Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Astrobiology ; 24(6): 590-603, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805190

RESUMO

Geological evidence and atmospheric and climate models suggest habitable conditions occurred on early Mars, including in a lake in Gale crater. Instruments aboard the Curiosity rover measured organic compounds of unknown provenance in sedimentary mudstones at Gale crater. Additionally, Curiosity measured nitrates in Gale crater sediments, which suggests that nitrate-dependent Fe2+ oxidation (NDFO) may have been a viable metabolism for putative martian life. Here, we perform the first quantitative assessment of an NDFO community that could have existed in an ancient Gale crater lake and quantify the long-term preservation of biological necromass in lakebed mudstones. We find that an NDFO community would have the capacity to produce cell concentrations of up to 106 cells mL-1, which is comparable to microbes in Earth's oceans. However, only a concentration of <104 cells mL-1, due to organisms that inefficiently consume less than 10% of precipitating nitrate, would be consistent with the abundance of organics found at Gale. We also find that meteoritic sources of organics would likely be insufficient as a sole source for the Gale crater organics, which would require a separate source, such as abiotic hydrothermal or atmospheric production or possibly biological production from a slowly turning over chemotrophic community.


Assuntos
Meio Ambiente Extraterreno , Ferro , Marte , Nitratos , Oxirredução , Nitratos/análise , Ferro/química , Ferro/análise , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Exobiologia/métodos , Compostos Orgânicos/análise , Lagos/química
2.
Life Sci Space Res (Amst) ; 41: 29-42, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670650

RESUMO

During a human mission to Mars, astronauts would be continuously exposed to galactic cosmic rays (GCR) consisting of high energy protons and heavier ions coming from outside our solar system. Due to their high energy, GCR ions can penetrate spacecraft and space habitat structures, directly reaching human organs. Additionally, they generate secondary particles when interacting with shielding materials and human tissues. Baryon secondaries have been the focus of many previous studies, while meson and lepton secondaries have been considered to a much lesser extent. In this work, we focus on assessing the tissue-specific dose equivalents and the effective dose for males of secondary mesons and leptons for the interplanetary cruise phase and the surface phase on Mars. We also provide the energy distribution of the secondary pions in each human organ since they are dominant compared to other mesons and leptons. For this calculation, the PHITS3.27 Monte Carlo simulation toolkit is used to compute the energy spectra of particles in organs in a realistic human phantom. Based on the simulation data, the dose equivalent has been estimated with radiation quality factors in ICRP Publication 60 and in the latest NASA Space Cancer Risk model (NSCR-2022). The effective dose is then assessed with the tissue weighting factors in ICRP Publication 103 and in the NSCR model, separately. The results indicate that the contribution of secondary mesons and leptons to the total effective dose is 6.1 %, 9.1 %, and 11.3 % with the NSCR model in interplanetary space behind 5, 20, and 50 g/cm2 aluminum shielding, respectively, with similar values using the ICRP model. The outcomes of this work lead to an improved understanding of the potential health risks induced by secondary particles for exploration missions to Mars and other destinations.


Assuntos
Radiação Cósmica , Marte , Doses de Radiação , Voo Espacial , Radiação Cósmica/efeitos adversos , Humanos , Astronautas , Método de Monte Carlo , Masculino
3.
Anal Chem ; 96(12): 4764-4773, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38484023

RESUMO

Ancient peptides are remnants of early biochemistry that continue to play pivotal roles in current proteins. They are simple molecules yet complex enough to exhibit independent functions, being products of an evolved biochemistry at the interface of life and nonlife. Their adsorption to minerals may contribute to their stabilization and preservation over time. To investigate the feasibility of conserved peptide sequences and structures as target biomarkers for the search for life on Mars or other planetary bodies, we conducted a bioinformatics selection of well-conserved ancient peptides and produced polyclonal antibodies for their detection using fluorescence microarray immunoassays. Additionally, we explored how adsorbing peptides to Mars-representative minerals to form organomineral complexes could affect their immunological detection. The results demonstrated that the selected peptides exhibited autonomous folding, with some of them regaining their structure, even after denaturation. Furthermore, their cognate antibodies detected their conformational features regardless of amino acid sequences, thereby broadening the spectrum of target peptide sequences. While certain antibodies displayed unspecific binding to bare minerals, we validated that peptide-mineral complexes can be detected using sandwich immunoassays, as confirmed through desorption and competitive assays. Consequently, we conclude that the diversity of peptide sequences and structures suitable for use as target biomarkers in astrobiology can be constrained to a few well conserved sets, and they can be detected even if they are adsorbed in organomineral complexes.


Assuntos
Exobiologia , Marte , Exobiologia/métodos , Minerais , Sequência de Aminoácidos , Peptídeos , Anticorpos , Biomarcadores
4.
Sci Rep ; 14(1): 7334, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409284

RESUMO

Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.


Assuntos
Radiação Cósmica , Marte , Voo Espacial , Camundongos , Masculino , Feminino , Animais , Meio Ambiente Extraterreno , Caracteres Sexuais , Radiação Ionizante , Astronautas , Radiação Cósmica/efeitos adversos , Imunidade
5.
Sci Total Environ ; 922: 171217, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417521

RESUMO

This paper explores the potential of Technosols made from non-hazardous industrial wastes as a sustainable solution for highly acidic iron-rich soils at the Rio Tinto mining site (Spain), a terrestrial Mars analog. These mine soils exhibit extreme acidity (pHH2O = 2.1-3.0), low nutrient availability (non-acid cation saturation < 20 %), and high levels of Pb (3420 mg kg-1), Cu (504 mg kg-1), Zn (415 mg kg-1), and As (319 mg kg-1), hindering plant growth and ecosystem restoration. To address these challenges, the study systematically analyzed selected waste materials, formulated them into Technosols, and conducted a four-month pot trial to evaluate the growth of Brassica juncea under greenhouse conditions. Technosols were tailored by adding varying weight percentages of waste amendments into the mine Technosol, specifically 10 %, 25 %, and 50 %. The waste amendments comprised a blend of organic waste (water clarification sludge, WCS) and inorganic wastes (white steel slag, WSS; and furnace iron slag, FIS). The formulations included: (T0) exclusively mine Technosol (control); (T1) 60 % WCS + 40 % WSS; (T2) 60 % WCS + 40 % FIS; and (T3) 50 % WCS + 16.66 % WSS + 33.33 % FIS. The analyses covered leachate quality, soil pore water chemistry, and plant response (germination and survival rates, plant height, and leaf number). Results revealed a significant reduction in leachable contaminant concentrations, with Pb (26.16 mg kg-1), Zn (4.94 mg kg-1), and Cu (2.29 mg kg-1) dropping to negligible levels and shifting towards less toxic species. These changes improved soil conditions, promoting seed germination and seedling growth. Among the formulations tested, Technosol T1 showed promise in overcoming mine soil limitations, enhancing plant adaptation, buffering against acidification, and stabilizing contaminants through precipitation and adsorption mechanisms. The paper stresses the importance of tailoring waste amendments to specific soil conditions, and highlights the broader implications of the Technosol approach, such as waste valorization, soil stabilization, and insights for Brassica juncea growth in extreme environments, including Martian soil simulants.


Assuntos
Marte , Poluentes do Solo , Ferro/análise , Solo , Ecossistema , Meio Ambiente Extraterreno , Chumbo/análise , Plantas , Água/análise , Poluentes do Solo/análise
6.
Astrobiology ; 23(12): 1303-1336, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133823

RESUMO

In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.


Assuntos
Cianobactérias , Marte , Robótica , Humanos , Exobiologia/métodos , Trifosfato de Adenosina , Biomarcadores/análise , Meio Ambiente Extraterreno
7.
Astrobiology ; 23(7): 769-785, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222732

RESUMO

Benefiting from their adaptability to extreme environments, subsurface microorganisms have been discovered in sedimentary and igneous rock environments on Earth and have been advocated as candidates in the search for extraterrestrial life. In this article, we study iron-mineralized microstructures in calcite-filled veins within basaltic pillows of the late Ladinian Fernazza group (Middle Triassic, 239 Ma) in Italy. These microstructures represent diverse morphologies, including filaments, globules, nodules, and micro-digitate stromatolites, which are similar to extant iron-oxidizing bacterial communities. In situ analyses including Raman spectroscopy have been used to investigate the morphological, elemental, mineralogical, and bond-vibrational modes of the microstructures. According to the Raman spectral parameters, iron minerals preserve heterogeneous ultrastructures and crystallinities, coinciding with the morphologies and precursor microbial activities. The degree of crystallinity usually represents a microscale gradient decreasing toward previously existing microbial cells, revealing a decline of mineralization due to microbial activities. This study provides an analog of possible rock-dwelling subsurface life on Mars or icy moons and advocates Raman spectroscopy as an efficient tool for in situ analyses. We put forward the concept that ultrastructural characteristics of minerals described by Raman spectral parameters corresponding to microscale morphologies could be employed as carbon-lean biosignatures in future space missions.


Assuntos
Ferro , Marte , Ferro/análise , Meio Ambiente Extraterreno/química , Silicatos , Minerais/análise , Exobiologia/métodos
8.
J Appl Physiol (1985) ; 134(6): 1438-1449, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102698

RESUMO

Gonadal hormones, such as testosterone and estradiol, modulate muscle size and strength in males and females. However, the influence of sex hormones on muscle strength in micro- and partial-gravity environments (e.g., the Moon or Mars) is not fully understood. The purpose of this study was to determine the influence of gonadectomy (castration/ovariectomy) on progression of muscle atrophy in both micro- and partial-gravity environments in male and female rats. Male and female Fischer rats (n = 120) underwent castration/ovariectomy (CAST/OVX) or sham surgery (SHAM) at 11 wk of age. After 2 wk of recovery, rats were exposed to hindlimb unloading (0 g), partial weight bearing at 40% of normal loading (0.4 g, Martian gravity), or normal loading (1.0 g) for 28 days. In males, CAST did not exacerbate body weight loss or other metrics of musculoskeletal health. In females, OVX animals tended to have greater body weight loss and greater gastrocnemius loss. Within 7 days of exposure to either microgravity or partial gravity, females had detectable changes to estrous cycle, with greater time spent in low-estradiol phases diestrus and metestrus (∼47% in 1 g vs. 58% in 0 g and 72% in 0.4 g animals, P = 0.005). We conclude that in males testosterone deficiency at the initiation of unloading has little effect on the trajectory of muscle loss. In females, initial low estradiol status may result in greater musculoskeletal losses.NEW & NOTEWORTHY We find that removal of gonadal hormones does not exacerbate muscle loss in males or females during exposure to either simulated microgravity or partial-gravity environments. However, simulated micro- and partial gravity did affect females' estrous cycles, with more time spent in low-estrogen phases. Our findings provide important data on the influence of gonadal hormones on the trajectory of muscle loss during unloading and will help inform NASA for future crewed missions to space and other planets.


Assuntos
Meio Ambiente Extraterreno , Marte , Humanos , Ratos , Masculino , Feminino , Animais , Ovariectomia , Testosterona/fisiologia , Estradiol , Músculo Esquelético , Orquiectomia , Hormônios Gonadais , Ratos Endogâmicos F344 , Redução de Peso
9.
Life Sci Space Res (Amst) ; 36: 27-35, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682826

RESUMO

Planetary protection guidance for martian exploration has become a notable point of discussion over the last decade. This is due to increased scientific interest in the habitability of the red planet with updated techniques, missions becoming more attainable by smaller space agencies, and both the private sector and governments engaging in activities to facilitate commercial opportunities and human-crewed missions. The international standards for planetary protection have been developed through consultation with the scientific community and the space agencies by the Committee on Space Research's (COSPAR) Panel on Planetary Protection, which provides guidance for compliance with the Outer Space Treaty of 1967. In 2021, the Panel evaluated recent scientific data and literature regarding the planetary protection requirements for Mars and the implications of this on the guidelines. In this paper, we discuss the COSPAR Planetary Protection Policy for Mars, review the new scientific findings and discuss the next steps required to enable the next generation of robotic missions to Mars.


Assuntos
Marte , Procedimentos Cirúrgicos Robóticos , Voo Espacial , Humanos , Planetas , Meio Ambiente Extraterreno , Astronave , Exobiologia/métodos , Contenção de Riscos Biológicos , Política Pública
10.
J Mol Evol ; 91(1): 60-75, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36576533

RESUMO

Reduced oxidation state phosphorus compounds may have been brought to the early Earth via meteorites or could have formed through geologic processes. These compounds could have played a role in the origin of biological phosphorus (P, hereafter) compounds. Reduced oxidation state P compounds are generally more soluble in water and are more reactive than orthophosphate and its associated minerals. However, to date no facile routes to generate C-O-P type compounds using reduced oxidation state P compounds have been reported under prebiotic conditions. In this study, we investigate the reactions between reduced oxidation state P compounds-and their oxidized products generated via Fenton reactions-with the nucleosides uridine and adenosine. The inorganic P compounds generated via Fenton chemistry readily react with nucleosides to produce organophosphites and organophosphates, including phosphate diesters via one-pot syntheses. The reactions were facilitated by NH4+ ions and urea as a condensation agent. We also present the results of the plausible stability of the organic compounds such as adenosine in an environment containing an abundance of H2O2. Such results have direct implications on finding organic compounds in Martian environments and other rocky planets (including early Earth) that were richer in H2O2 than O2. Finally, we also suggest a route for the sink of these inorganic P compounds, as a part of a plausible natural P cycle and show the possible formation of secondary phosphate minerals such as struvite and brushite on the early Earth.


Assuntos
Marte , Compostos Organofosforados , Compostos Organofosforados/química , Meio Ambiente Extraterreno , Peróxido de Hidrogênio , Minerais/química , Fosfatos/química , Nucleosídeos , Adenosina
11.
Sci Rep ; 12(1): 20823, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460784

RESUMO

This work attempted to construct a new metal artifact reduction (MAR) framework in kilo-voltage (kV) computed tomography (CT) images by combining (1) deep learning and (2) multi-modal imaging, defined as MARTIAN (Metal Artifact Reduction throughout Two-step sequentIAl deep convolutional neural Networks). Most CNNs under supervised learning require artifact-free images to artifact-contaminated images for artifact correction. Mega-voltage (MV) CT is insensitive to metal artifacts, unlike kV CT due to different physical characteristics, which can facilitate the generation of artifact-free synthetic kV CT images throughout the first network (Network 1). The pairs of true kV CT and artifact-free kV CT images after post-processing constructed a subsequent network (Network 2) to conduct the actual MAR process. The proposed framework was implemented by GAN from 90 scans for head-and-neck and brain radiotherapy and validated with 10 independent cases against commercial MAR software. The artifact-free kV CT images following Network 1 and post-processing led to structural similarity (SSIM) of 0.997, and mean-absolute-error (MAE) of 10.2 HU, relative to true kV CT. Network 2 in charge of actual MAR successfully suppressed metal artifacts, relative to commercial MAR, while retaining the detailed imaging information, yielding the SSIM of 0.995 against 0.997 from the commercial MAR.


Assuntos
Meio Ambiente Extraterreno , Marte , Tomografia Computadorizada por Raios X , Redes Neurais de Computação , Imagem Multimodal
12.
Astrobiology ; 22(11): 1337-1350, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282180

RESUMO

Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Humanos , Dessecação , Congelamento , Saccharomyces cerevisiae , Esporos Bacterianos/efeitos da radiação , Radiação Ionizante , Poliploidia
13.
Astrobiology ; 22(10): 1199-1209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36194868

RESUMO

The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.


Assuntos
Cianobactérias , Marte , Biomarcadores , Cianobactérias/efeitos da radiação , Meio Ambiente Extraterreno , Minerais , Radiação Ionizante
14.
Sci Rep ; 12(1): 13677, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953504

RESUMO

The Martian subsurface is more favorable for organic preservation than its surface because of the shielding effect of rocks from cosmic rays and UV radiation with increasing depth. Nevertheless, the natural radioactivity on Mars owing to U, Th, and K must be considered to study the possible extant and/or extinct life. Here, we demonstrate the importance of natural radiation on the amino acid glycine in two different chemical environments, GlyFeSO4 5H2O and GlyMgSO4 5H2O, which are coordination compounds considered relevant to Mars. The results show that after a 600 kGy dose of gamma radiation, glycine was more stable when it bonded to Mg in the GlyMgSO4 5H2O coordination compound, it was less stable when it bonded to Fe in the GlyFeSO4 5H2O compound. Studies on the effects of gamma radiation on preservation of organic molecules bound to minerals and other potential compounds on Mars are significantly important in the search for biosignatures.


Assuntos
Marte , Radioatividade , Meio Ambiente Extraterreno , Raios gama , Glicina
16.
Astrobiology ; 22(9): 1081-1098, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704291

RESUMO

On Earth, the circulation of Fe-rich fluids in hydrothermal environments leads to characteristic iron mineral deposits, reflecting the pH and redox chemical conditions of the hydrothermal system, and is often associated with chemotroph microorganisms capable of deriving energy from chemical gradients. On Mars, iron-rich hydrothermal sites are considered to be potentially important astrobiological targets for searching evidence of life during exploration missions, such as the Mars 2020 and the ExoMars 2022 missions. In this study, an extinct hydrothermal chimney from the Jaroso hydrothermal system (SE Spain), considered an interesting geodynamic and mineralogical terrestrial analog for Mars, was analyzed using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The sample consists of a fossil vent in a Miocene shallow-marine sedimentary deposit composed of a marl substrate, an iron-rich chimney pipe, and a central space filled with backfilling deposits and vent condensates. The iron crust is particularly striking due to the combined presence of molecular and morphological indications of a microbial colonization, including mineral microstructures (e.g., stalks, filaments), iron oxyhydroxide phases (altered goethite, ferrihydrite), and organic signatures (carotenoids, organopolymers). The clear identification of pigments by resonance Raman spectroscopy and the preservation of organics in association with iron oxyhydroxides by Raman microimaging demonstrate that the iron crust was indeed colonized by microbial communities. These analyses confirm that Raman spectroscopy is a powerful tool for documenting the habitability of such historical hydrothermal environments. Finally, based on the results obtained, we propose that the ancient iron-rich hydrothermal pipes should be recognized as singular terrestrial Mars analog specimens to support the preparatory work for robotic in situ exploration missions to Mars, as well as during the subsequent interpretation of data returned by those missions.


Assuntos
Fósseis , Marte , Exobiologia , Sedimentos Geológicos/química , Ferro/análise , Microscopia Eletrônica de Varredura , Minerais/análise , Espectrometria por Raios X , Análise Espectral Raman/métodos , Difração de Raios X
17.
Health Phys ; 123(2): 116-127, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551137

RESUMO

ABSTRACT: The space radiation environment consists of a complex mixture of ionizing particles that pose significant health risks to crew members. NASA currently requires that an astronaut's career Risk of Exposure Induced Death (REID) for cancer mortality should not exceed 3% at the upper 95% confidence level. This career radiation limit is likely to be exceeded for even the shortest round-trip mission scenario to Mars. As such, NASA has begun to pursue more vigorously approaches to directly reduce radiation risks, despite the large uncertainties associated with such projections. A recent study considered cohort studies of aspirin and warfarin as possible medical countermeasures (MCMs) acting to reduce background cancer mortality rates used in astronaut risk projections. It was shown that such MCMs can reduce the REID for specific tissues in restricted time intervals over which the drugs were administered; however, the cumulative effect on total lifetime REID was minimal. As an extension, the present work addresses more general MCM requirements that would be needed to meet current NASA radiation limits for a Mars mission scenario. A sensitivity analysis is performed within the major components of the NASA cancer risk model that would likely be modified by MCM interventions. This includes the background cancer incidence and mortality rates, epidemiologically based hazard rates derived from acute terrestrial exposures, and radiation quality factors used to translate terrestrial exposures to space radiation. Relationships between possible MCMs and each of these components are discussed. Results from this study provide important information regarding MCM requirements needed to meet NASA limits for planned Mars missions. Insight into the types of countermeasures expected to yield greatest reductions in crew risk is also gained.


Assuntos
Radiação Cósmica , Marte , Contramedidas Médicas , Voo Espacial , Astronautas , Radiação Cósmica/efeitos adversos , Humanos , Doses de Radiação , Medição de Risco/métodos , Estados Unidos , United States National Aeronautics and Space Administration
18.
J Clin Monit Comput ; 36(5): 1355-1366, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34677821

RESUMO

PURPOSE: Altered gravity environments introduce cardiovascular changes that may require continuous hemodynamic monitoring in both spaceflight and terrestrial analogs. Conditions in such environments are often prohibitive to direct/invasive methods and therefore, indirect measurement techniques must be used. This study compares two common cardiac measurement techniques used in the human spaceflight domain, pulse contour analysis (PCA-Nexfin) and inert gas rebreathing (IGR-Innocor), in subjects completing ergometer exercise under altered gravity conditions simulated using a tilt paradigm. METHODS: Seven subjects were tilted to three different angles representing Martian, Lunar, and microgravity conditions in the rostrocaudal direction. They completed a 36-min submaximal cardiovascular exercise protocol in each condition. Hemodynamics were continuously monitored using Nexfin and Innocor. RESULTS: Linear mixed-effects models revealed a significant bias of [Formula: see text] ml ([Formula: see text]) in stroke volume and [Formula: see text] l/min ([Formula: see text]) in cardiac output, with Nexfin measuring greater than Innocor in both variables. These values are in agreement with a Bland-Altman analysis. The correlation of stroke volume and cardiac output measurements between Nexfin and Innocor were [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) respectively. CONCLUSION: There is a poor agreement in absolute stroke volume and cardiac output values between measurement via PCA (Nexfin) and IGR (Innocor) in subjects who are exercising in simulated altered gravity environments. These results suggest that the chosen measurement method and device greatly impacts absolute measurements of cardiac output. However, there is a good level of agreement between the two devices when measuring relative changes. Either of these devices seem adequate to capture cardiac changes, but should not be solely relied upon for accurate measurement of absolute cardiac output.


Assuntos
Meio Ambiente Extraterreno , Marte , Débito Cardíaco , Exercício Físico , Teste de Esforço/métodos , Humanos
20.
Astrobiology ; 21(11): 1363-1386, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34402652

RESUMO

Answering the question of whether life ever existed on Mars is a key goal of both NASA's and ESA's imminent Mars rover missions. The obfuscatory effects of oxidizing salts, such as perchlorates and sulfates, on organic matter during thermal decomposition analysis techniques are well established. Less well studied are the transformative effects of iron oxides and (oxy)hydroxides, which are present in great abundances in the martian regolith. We examined the products of flash pyrolysis-gas chromatography-mass spectrometry (a technique analogous to the thermal techniques employed by past, current, and future landed Mars missions) which form when the cyanobacteria Arthrospira platensis are heated in the presence of a variety of Mars-relevant iron-bearing minerals. We found that iron oxides/(oxy)hydroxides have transformative effects on the pyrolytic products of cyanobacterial biomolecules. Both the abundance and variety of molecular species detected were decreased as iron substrates transformed biomolecules, by both oxidative and reductive processes, into lower fidelity alkanes, aromatic and aryl-bonded hydrocarbons. Despite the loss of fidelity, a suite that contains mid-length alkanes and polyaromatic hydrocarbons and/or aryl-bonded molecules in iron-rich samples subjected to pyrolysis may allude to the transformation of cyanobacterially derived mid-long chain length fatty acids (particularly unsaturated fatty acids) originally present in the sample. Hematite was found to be the iron oxide with the lowest transformation potential, and because this iron oxide has a high affinity for codeposition of organic matter and preservation over geological timescales, sampling at Mars should target sediments/strata that have undergone a diagenetic history encouraging the dehydration, dihydroxylation, and oxidation of more reactive iron-bearing phases to hematite by looking for (mineralogical) evidence of the activity of oxidizing, acidic/neutral, and either hot or long-lived fluids.


Assuntos
Marte , Spirulina , Exobiologia , Meio Ambiente Extraterreno , Compostos Férricos , Ferro , Óxidos , Pirólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA