight drug target prediction databases, we have identified a total of 532 potential targets for PTE. By combining CC-related genes from the GeneCards disease database with significant genes derived from WGCNA analysis of the GSE63514 dataset, we obtained 7915 unique CC-related genes. By analyzing the intersection of the 7915 CC-related genes and the 2810 genes that impact overall survival time in CC, we identified 690 genes as crucial for CC. Through the use of a Venn diagram, we discovered 36 overlapping targets shared by PTE and CC. We have constructed a PPI network and identified 9 core candidate targets. ROC and KM curve analyses subsequently revealed IL1B, EGFR, IL1A, JUN, MYC, MMP1, MMP3, and ANXA5 as the key targets modulated by PTE in CC. GO and KEGG pathway enrichment analyses indicated significant enrichment of these key targets, primarily in the MAPK and IL-17 signaling pathways. Molecular docking analysis verified the effective binding of PTE to all nine key targets. MDS results showed that the protein-ligand complex between MMP1 and PTE was the most stable among the nine targets. Additionally, GSEA enrichment analysis suggested a potential link between elevated MMP1 expression and the activation of the IL-17 signaling pathway. In conclusion, our study has identified key targets and uncovered the molecular mechanism behind PTE's anticancer activity in CC, establishing a firm theoretical basis for further exploration of PTE's pharmacological effects in CC therapy.


Assuntos
Biologia Computacional , Simulação de Acoplamento Molecular , Farmacologia em Rede , Estilbenos , Neoplasias do Colo do Útero , Humanos , Estilbenos/farmacologia , Estilbenos/química , Estilbenos/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Feminino , Mapas de Interação de Proteínas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
6.
Sci Rep ; 14(1): 10114, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698063

RESUMO

Wogonin is a natural flavone compound from the plant Scutellaria baicalensis, which has a variety of pharmacological activities such as anti-cancer, anti-virus, anti-inflammatory, and immune regulation. However, the potential mechanism of wogonin remains unknown. This study was to confirm the molecular mechanism of wogonin for acute monocytic leukemia treatment, known as AML-M5. The potential action targets between wogonin and acute monocytic leukemia were predicted from databases. The compound-target-pathway network and protein-protein interaction network (PPI) were constructed. The enrichment analysis of related targets and molecular docking were performed. The network pharmacological results of wogonin for AML-M5 treatment were verified using the THP-1 cell line. 71 target genes of wogonin associated with AML-M5 were found. The key genes TP53, SRC, AKT1, RELA, HSP90AA1, JUN, PIK3R1, and CCND1 were preliminarily found to be the potential central targets of wogonin for AML-M5 treatment. The PPI network analysis, GO analysis and KEGG pathway enrichment analysis demonstrated that the PI3K/AKT signaling pathway was the significant pathway in the wogonin for AML-M5 treatment. The antiproliferative effects of wogonin on THP-1 cells of AML-M5 presented a dose-dependent and time-dependent manner, inducing apoptosis, blocking the cell cycle at the G2/M phase, decreasing the expressions of CCND1, CDK2, and CyclinA2 mRNA, as well as AKT and p-AKT proteins. The mechanisms of wogonin on AML-M5 treatment may be associated with inhibiting cell proliferation and regulating the cell cycle via the PI3K/AKT signaling pathway.


Assuntos
Flavanonas , Leucemia Monocítica Aguda , Simulação de Acoplamento Molecular , Farmacologia em Rede , Mapas de Interação de Proteínas , Flavanonas/farmacologia , Humanos , Leucemia Monocítica Aguda/tratamento farmacológico , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células THP-1 , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos
7.
Asian Pac J Cancer Prev ; 25(5): 1649-1661, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809637

RESUMO

OBJECTIVE: Triple-negative breast cancer presents a significant challenge in oncology due to its complex treatment and aggressive nature. This subtype lacks common cancer cell receptors like estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. This study aimed to identify, through bioinformatic analysis, the key genes associated with triple-negative breast cancer. In addition, CBD analogs with potential inhibitory effects on these genes were evaluated through docking and molecular dynamics. METHODS: Gene expression profiles from the GSE178748 dataset were analyzed, focusing on MDA-MB-231 breast cancer cell lines. Differentially expressed genes were determined through protein-protein interaction networks and subsequently validated. Additionally, the inhibitory effects of cannabidiol analogs on these hub genes were assessed using molecular docking and dynamics. RESULTS:  Analysis of the hub highlighted RPL7A, NHP2L1, and PSMD11 as significant players in TNBC regulation. Ligand 44409296 showed the best affinity energy with RPL7A, while 166505341 exhibited the highest affinity with NHP2L1 and PSMD11, surpassing CBD. Analyses of RMSD, RMSF, SASA, and Gyration Radius indicated structural stability and interactions of the proteins with ligands over time. MMGBSA calculations showed favorable binding energies for the ligands with the target proteins. CONCLUSION: In conclusion, this study identified key genes, namely RPL7A, NHP2L1, and PSMD11, associated with triple-negative breast cancer and demonstrated promising interactions with cannabidiol analogs, particularly 44409296 and 166505341. These findings suggest potential therapeutic targets and highlight the relevance of further clinical investigations. Additionally, the ligands exhibited favorable ADME properties and low toxicity, underscoring their potential in future drug development for TNBC treatment.


Assuntos
Canabidiol , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Canabidiol/farmacologia , Canabidiol/química , Feminino , Biologia Computacional/métodos , Simulação por Computador , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
8.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 119-126, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814227

RESUMO

This study aimed to explore the effective substances and mechanism network of Huangqi Guizhi Wuwu Decoction in treating diabetes peripheral neuropathy. Based on the TCM systemic pharmacological analysis platform (TCMP) and UniProt database, the database of active Huqarqu Decoction was constructed, and the related targets of diabetic peripheral neuropathy were collected through the OMIM, CTD, DisGeNET, TTD and GeneCards databases. The intersection targets were obtained to construct the network diagram of Huangqi dis Guizhi Wuwu Decoction-Active Through the String database, the interaction between target proteins was analyzed, and molecular docking between active components and potential targets was carried out. Combined with the DAVID v6.8 database, GO function analysis and KEGG pathway analysis were performed on the targets. Guizhi Wuwu Decoction mainly acts on core targets such as IL6, MAPK3, VE GFA, JUN and ESR1 through quercetin, kaempferol and naringin and regulates the TNF signaling pathway, estrogen signaling pathway and MAPK signaling pathway, thus achieving the effect of treating diabetes peripheral neuropathy. Huangqi Guizhi Wu has multiple targets and regulates multiple signaling pathways in neuropathy, which lays a foundation for future pharmacological research.


Assuntos
Neuropatias Diabéticas , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Medicine (Baltimore) ; 103(20): e38189, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758839

RESUMO

To investigate the mechanism by which high-dose vitamin C (HVC) promotes ferroptosis in tumor cells via network pharmacology, vitamin C-related and ferroptosis-related targets were obtained from the PharmMapper and GeneCards databases, respectively, and their common targets were compared using the Venn diagram. Common targets were imported into the STRING database for protein-protein interaction analysis, and core targets were defined. Core targets were enriched for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways using the R language packages. A map of the core target-based interaction network and a map of the mechanism by which HVC regulates ferroptosis were constructed. A total of 238 vitamin C-related and 721 ferroptosis-related targets were identified, of which 21 targets were common to both. Furthermore, ALDOA, AHCY, LDHB, HSPA8, LGALS3, and GSTP1 were identified as core targets. GO enrichment analysis suggested that the main biological processes included the extrinsic apoptotic signaling pathway and pyruvate metabolic process. KEGG enrichment analysis suggested that HVC regulates ferroptosis mainly through the amino acid and carbohydrate metabolic pathways. The targets were validated by molecular docking. In conclusion, HVC may promote ferroptosis in tumor cells by regulating metabolic pathways, and there is a synergistic effect between HVC and type I ferroptosis inducers. Glycolysis-dependent tumors may be beneficial for HVC therapy. Our study provides a reference for further clinical studies on HVC antitumor therapy.


Assuntos
Ácido Ascórbico , Ferroptose , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ferroptose/efeitos dos fármacos , Humanos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/administração & dosagem , Farmacologia em Rede/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos
10.
Sci Rep ; 14(1): 10286, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704482

RESUMO

Jinlida granule (JLD) is a Traditional Chinese Medicine (TCM) formula used for the treatment of type 2 diabetes mellitus (T2DM). However, the mechanism of JLD treatment for T2DM is not fully revealed. In this study, we explored the mechanism of JLD against T2DM by an integrative pharmacology strategy. Active components and corresponding targets were retrieved from Traditional Chinese Medicine System Pharmacology (TCMSP), SwissADME and Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine Database (BATMAN-TCM) database. T2DM-related targets were obtained from Drugbank and Genecards databases. The protein-protein interaction (PPI) network was constructed and analyzed with STRING (Search Toll for the Retrieval of Interacting Genes/proteins) and Cytoscape to get the key targets. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID). Lastly, the binding capacities and reliability between potential active components and the targets were verified with molecular docking and molecular dynamics simulation. In total, 185 active components and 337 targets of JLD were obtained. 317 targets overlapped with T2DM-related targets. RAC-alpha serine/threonine-protein kinase (AKT1), tumor necrosis factor (TNF), interleukin-6 (IL-6), cellular tumor antigen p53 (TP53), prostaglandin G/H synthase 2 (PTGS2), Caspase-3 (CASP3) and signal transducer and activator of transcription 3 (STAT3) were identified as seven key targets by the topological analysis of the PPI network. GO and KEGG enrichment analyses showed that the effects were primarily associated with gene expression, signal transduction, apoptosis and inflammation. The pathways were mainly enriched in PI3K-AKT signaling pathway and AGE-RAGE signaling pathway in diabetic complications. Molecular docking and molecular dynamics simulation verified the good binding affinity between the key components and targets. The predicted results may provide a theoretical basis for drug screening of JLD and a new insight for the therapeutic effect of JLD on T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Simulação de Dinâmica Molecular , Biologia Computacional/métodos , Ontologia Genética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química
11.
PLoS One ; 19(5): e0303650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753638

RESUMO

HuaChanSu (HCS) or Cinobufacini injection is an aqueous extract of the dried skin of Bufo bufo gargarigans, and has anti-tumor effects. The aim of this study was to evaluate the possible therapeutic effect of HCS against breast cancer (BRCA) using cytology, network pharmacology, and molecular biology approaches. The half-inhibitory concentration (IC50) of HCS in the BRCA cells was determined by cytotoxicity assay, and were accordingly treated with high and low doses HCS in the TUNEL and scratch assays. The potential targets of HCS in the BRCA cells were identified through functional enrichment analysis and protein-protein interaction (PPI) networks, and verified by molecular docking. The expression levels of key signaling pathways-related proteins in HCS-treated BRCA cells by western blotting. HCS inhibited the proliferation and migration of MCF-7 and MDA-MB-231 cells, and induced apoptosis in a dose-dependent manner. Furthermore, we screened 289 core HCS targets against BRCA, which were primarily enriched in the PI3K-AKT, MAPK chemokines, and other. signaling pathways. In addition, PIK3CA, PIK3CD, and MTOR were confirmed as HCS targets by molecular docking. Consistent with this, we observed a reduction in the expression levels of phosphorylated PI3K, AKT, and MTOR in the HCS-treated BRCA cells. Taken together, our findings suggest that HCS inhibits the growth of BRCA cells by targeting the PI3K-AKT pathway, and warrants further investigation as a therapeutic agent for treating patients with BRCA.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Farmacologia em Rede , Transdução de Sinais , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Movimento Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos
12.
J Pharm Biomed Anal ; 247: 116251, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820836

RESUMO

The proprietary Chinese medicine Jinkui Shenqi Pill (PCM-JKSQP) is a classic compound used for the effective clinical treatment of kidney yang deficiency syndrome (KYDS), a metabolic disease accompanied by kidney injury. However, its active ingredients and therapeutic mechanisms are not clear. This study employed serum pharmacochemistry, network pharmacology, and pharmacokinetics (PK) to identify the bioactive components of PCM-JKSQP and preliminarily clarify its mechanism in treating KYDS. One hundred and forty chemical components of PCM-JKSQP, 47 (20 parent compouds and 27 metabolites) of which were absorbed into the blood, were identified by ultra-high-performance liquid chromatography-quadrupole-orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). The topological parameters of network pharmacology and high concentrations in blood found six parent components as PK markers (cinnamic acid, paeonol, loganin, morroniside, apigenin, and poricoic acid A). PK analysis further identified these six compounds as active ingredients. Protein-protein interaction (PPI) analysis and molecular docking simulation predicted and verified eight core targets (TP53, ESR1, CTNNB1, EP300, EGFR, AKT1, ERBB2, and TNF). Most were concentrated in the MAPK, HIF-1, and PI3K-AKT signaling pathways, indicating that these six active ingredients may mainly exert therapeutic effects through these three pathways via their core targets. The PK results also showed these six components were absorbed quickly, although cinnamic acid and paeonol were rapidly metabolized, with a short half-life and retention time. Loganin and morroniside did not have high peak concentrations, and apigenin and poricoic acid A had long retention times. This study provides a new overall perspective for exploring the bioactive components and mechanisms underlying the effects of PCM-JKSQP in treating KYDS.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Deficiência da Energia Yang , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Deficiência da Energia Yang/tratamento farmacológico , Farmacologia em Rede/métodos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Medicina Tradicional Chinesa/métodos , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Mapas de Interação de Proteínas/efeitos dos fármacos , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Ratos Sprague-Dawley , Humanos
13.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 226-232, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814209

RESUMO

This study aims to analyze the active components and mechanism of Bushen Huoxue (BSHX) formula on the autoimmune premature ovarian insufficiency (POI) by combining network pharmacology and Transcriptomics. The active components and targets of BSHXF were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). POI-related targets were identified through Therapeutic Targets Database (TTD), DisGeNET and drugbank database. The Veen diagram was performed to obtain the action targets. The active compound-target network and Protein-Protein Interaction (PPI) network were built by using STRING database and Cytoscape software. Key targets and active compounds were further identified by topological analysis. Molecular docking shows that Kaempferol, Isorhamnetin and Anhydroicaritin have strong binding to AKT. Finally, a zp3-induced autoimmune ovarian function deficiency mouse model was used to explore the potential mechanism of POI. The potential pathways of BSHXF for the treatment of POI were identified by Transcriptomic analysis. PI3K-AKT and NF-kb pathways were the common pathways between network pharmacology and transcriptomics. Our results revealed that BSHXF could reduce the FSH expression levels and raise the E2, and AMH levels in the serum. Western bloting demonstrates that BSHXF could upregulate the expression of p-PI3K and p-AKT.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Insuficiência Ovariana Primária , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Camundongos , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Modelos Animais de Doenças , Humanos
14.
Technol Health Care ; 32(S1): 523-542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759074

RESUMO

BACKGROUND: Colon cancer is the most prevalent and rapidly increasing malignancy globally. It has been suggested that some of the ingredients in the herb pair of Coptidis Rhizoma and ginger (Zingiber officinale), a traditional Chinese medicine, have potential anti-colon cancer properties. OBJECTIVE: This study aimed to investigate the molecular mechanisms underlying the effects of the Coptidis Rhizoma-ginger herb pair in treating colon cancer, using an integrated approach combining network pharmacology and molecular docking. METHODS: The ingredients of the herb pair Coptidis Rhizoma-ginger, along with their corresponding protein targets, were obtained from the Traditional Chinese Medicine System Pharmacology and Swiss Target Prediction databases. Target genes associated with colon cancer were retrieved from the GeneCards and OMIM databases. Then, the protein targets of the active ingredients in the herb pair were identified, and the disease-related overlapping targets were determined using the Venn online tool. The protein-protein interaction (PPI) network was constructed using STRING database and analyzed using Cytoscape 3.9.1 to identify key targets. Then, a compound-target-disease-pathway network map was constructed. The intersecting target genes were subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for colon cancer treatment. Molecular docking was performed using the Molecular Operating Environment (MOE) software to predict the binding affinity between the key targets and active compounds. RESULTS: Besides 1922 disease-related targets, 630 targets associated with 20 potential active compounds of the herb pair Coptidis Rhizoma-ginger were collected. Of these, 229 intersection targets were obtained. Forty key targets, including STAT3, Akt1, SRC, and HSP90AA1, were further analyzed using the ClueGO plugin in Cytoscape. These targets are involved in biological processes such as miRNA-mediated gene silencing, phosphatidylinositol 3-kinase (PI3K) signaling, and telomerase activity. KEGG enrichment analysis showed that PI3K-Akt and hypoxia-inducible factor 1 (HIF-1) signaling pathways were closely related to colon cancer prevention by the herb pair Coptidis Rhizoma-ginger. Ten genes (Akt1, TP53, STAT3, SRC, HSP90AA1, JAK2, CASP3, PTGS2, BCl2, and ESR1) were identified as key genes for validation through molecular docking simulation. CONCLUSIONS: This study demonstrated that the herb pair Coptidis Rhizoma-ginger exerted preventive effects against colon cancer by targeting multiple genes, utilizing various active compounds, and modulating multiple pathways. These findings might provide the basis for further investigations into the molecular mechanisms underlying the therapeutic effects of Coptidis Rhizoma-ginger in colon cancer treatment, potentially leading to the development of novel drugs for combating this disease.


Assuntos
Neoplasias do Colo , Coptis chinensis , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Zingiber officinale/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos
15.
Gene ; 918: 148474, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38670393

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer deaths, and non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer-related mortality. In recent years, there have been numerous treatments for non-small cell lung cancer, but the cure and survival rates are still extremely low. Isobavachalcone (IBC) belongs to the chalcone component of the traditional Chinese medicine Psoralea corylifolia L., and is a unique Protein kinase B (AKT) pathway inhibitor with significant anticancer effects. Previous studies have shown that IBC possess a variety of biological properties, including anti-cancer, anti-inflammatory, and antioxidant properties. This study focused on the use of network pharmacology analysis, molecular docking technology and experimental validation to elucidate the potential mechanisms of IBC for the treatment of NSCLC. METHODS: Screening key genes and pathways of IBC action in NSCLC using network pharmacology. The IBC target genes were from The Encyclopedia of Traditional Chinese Medicine (ETCM) and BATMAN-TCM databases, the NSCLC target genes were from GeneCards, Online Mendelian Inheritance in Man (OMIM) and The Therapeutic Target database (TTD) databases, both of which were taken as intersecting genes for protein-protein interaction network analysis and enrichment analysis, and the binding energies of the compounds to the core targets were further verified by molecular docking. Cell lines in vitro experiments were then performed to further unravel the mechanism of IBC for NSCLC. RESULTS: A total of 279 potential targets were retrieved by searching the intersection of IBC and NSCLC targets. Protein-protein interaction (PPI) network analysis indicated that 6 targets, including AKT1, RXRA, NCOA1, RXRB, RARA, PPARG were hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IBC treatment of NSCLC mainly involves steroid binding, transcription factor activity, Pathways in cancer, cAMP signaling pathway, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Among them, the AMPK signaling pathway, which contained the largest number of enriched genes, may play a greater role in the treatment of NSCLC. Then, the results of in vitro experiment indicated that IBC could inhibit proliferation of NSCLC cells and induce cell autophagy and apoptosis. The results also showed that IBC could increase the protein expression of AMPK and decrease the protein expression of AKT and mammalian target of rapamycin (mTOR), suggesting that IBC can treat NSCLC by inducing cellular autophagy and apoptosis as well as modulating AMPK and AKT signaling pathways. CONCLUSIONS: In summary, this study provided a new insight into the protective mechanism of IBC against NSCLC through network pharmacology and experimental validation.


Assuntos
Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas , Chalconas , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Chalconas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células A549 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/efeitos dos fármacos
16.
Med Oncol ; 41(6): 130, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676780

RESUMO

The Fucaceae family of marine brown algae includes Ascophyllum nodosum. Fucosterol (FSL) is a unique bioactive component that was identified through GC-MS analysis of the hydroalcoholic extract of A. nodosum. Fucosterol's mechanism of action towards hepatocellular cancer was clarified using network pharmacology and docking study techniques. The probable target gene of FSL has been predicted using the TargetNet and SwissTargetPred databases. GeneCards and the DisGNet database were used to check the targeted genes of FSL. By using the web programme Venny 2.1, the overlaps of FSL and HCC disease demonstrated that 18 genes (1.3%) were obtained as targeted genes Via the STRING database, a protein-protein interaction (PPI) network with 18 common target genes was constructed. With the aid of CytoNCA, hub genes were screened using the Cytoscape software, and the targets' hub genes were exported into the ShinyGo online tool for study of KEGG and gene ontology enrichment. Using the software AutoDock, a hub gene molecular docking study was performed. Ten genes, including AR, CYP19A1, ESR1, ESR2, TNF, PPARA, PPARG, HMGCR, SRC, and IGF1R, were obtained. The 10 targeted hubs docked with FSL successfully. The active components FSL of ASD, the FSL, are engaged in fatty liver disease, cancer pathways, and other signalling pathways, which could prove beneficial for the management of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Estigmasterol , Estigmasterol/análogos & derivados , Humanos , Estigmasterol/farmacologia , Estigmasterol/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Simulação por Computador
17.
Mol Psychiatry ; 29(5): 1392-1405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38297084

RESUMO

Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.


Assuntos
Benzodioxóis , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Neurônios , Proteínas Proto-Oncogênicas c-fyn , Quinases da Família src , Animais , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Camundongos , Quinases da Família src/metabolismo , Benzodioxóis/farmacologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fenótipo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Quinazolinas
18.
Proc Natl Acad Sci U S A ; 119(30): e2201208119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858434

RESUMO

Completion of the Lassa virus (LASV) life cycle critically depends on the activities of the virally encoded, RNA-dependent RNA polymerase in replication and transcription of the viral RNA genome in the cytoplasm of infected cells. The contribution of cellular proteins to these processes remains unclear. Here, we applied proximity proteomics to define the interactome of LASV polymerase in cells under conditions that recreate LASV RNA synthesis. We engineered a LASV polymerase-biotin ligase (TurboID) fusion protein that retained polymerase activity and successfully biotinylated the proximal proteome, which allowed the identification of 42 high-confidence LASV polymerase interactors. We subsequently performed a small interfering RNA (siRNA) screen to identify those interactors that have functional roles in authentic LASV infection. As proof of principle, we characterized eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we found to be a proviral factor that physically associates with LASV polymerase. Targeted degradation of GSPT1 by a small-molecule drug candidate, CC-90009, resulted in strong inhibition of LASV infection in cultured cells. Our work demonstrates the feasibility of using proximity proteomics to illuminate and characterize yet-to-be-defined host-pathogen interactome, which can reveal new biology and uncover novel targets for the development of antivirals against highly pathogenic RNA viruses.


Assuntos
Acetamidas , Antivirais , Isoindóis , Vírus Lassa , Fatores de Terminação de Peptídeos , Piperidonas , RNA Polimerase Dependente de RNA , Proteínas Virais , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Humanos , Isoindóis/farmacologia , Isoindóis/uso terapêutico , Febre Lassa/tratamento farmacológico , Vírus Lassa/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/metabolismo , Piperidonas/farmacologia , Piperidonas/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteoma , Proteômica , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
19.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269585

RESUMO

Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Quinolonas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cloretos/metabolismo , Combinação de Medicamentos , Células HEK293 , Humanos , Espectrometria de Massas , Mutação , Proteínas de Transporte Vesicular/metabolismo
20.
Gene ; 816: 146172, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34995734

RESUMO

OBJECTIVE: Synovial sarcoma (SS) is a malignant soft tissue sarcoma and its natural history is a long, indolent clinical course followed by high rate of local recurrence and distant metastasis. Current therapies are still limited in increasing satisfactory of 5-year survival, especially for patients with recurrence and metastasis. Accordingly, finding new therapeutic drug for SS treatment is clinically urgent need. Diallyl trisulfide (DATS), a bioactive compound derived from garlic, is reported as a promising anti-cancer agent for various carcinomas. However, its effect on anti-SS remains unknown. This study investigated the anti-SS effect of DATS in human synovial sarcoma SW982 cells. METHODS: CCK-8 assay were used to examine the cell viability. High-content Imaging System was used to examine the apoptosis, intracellular ROS and autophagy. Flow cytometry was used to detect cell cycle. qPCR and Western blot were used to examine the expression of related mRNA and protein. High-throughput RNA-sequencing and bio-information analysis were used to investigate the mRNA profiling. RESULTS: The results showed a suppressive effect of DATS on tumor biology of SW982 cells including inducing apoptosis, triggering G2/M cell cycle arrest, elevating intracellular ROS and damaging mitochondria. Further high-throughput RNA-sequencing analysis clarified a comprehensive molecular portrait for DATS-induced transcriptional regulation. Besides, protein-protein interaction (PPI) analysis demonstrated that a network consisted of FOXM1, CCNA2, CCNB1, MYBL2, PLK1 and CDK1 might be response for DATS-induced G2/M cell cycle arrest and increased intracellular ROS. Notably, protein feature analysis revealed structure enrichment in microtubule network like kinesin motors domain, and tubulin domain. Molecular function analysis suggested that DATS-induced dysfunction of microtubule network might be the major cause for its effect on cell cycle arrest and successive apoptosis. Furthermore, 28 hub genes (including KIF2C, PLK1, CDK1, BIRC5, CCNB2, CENPF, TPX2, TOP2A and so on) were determined. Finally, pathway analysis showed that DATS-induced differentially expressed genes were mainly involved in cell cycle. CONCLUSION: Collectively, our findings for the first time provided the DATS-induced cellular response and transcriptional profiling of SW982 cells, which proposes that suppression of DATS on SS is multi-targeted and represent a therapeutic evidence for SS.


Assuntos
Compostos Alílicos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Sarcoma Sinovial/tratamento farmacológico , Sulfetos/uso terapêutico , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Bases de Dados Genéticas , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Alho/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA Mensageiro , RNA Neoplásico/química , Espécies Reativas de Oxigênio/metabolismo , Sarcoma Sinovial/genética , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA