Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(19): e0065221, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34346762

RESUMO

The filovirus family includes deadly pathogens such as Ebola virus (EBOV) and Marburg virus (MARV). A substantial portion of filovirus genomes encode 5' and 3' untranslated regions (UTRs) of viral mRNAs. Select viral genomic RNA sequences corresponding to 3' UTRs are prone to editing by adenosine deaminase acting on RNA 1 (ADAR1). A reporter mRNA approach, in which different 5' or 3' UTRs were inserted into luciferase-encoding mRNAs, demonstrates that MARV 3' UTRs yield different levels of reporter gene expression, suggesting modulation of translation. The modulation occurs in cells unable to produce microRNAs (miRNAs) and can be recapitulated in a MARV minigenome assay. Deletion mutants identified negative regulatory regions at the ends of the MARV nucleoprotein (NP) and large protein (L) 3' UTRs. Apparent ADAR1 editing mutants were previously identified within the MARV NP 3' UTR. Introduction of these changes into the MARV nucleoprotein (NP) 3' UTR or deletion of the region targeted for editing enhances translation, as indicated by reporter assays and polysome analysis. In addition, the parental NP 3' UTR, but not the edited or deletion mutant NP 3' UTRs, induces a type I interferon (IFN) response upon transfection into cells. Because some EBOV isolates from the West Africa outbreak exhibited ADAR1 editing of the viral protein of 40 kDa (VP40) 3' UTR, VP40 3' UTRs with parental and edited sequences were similarly assayed. The EBOV VP40 3' UTR edits also enhanced translation, but neither the wild-type nor the edited 3' UTRs induced IFN. These findings implicate filoviral mRNA 3' UTRs as negative regulators of translation that can be inactivated by innate immune responses that induce ADAR1. IMPORTANCE UTRs comprise a large percentage of filovirus genomes and are apparent targets of editing by ADAR1, an enzyme with pro- and antiviral activities. However, the functional significance of the UTRs and ADAR1 editing has been uncertain. This study demonstrates that MARV and EBOV 3' UTRs can modulate translation, in some cases negatively. ADAR1 editing or deletion of select regions within the translation suppressing 3' UTRs relieves the negative effects of the UTRs. These data indicate that filovirus 3' UTRs contain translation regulatory elements that are modulated by activation of ADAR1, suggesting a complex interplay between filovirus gene expression and innate immunity.


Assuntos
Regiões 3' não Traduzidas , Adenosina Desaminase/metabolismo , Ebolavirus/genética , Marburgvirus/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Ebolavirus/metabolismo , Genes Reporter , Humanos , Interferon Tipo I/biossíntese , Marburgvirus/metabolismo , MicroRNAs/genética , Mutação , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Polirribossomos/metabolismo , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
2.
Virology ; 532: 22-29, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30999160

RESUMO

Priming of the viral glycoprotein (GP) by the cellular proteases cathepsin B and L (CatB, CatL) is believed to be essential for cell entry of filoviruses. However, pseudotyping systems that predominantly produce non-filamentous particles have frequently been used to prove this concept. Here, we report that GP-mediated entry of retroviral-, rhabdoviral and filoviral particles depends on CatB/CatL activity and that this effect is cell line-independent. Moreover, we show that the human cell line Calu-3, which expresses low amounts of CatL, is largely resistant to entry driven by diverse filovirus GPs. Finally, we demonstrate that Calu-3 cell entry mediated by certain filovirus GPs can be rescued upon directed expression of CatL or DC-SIGN. Our results identify Calu-3 cells as largely resistant to filovirus GP-driven entry and demonstrate that entry is limited at the stage of virion attachment and GP priming.


Assuntos
Catepsina L/genética , Moléculas de Adesão Celular/genética , Ebolavirus/genética , Células Epiteliais/imunologia , Lectinas Tipo C/genética , Receptores de Superfície Celular/genética , Proteínas Virais/genética , Células A549 , Animais , Catepsina B/antagonistas & inibidores , Catepsina B/genética , Catepsina B/imunologia , Catepsina B/metabolismo , Catepsina L/antagonistas & inibidores , Catepsina L/imunologia , Catepsina L/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Leucina/análogos & derivados , Leucina/farmacologia , Marburgvirus/genética , Marburgvirus/crescimento & desenvolvimento , Marburgvirus/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Células Vero , Vesiculovirus/genética , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/metabolismo , Proteínas Virais/metabolismo , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos
3.
J Infect Dis ; 218(suppl_5): S403-S408, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30165526

RESUMO

Protein kinase R (PKR) is a key antiviral protein involved in sensing and restricting viral infections. Here we analyzed the ability of Marburg virus (MARV) viral protein 35 (VP35) to inhibit PKR activation in human and bat cells. Similar to the related Ebola and Lloviu viruses, MARV VP35 was able to inhibit PKR activation in 293T cells. In contrast, we found that MARV VP35 did not inhibit human or bat PKR activation in human glioblastoma U-251-MG cells or a Rousettus aegyptiacus cell line. Additional experiments revealed that PACT, a known PKR regulator, was insufficient to rescue the ability of VP35 to inhibit PKR activation in these cells. Taken together, this study indicates that the ability of VP35 to inhibit PKR is cell type specific, potentially explaining discrepancies between the ability of filoviruses to potently block innate immune responses, and the high levels of interferon and interferon-stimulated genes observed in filovirus patients.


Assuntos
Marburgvirus/metabolismo , Proteínas Quinases/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Linhagem Celular , Quirópteros , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/metabolismo , Marburgvirus/imunologia , Proteínas Quinases/imunologia , Proteínas Virais/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia
4.
J Infect Dis ; 218(suppl_5): S318-S326, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30165666

RESUMO

The single surface glycoprotein (GP) of filoviruses is indispensable for recognition of its cellular receptor and infection of target cells. To study the intracellular trafficking of GP by using live-cell imaging, the mucin-like domain of Marburg virus (MARV) GP was replaced by the fluorophore mCherry (GP∆MLD_mCherry). Intracellular distribution, surface transport, and recruitment of GP∆MLD_mCherry into virus-like particles were similar to observations for wild-type GP. Using reverse genetics, we generated a recombinant MARV expressing GP∆MLD_mCherry (recMARV MARVGP∆MLD_mCherry). Time-lapse microscopy of recMARV MARVGP∆MLD_mCherry-infected cells revealed that GP∆MLD_mCherry-positive vesicles were transported to the cell surface in a tubulin-dependent manner. Moreover, dual-color live-cell imaging revealed cotransport of GPΔMLD_mCherry and VP40 and their colocalization at the plasma membrane. In this proof-of-concept study we showed that the newly developed GP∆MLD_mCherry is a promising tool to elucidate intracellular trafficking and assembly pathways of MARV.


Assuntos
Corantes Fluorescentes/administração & dosagem , Glicoproteínas/metabolismo , Marburgvirus/metabolismo , Marburgvirus/fisiologia , Transporte Proteico/fisiologia , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Membrana Celular/virologia , Células HEK293 , Humanos
5.
Cell Host Microbe ; 23(1): 101-109.e4, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29324225

RESUMO

Since their first identification 50 years ago, marburgviruses have emerged several times, with 83%-90% lethality in the largest outbreaks. Although no vaccines or therapeutics are available for human use, the human antibody MR191 provides complete protection in non-human primates when delivered several days after inoculation of a lethal marburgvirus dose. The detailed neutralization mechanism of MR191 remains outstanding. Here we present a 3.2 Å crystal structure of MR191 complexed with a trimeric marburgvirus surface glycoprotein (GP). MR191 neutralizes by occupying the conserved receptor-binding site and competing with the host receptor Niemann-Pick C1. The structure illuminates previously disordered regions of GP including the stalk, fusion loop, CX6CC switch, and an N-terminal region of GP2 that wraps about the outside of GP1 to anchor a marburgvirus-specific "wing" antibody epitope. Virus escape mutations mapped far outside the MR191 receptor-binding site footprint suggest a role for these other regions in the GP quaternary structure.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Marburgvirus/imunologia , Receptores Virais/imunologia , Receptores Virais/ultraestrutura , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/ultraestrutura , Agrobacterium tumefaciens , Animais , Anticorpos Monoclonais/ultraestrutura , Sítios de Ligação/imunologia , Proteínas de Transporte/imunologia , Linhagem Celular , Chlorocebus aethiops , Cristalografia por Raios X , Drosophila melanogaster , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Marburgvirus/metabolismo , Glicoproteínas de Membrana/imunologia , Proteína C1 de Niemann-Pick , Nicotiana , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Ligação Viral
6.
PLoS Pathog ; 13(1): e1006132, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076420

RESUMO

Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Autofagia/fisiologia , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/transmissão , Doença do Vírus de Marburg/transmissão , Marburgvirus/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus/genética , Animais , Autofagia/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cricetinae , Ebolavirus/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Humanos , Doença do Vírus de Marburg/patologia , Doença do Vírus de Marburg/virologia , Marburgvirus/genética , Ubiquitina-Proteína Ligases Nedd4 , Prolina/análogos & derivados , Prolina/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Sci Rep ; 6: 34589, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713552

RESUMO

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.


Assuntos
Ebolavirus/metabolismo , Regulação da Expressão Gênica , Doença pelo Vírus Ebola/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Transdução de Sinais , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Quirópteros , Humanos
8.
J Infect Dis ; 212 Suppl 2: S146-53, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25786917

RESUMO

Marburg virus (MARV) and the ebolaviruses belong to the family Filoviridae (the members of which are filoviruses) that cause severe hemorrhagic fever. Infection requires fusion of the host and viral membranes, a process that occurs in the host cell endosomal compartment and is facilitated by the envelope glycoprotein fusion subunit, GP2. The N-terminal fusion loop (FL) of GP2 is a hydrophobic disulfide-bonded loop that is postulated to insert and disrupt the host endosomal membrane during fusion. Here, we describe the first structural and functional studies of a protein corresponding to the MARV GP2 FL. We found that this protein undergoes a pH-dependent conformational change, as monitored by circular dichroism and nuclear magnetic resonance. Furthermore, we report that, under low pH conditions, the MARV GP2 FL can induce content leakage from liposomes. The general aspects of this pH-dependent structure and lipid-perturbing behavior are consistent with previous reports on Ebola virus GP2 FL. However, nuclear magnetic resonance studies in lipid bicelles and mutational analysis indicate differences in structure exist between MARV and Ebola virus GP2 FL. These results provide new insight into the mechanism of MARV GP2-mediated cell entry.


Assuntos
Marburgvirus/química , Marburgvirus/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Escherichia coli/virologia , Concentração de Íons de Hidrogênio , Lipídeos/química , Lipossomos/metabolismo , Doença do Vírus de Marburg/virologia , Conformação Proteica , Internalização do Vírus
9.
Cell Microbiol ; 15(2): 270-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23186212

RESUMO

The key player to assemble the filamentous Marburg virus particles is the matrix protein VP40 which orchestrates recruitment of nucleocapsid complexes and the viral glycoprotein GP to the budding sites at the plasma membrane. Here, VP40 induces the formation of the viral particles, determines their morphology and excludes cellular proteins from the virions. Budding takes place at filopodia in non-polarized cells and at the basolateral cell pole in polarized epithelial cells. Molecular basis of how VP40 exerts its multifunctional role in these different processes is currently under investigation. Here we summarize recent data on structure-function relationships of VP40 and GP in connection with their function in assembly. Questions concerning the complex particle assembly, budding and release remaining enigmatic are addressed. Cytoplasmic domains of viral surface proteins often serve as a connection to the viral matrix protein or as binding sites for further viral or cellular proteins. A cooperation of MARV GP and VP40 building up the viral envelope can be proposed and is discussed in more detail in this review, as the cytoplasmic domain of GP represents an obvious interaction candidate because of its localization adjacent to the VP40 layer. Interestingly, truncation of the short cytoplasmic domain of GP neither inhibited interaction with VP40 nor incorporation of GP into progeny viral particles. Based on reverse genetics we generated recombinant virions expressing a GP mutant without the cytoplasmic tail. Investigations revealed attenuation in virus growth and an obvious defect in entry. Further investigations showed that the truncation of the cytoplasmic domain of GP impaired the structural integrity of the ectodomain, whichconsequently had impact on entry steps downstream of virus binding. Our data indicated that changes in the cytoplasmic domain are relayed over the lipid membrane to alter the function of the ectodomain.


Assuntos
Glicoproteínas/metabolismo , Marburgvirus/metabolismo , Proteínas de Membrana/metabolismo , Nucleocapsídeo/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus/fisiologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , Glicoproteínas/genética , Humanos , Marburgvirus/genética , Marburgvirus/ultraestrutura , Proteínas de Membrana/genética , Nucleocapsídeo/genética , Nucleocapsídeo/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Células Vero , Proteínas da Matriz Viral/genética
10.
J Virol ; 85(16): 8188-96, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21680524

RESUMO

Marburg virus infection is mediated by the only viral surface protein, GP, a trimeric type I transmembrane protein. While its ectodomain mediates receptor binding and fusion of viral and cellular membranes and its transmembrane domain is essential for the recruitment of GP into budding particles by the matrix protein VP40, the role of the short cytoplasmic domain has remained enigmatic. Here we show that a missing cytoplasmic domain did not impair trimerization, intracellular transport, or incorporation of GP into infectious Marburg virus-like particles (iVLPs) but altered the glycosylation pattern as well as the recognition of GP by neutralizing antibodies. These results suggest that subtle conformational changes took place in the ectodomain. To investigate the function of the cytoplasmic domain during viral entry, a novel entry assay was established to monitor the uptake of filamentous VLPs by measuring the occurrence of luciferase-labeled viral nucleocapsids in the cytosol of target cells. This quantitative assay showed that the entry process of VLPs incorporating GP missing its cytoplasmic domain (GPΔCD) was impaired. Supporting these results, iVLPs incorporating a mutant GP missing its cytoplasmic domain were significantly less infectious than iVLPs containing wild-type GP. Taken together, the data indicate that the absence of the short cytoplasmic domain of Marburg virus GP may induce conformational changes in the ectodomain which impact the filoviral entry process.


Assuntos
Marburgvirus/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Anticorpos Monoclonais , Citoplasma , Técnica Indireta de Fluorescência para Anticorpo , Glicosilação , Células HEK293 , Humanos , Luciferases , Marburgvirus/metabolismo , Marburgvirus/patogenicidade , Mutação , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Proteínas da Matriz Viral/metabolismo
11.
J Virol ; 81(9): 4895-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17301151

RESUMO

Marburg virus (MARV) VP40 is a matrix protein that can be released from mammalian cells in the form of virus-like particles (VLPs) and contains the PPPY sequence, which is an L-domain motif. Here, we demonstrate that the PPPY motif is important for VP40-induced VLP budding and that VLP production is significantly enhanced by coexpression of NP and GP. We show that Tsg101 interacts with VP40 depending on the presence of the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and plays an important role in VLP budding. These findings provide new insights into the mechanism of MARV budding.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Ligação a DNA/metabolismo , Marburgvirus/metabolismo , Fatores de Transcrição/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Animais , Células COS , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Ebolavirus/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas do Envelope Viral/metabolismo
12.
Cell Microbiol ; 9(4): 939-51, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17140405

RESUMO

Viruses exploit the cytoskeleton of host cells to transport their components and spread to neighbouring cells. Here we show that the actin cytoskeleton is involved in the release of Marburgvirus (MARV) particles. We found that peripherally located nucleocapsids and envelope precursors of MARV are located either at the tip or at the side of filopodial actin bundles. Importantly, viral budding was almost exclusively detected at filopodia. Inhibiting actin polymerization in MARV-infected cells significantly diminished the amount of viral particles released into the medium. This suggested that dynamic polymerization of actin in filopodia is essential for efficient release of MARV. The viral matrix protein VP40 plays a key role in the release of MARV particles and we found that the intracellular localization of recombinant VP40 and its release in form of virus-like particles were strongly influenced by overexpression or inhibition of myosin 10 and Cdc42, proteins important in filopodia formation and function. We suggest that VP40, which is capable of interacting with viral nucleocapsids, provides an interface of MARV subviral particles and filopodia. As filopodia are in close contact with neighbouring cells, usurpation of these structures may facilitate spread of MARV to adjacent cells.


Assuntos
Marburgvirus/metabolismo , Pseudópodes/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Humanos , Imunoprecipitação , Marburgvirus/crescimento & desenvolvimento , Marburgvirus/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Imunoeletrônica , Nucleocapsídeo/metabolismo , Nucleocapsídeo/ultraestrutura , Pseudópodes/ultraestrutura , Pseudópodes/virologia , Células Vero , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
13.
FASEB J ; 20(14): 2519-30, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17023517

RESUMO

Ebola and Marburg viruses can cause hemorrhagic fever (HF) outbreaks with high mortality in primates. Whereas Marburg (MARV), Ebola Zaire (ZEBOV), and Ebola Sudan (SEBOV) viruses are pathogenic in humans, apes, and monkeys, Ebola Reston (REBOV) is pathogenic only in monkeys. Early immunosuppression may contribute to pathogenesis by facilitating viral replication. Lymphocyte depletion, intravascular apoptosis, and cytokine dysregulation are prominent in fatal cases. Here we functionally characterize a 17 amino acid domain in filoviral glycoproteins that resembles an immunosuppressive motif in retroviral envelope proteins. Activated human or rhesus peripheral blood mononuclear cells (PBMC) were exposed to inactivated ZEBOV or a panel of 17mer peptides representing all sequenced strains of filoviruses, then analyzed for CD4+ and CD8+ T cell activation, apoptosis, and cytokine expression. Exposure of human and rhesus PBMC to ZEBOV, SEBOV, or MARV peptides or inactivated ZEBOV resulted in decreased expression of activation markers on CD4 and CD8 cells; CD4 and CD8 cell apoptosis as early as 12 h postexposure; inhibition of CD4 and CD8 cell cycle progression; decreased interleukin (IL)-2, IFN-gamma, and IL12-p40 expression; and increased IL-10 expression. In contrast, only rhesus T cells were sensitive to REBOV peptides. These findings are consistent with the observation that REBOV is not pathogenic in humans and have implications for understanding the pathogenesis of filoviral HF.


Assuntos
Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Marburgvirus/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta Imunológica , Glicoproteínas/química , Humanos , Leucócitos Mononucleares/metabolismo , Macaca mulatta , Proteínas do Envelope Viral/química
14.
J Virol ; 80(14): 7235-44, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16809329

RESUMO

Marburg virus (MARV) and Ebola virus (EBOV), members of the viral family Filoviridae, cause fatal hemorrhagic fevers in humans and nonhuman primates. High viral burden is coincident with inadequate adaptive immune responses and robust inflammatory responses, and virus-mediated dysregulation of early host defenses has been proposed. Recently, a novel class of innate receptors called the triggering receptors expressed in myeloid cells (TREM) has been discovered and shown to play an important role in innate inflammatory responses and sepsis. Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory cytokines, and phenotypic changes. A peptide specific to TREM-1 diminished the release of tumor necrosis factor alpha by filovirus-activated human neutrophils in vitro, and a soluble recombinant TREM-1 competitively inhibited the loss of cell surface TREM-1 that otherwise occurred on neutrophils exposed to filoviruses. These data imply direct activation of TREM-1 by filoviruses and also indicate that neutrophils may play a prominent role in the immune and inflammatory responses to filovirus infections.


Assuntos
Ebolavirus/imunologia , Marburgvirus/imunologia , Glicoproteínas de Membrana/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/metabolismo , Neutrófilos/virologia , Receptores Imunológicos/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Chlorocebus aethiops , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/mortalidade , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/mortalidade , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/mortalidade , Marburgvirus/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas de Membrana , Fosforilação , Processamento de Proteína Pós-Traducional/imunologia , Receptores Imunológicos/biossíntese , Receptores Imunológicos/metabolismo , Sepse/imunologia , Sepse/metabolismo , Sepse/mortalidade , Receptor Gatilho 1 Expresso em Células Mieloides , Células Vero
15.
J Gen Virol ; 86(Pt 9): 2535-2542, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16099912

RESUMO

Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.


Assuntos
Moléculas de Adesão Celular/metabolismo , Ebolavirus/metabolismo , Produtos do Gene env/metabolismo , Lectinas Tipo C/metabolismo , Lectina de Ligação a Manose/metabolismo , Marburgvirus/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Competitiva , Linhagem Celular , Proteínas do Sistema Complemento/metabolismo , Ebolavirus/patogenicidade , Humanos , Marburgvirus/patogenicidade , Testes de Neutralização
16.
J Gen Virol ; 86(Pt 4): 1181-1188, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15784912

RESUMO

High mortality rates and lack of an available vaccine against Marburg haemorrhagic fever (MHF) highlight the need for a defensive therapy against MHF and greater knowledge of the causative agent, the Marburg virus (MARV). Here, RNA interference (RNAi) is employed to destroy MARV transcripts, disrupting replication and allowing analysis of various roles of MARV proteins. Small interfering RNAs (siRNAs) homologous to three MARV transcripts (NP, VP35 and VP30) were co-transfected into cells with plasmids encoding the corresponding nucleocapsid proteins. The resulting decrease in MARV nucleocapsid-protein levels was shown to be specific, as siRNA that was not homologous to the MARV genome did not decrease the levels of viral nucleocapsid proteins. Additionally, transcript levels of double-stranded RNA (dsRNA)-sensor proteins, the dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase 1 remained unchanged, suggesting that the decrease in viral proteins was not a result of activation of the antiviral properties of the interferon system. Subsequently, siRNAs were shown to reduce intracellular viral proteins in MARV-infected cells and viral material released into the medium. Targeted reduction of VP30 downregulated the intracellular levels of all other viral proteins, suggesting that VP30 plays an essential role for transcription/replication. The efficient reduction of MARV replication also suggests that RNAi may provide an agent against MHF.


Assuntos
Marburgvirus/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Animais , Sequência de Bases , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Células HeLa , Humanos , Marburgvirus/genética , Marburgvirus/patogenicidade , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Plasmídeos , RNA Interferente Pequeno/genética , Transfecção , Células Vero , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Proteínas Virais/genética
17.
Virology ; 295(1): 20-9, 2002 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-12033762

RESUMO

Marburg virus, a filovirus, contains only one transmembrane protein (GP) which is responsible for receptor recognition on target cells. GP, a type I membrane protein of approximately 220 kDa, is acylated and highly glycosylated carrying N- and O-linked sugar side chains. GP is transported through the exocytotic pathway toward the plasma membrane where budding of virions takes place. In the trans-Golgi network, GP is proteolytically activated by the prohormone convertase furin into two subunits GP(1) and GP(2). In the present paper, we provide evidence that GP undergoes an additional posttranslational modification; it is phosphorylated at its ectodomain. Phosphorylation takes place at serine residues between amino acid 260 and 273. The respective serines are located in conserved recognition sites for luminal protein kinases (protein kinase CK II and Golgi casein kinase). Consistent with this data, it was found that GP was phosphorylated in the Golgi apparatus of the expressing HeLa cells before cleavage of the molecule. GP is the first example of a viral glycoprotein with a phosphorylated ectodomain.


Assuntos
Marburgvirus/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Genoma Viral , Complexo de Golgi/virologia , Células HeLa , Humanos , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Serina/química , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
18.
Virology ; 268(1): 1-6, 2000 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10683320

RESUMO

Processing of the transmembrane glycoprotein (GP) of Marburg virus involved the conversion of an endo H-sensitive, ER-specific form into an endo H-resistant, Golgi-specific precursor that was cleaved into GP(1) and GP(2). Cleavage was mediated by furin or another subtilisin-like endoprotease with similar substrate specificity as indicated by mutational analysis of the cleavage site and inhibition using peptidyl chloromethylketones. Mature GP consisted of disulfide-linked GP(1) and GP(2) subunits.


Assuntos
Marburgvirus/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Animais , Chlorocebus aethiops , Furina , Células HeLa , Humanos , Marburgvirus/genética , Mutagênese Sítio-Dirigida , Subtilisinas/metabolismo , Células Vero
20.
J Immunol Methods ; 211(1-2): 21-31, 1998 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9617828

RESUMO

Previous in vitro and in vivo experiments in our laboratory have demonstrated that cross-linked bispecific monoclonal antibody (mAb) complexes (Heteropolymers, HP) facilitate binding of prototype pathogens to primate erythrocytes (E) via the E complement receptor, CR1. These E-bound immune complexes are safely and rapidly cleared from the bloodstream. In order to generate a robust bispecific system for HP-mediated clearance of real pathogens such as Filoviruses, we have developed the necessary methodologies and reagents using both inactivated Marburg virus (iMV) and a recombinant form of its surface envelope glycoprotein (rGP). We identified mAbs which bind rGP in solution phase immunoprecipitation experiments. HP were prepared by chemically cross-linking an anti-CR1 mAb with several of these anti-Marburg virus mAbs and used to facilitate binding of iMV and rGP to monkey and human E. These HP mediate specific and quantitative binding (> or = 90%) of both antigens to monkey and human E. Binding was also demonstrable in an indirect RIA. E with bound Marburg virus were probed with 125I labeled mAbs to the Marburg surface glycoprotein and more than 100 mAbs are bound per E. It should be possible to adapt this general approach to other pathogens, and experiments underway should lead to an in vivo test of HP-mediated clearance of Marburg virus.


Assuntos
Anticorpos Antivirais/metabolismo , Eritrócitos/virologia , Marburgvirus/metabolismo , Receptores de Complemento 3b/metabolismo , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Células Cultivadas , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Marburgvirus/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Radioimunoensaio , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA