Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.339
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724488

RESUMO

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Relacionadas à Autofagia , Autofagia , Progressão da Doença , Neoplasias Pulmonares , MicroRNAs , Material Particulado , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Material Particulado/efeitos adversos , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferação de Células/genética , Células A549 , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular
2.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727159

RESUMO

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Assuntos
Glucosídeos , Lesão Pulmonar , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenóis , Sirtuína 1 , Animais , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Sirtuína 1/metabolismo , Sirtuína 1/genética , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos , Lesão Pulmonar/tratamento farmacológico , Material Particulado/toxicidade , Material Particulado/efeitos adversos , Tamanho da Partícula , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo
3.
Int J Med Sci ; 21(6): 1117-1128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774761

RESUMO

In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.5 on human alveolar basal epithelial cells, A549 cells, and uncovered several significant findings were investigated. The results showed that PM2.5 exposure did not lead to a notable decrease in cell viability, indicating that PM2.5 did not cause cellular injury or death. However, the study found that PM2.5 exposure increased the invasion and migration abilities of A549 cells, suggesting that PM2.5 might promote cell invasiveness. Results of RNA sequencing revealed 423 genes that displayed significant differential expression in response to PM2.5 exposure, with a particular focus on pathways associated with the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Real-time detection demonstrated an increase in ROS production in A549 cells after exposure to PM2.5. JC1 assay, which indicated a loss of mitochondrial membrane potential (ΔΨm) in A549 cells exposed to PM2.5. The disruption of mitochondrial membrane potential further supports the detrimental effects of PM2.5 on A549 cells. These findings highlight several adverse effects of PM2.5 on A549 cells, including enhanced invasion and migration capabilities, altered gene expression related to ROS pathways, increased ROS production and disruption of mitochondrial membrane potential. These findings contribute to our understanding of the potential mechanisms through which PM2.5 can impact cellular function and health.


Assuntos
Movimento Celular , Sobrevivência Celular , Neoplasias Pulmonares , Potencial da Membrana Mitocondrial , Material Particulado , Espécies Reativas de Oxigênio , Humanos , Material Particulado/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Movimento Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Invasividade Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Microfluídica/métodos
4.
Pharmacol Res Perspect ; 12(3): e1201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775298

RESUMO

The toxicity of inhaled particulate air pollution perseveres even at lower concentrations than those of the existing air quality limit. Therefore, the identification of safe and effective measures against pollutant particles-induced vascular toxicity is warranted. Carnosol is a bioactive phenolic diterpene found in rosemary herb, with anti-inflammatory and antioxidant actions. However, its possible protective effect on the thrombotic and vascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed here the potential alleviating effect of carnosol (20 mg/kg) administered intraperitoneally 1 h before intratracheal (i.t.) instillation of DEP (20 µg/mouse). Twenty-four hours after the administration of DEP, various parameters were assessed. Carnosol administration prevented the increase in the plasma concentrations of C-reactive protein, fibrinogen, and tissue factor induced by DEP exposure. Carnosol inhibited DEP-induced prothrombotic effects in pial microvessels in vivo and platelet aggregation in vitro. The shortening of activated partial thromboplastin time and prothrombin time induced by DEP was abated by carnosol administration. Carnosol inhibited the increase in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α) and adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin) in aortic tissue. Moreover, it averted the effects of DEP-induced increase of thiobarbituric acid reactive substances, depletion of antioxidants and DNA damage in the aortic tissue. Likewise, carnosol prevented the decrease in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) caused by DEP. We conclude that carnosol alleviates DEP-induced thrombogenicity and vascular inflammation, oxidative damage, and DNA injury through Nrf2 and HO-1 activation.


Assuntos
Abietanos , Trombose , Emissões de Veículos , Animais , Abietanos/farmacologia , Camundongos , Masculino , Emissões de Veículos/toxicidade , Trombose/prevenção & controle , Trombose/tratamento farmacológico , Trombose/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Lesões do Sistema Vascular/tratamento farmacológico , Antioxidantes/farmacologia , Material Particulado/toxicidade , Material Particulado/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Poluentes Atmosféricos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos
5.
Medicine (Baltimore) ; 103(18): e38050, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701275

RESUMO

There has been a consistent and notable increase in the global prevalence of skin cutaneous melanoma (SKCM). Although genetic factors are closely associated with the occurrence and development of melanoma, the potential influence of environmental factors cannot be overlooked. The existing literature lacks a definitive consensus on the correlation between air pollution and the incidence rate of SKCM. This study seeks to investigate the causal relationship between air pollution, specifically focusing on particulate matter (PM) 2.5, PM2.5-10, PM10, and nitrogen oxides, and the risk of SKCM. A 2-sample Mendelian randomization (MR) method was applied, utilizing extensive publicly accessible genome-wide association studies summary datasets within European populations. The primary analytical method employed was the inverse variance weighted method. Supplementary methods, including the weighted median model, MR-Egger, simple model, and weighted model, were chosen to ensure robust analysis. Heterogeneity assessment was conducted using Cochran's Q test. To identify potential pleiotropy, both MR-Egger regression and the MR-PRESSO global test were employed. Additionally, a sensitivity analysis was performed using the leave-one-out method. The analysis revealed no statistically significant association between air pollution and SKCM risk, with specific findings as follows: PM2.5 (P = .485), PM2.5-10 (P = .535), PM10 (P = .136), and nitrogen oxides (P = .745). While some results exhibited heterogeneity, all findings demonstrated an absence of pleiotropy. This study did not find substantive evidence supporting a causal relationship between air pollution and the risk of SKCM within European populations. The comprehensive MR analysis, encompassing various pollutants, suggests that environmental factors such as air pollution may not be significant contributors to the development of SKCM.


Assuntos
Poluição do Ar , Melanoma Maligno Cutâneo , Melanoma , Análise da Randomização Mendeliana , Material Particulado , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia , Análise da Randomização Mendeliana/métodos , Melanoma/genética , Melanoma/epidemiologia , Melanoma/etiologia , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Estudo de Associação Genômica Ampla , Europa (Continente)/epidemiologia , Fatores de Risco , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/análise , Poluentes Atmosféricos/efeitos adversos
6.
J Korean Med Sci ; 39(13): e131, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599601

RESUMO

BACKGROUND: Prenatal exposure to ambient air pollution is linked to a higher risk of unfavorable pregnancy outcomes. However, the association between pregnancy complications and exposure to indoor air pollution remains unclear. The Air Pollution on Pregnancy Outcomes research is a hospital-based prospective cohort research created to look into the effects of aerodynamically exposed particulate matter (PM)10 and PM2.5 on pregnancy outcomes. METHODS: This prospective multicenter observational cohort study was conducted from January 2021 to June 2023. A total of 662 women with singleton pregnancies enrolled in this study. An AirguardK® air sensor was installed inside the homes of the participants to measure the individual PM10 and PM2.5 levels in the living environment. The time-activity patterns and PM10 and PM2.5, determined as concentrations from the time-weighted average model, were applied to determine the anticipated exposure levels to air pollution of each pregnant woman. The relationship between air pollution exposure and pregnancy outcomes was assessed using logistic and linear regression analyses. RESULTS: Exposure to elevated levels of PM10 throughout the first, second, and third trimesters as well as throughout pregnancy was strongly correlated with the risk of pregnancy problems according to multiple logistic regression models adjusted for variables. Except for in the third trimester of pregnancy, women exposed to high levels of PM2.5 had a high risk of pregnancy complications. During the second trimester and entire pregnancy, the risk of preterm birth (PTB) increased by 24% and 27%, respectively, for each 10 µg/m3 increase in PM10. Exposure to high PM10 levels during the second trimester increased the risk of gestational diabetes mellitus (GDM) by 30%. The risk of GDM increased by 15% for each 5 µg/m3 increase in PM2.5 during the second trimester and overall pregnancy, respectively. Exposure to high PM10 and PM2.5 during the first trimester of pregnancy increased the risk of delivering small for gestational age (SGA) infants by 96% and 26%, respectively. CONCLUSION: Exposure to high concentrations of PM10 and PM2.5 is strongly correlated with the risk of adverse pregnancy outcomes. Exposure to high levels of PM10 and PM2.5 during the second trimester and entire pregnancy, respectively, significantly increased the risk of PTB and GDM. Exposure to high levels of PM10 and PM2.5 during the first trimester of pregnancy considerably increased the risk of having SGA infants. Our findings highlight the need to measure individual particulate levels during pregnancy and the importance of managing air quality in residential environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Gestacional , Complicações na Gravidez , Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Resultado da Gravidez , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos Prospectivos , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , República da Coreia/epidemiologia , China
7.
Sci Rep ; 14(1): 7932, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575786

RESUMO

Chiang Mai encounters severe pollution during the wildfire season. Wildland firefighters encounter various hazards while engaged in fire suppression operations, which encompass significant exposure to elevated concentrations of air pollutants resulting from combustion, especially particulate matter. The adverse effects of wildfire smoke on respiratory health are a significant concern. The objective of this study was to examine the potential adverse effects of PM2.5 exposure on the respiratory function and DNA damage of wildland firefighters. This prospective cohort study conducted in Chiang Mai from January to May 2022 planned to evaluate the health status of wildland firefighters during the pre-peak, peak, and post-peak ambient air pollution seasons. The measurement of PM2.5 was done at every forest fire station, as well as utilizing data from the Pollution Control Department. Participants received general health examinations, spirometry evaluations, and blood tests for DNA damage analysis. Pair t-tests and multiple regression models were used to examine the connection between pulmonary function parameters (FVC, FEV1) and PM2.5 concentration, with a significance level of P < 0.05. Thirty-three peak-season and twenty-one post-peak-season participants were enrolled. Four pre-peak-season wildland firefighters had FVC and FEV1 declines of > 15%. Multiple regression analysis showed a negative association between PM2.5 exposure and FVC% predicted (- 2.81%, 95% CI - 5.27 to - 0.34%, P = 0.027) and a marginally significant negative correlation with FVC (- 114.38 ml, 95% CI - 230.36 to 1.59 ml, P = 0.053). The remaining pulmonary measures showed a statistically insignificant decline. There were no significant changes in DNA damage detected. Wildland firefighters suffered a significant decline in pulmonary function associated with PM2.5 exposure. Spirometry is crucial for monitoring and promptly identifying respiratory issues that occur during wildfire seasons. Further research is recommended to explore DNA damage alterations and their potential association with PM2.5.


Assuntos
Poluentes Atmosféricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Bombeiros , Exposição Ocupacional , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Estudos Prospectivos , Fumaça/efeitos adversos , Fumaça/análise , Poluentes Atmosféricos/análise , Dano ao DNA
8.
Redox Biol ; 72: 103158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631121

RESUMO

Exposure to PM2.5 is correlated with cardiac remodeling, of which cardiac hypertrophy is one of the main clinical manifestations. Ferroptosis plays an important role in cardiac hypertrophy. However, the potential mechanism of PM2.5-induced cardiac hypertrophy through ferroptosis remains unclear. This study aimed to explore the molecular mechanism of cardiac hypertrophy caused by PM2.5 and the intervention role of MitoQ involved in this process. The results showed that PM2.5 could induce cardiac hypertrophy and dysfunction in mice. Meanwhile, the characteristics of ferroptosis were observed, such as iron homeostasis imbalance, lipid peroxidation, mitochondrial damage and abnormal expression of key molecules. MitoQ treatment could effectively mitigate these alternations. After treating human cardiomyocyte AC16 with PM2.5, ferroptosis activator (Erastin) and inhibitor (Fer-1), it was found that PM2.5 could promote ferritinophagy and lead to lipid peroxidation, mitochondrial dysfunction as well as the accumulation of intracellular and mitochondrial labile iron. Subsequently, mitophagy was activated and provided an additional source of labile iron, enhancing the sensitivity of AC16 cells to ferroptosis. Furthermore, Fer-1 alleviated PM2.5-induced cytotoxicity and iron overload in the cytoplasm and mitochondria of AC16 cells. It was worth noting that during the process of PM2.5 caused ferroptosis, abnormal iron metabolism mediated the activation of ferritinophagy and mitophagy in a temporal order. In addition, NCOA4 knockdown reversed the iron homeostasis imbalance and lipid peroxidation caused by PM2.5, thereby alleviating ferroptosis. In summary, our study found that iron homeostasis imbalance-mediated the crosstalk of ferritinophagy and mitophagy played an important role in PM2.5-induced ferroptosis and cardiac hypertrophy.


Assuntos
Autofagia , Cardiomegalia , Ferroptose , Homeostase , Ferro , Miócitos Cardíacos , Material Particulado , Cardiomegalia/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/patologia , Animais , Camundongos , Ferro/metabolismo , Autofagia/efeitos dos fármacos , Humanos , Material Particulado/efeitos adversos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular
9.
Environ Health ; 23(1): 43, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654228

RESUMO

BACKGROUND: Chronic kidney disease (CKD) affects more than 38 million people in the United States, predominantly those over 65 years of age. While CKD etiology is complex, recent research suggests associations with environmental exposures. METHODS: Our primary objective is to examine creatinine-based estimated glomerular filtration rate (eGFRcr) and diagnosis of CKD and potential associations with fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) using a random sample of North Carolina electronic healthcare records (EHRs) from 2004 to 2016. We estimated eGFRcr using the serum creatinine-based 2021 CKD-EPI equation. PM2.5 and NO2 data come from a hybrid model using 1 km2 grids and O3 data from 12 km2 CMAQ grids. Exposure concentrations were 1-year averages. We used linear mixed models to estimate eGFRcr per IQR increase of pollutants. We used multiple logistic regression to estimate associations between pollutants and first appearance of CKD. We adjusted for patient sex, race, age, comorbidities, temporality, and 2010 census block group variables. RESULTS: We found 44,872 serum creatinine measurements among 7,722 patients. An IQR increase in PM2.5 was associated with a 1.63 mL/min/1.73m2 (95% CI: -1.96, -1.31) reduction in eGFRcr, with O3 and NO2 showing positive associations. There were 1,015 patients identified with CKD through e-phenotyping and ICD codes. None of the environmental exposures were positively associated with a first-time measure of eGFRcr < 60 mL/min/1.73m2. NO2 was inversely associated with a first-time diagnosis of CKD with aOR of 0.77 (95% CI: 0.66, 0.90). CONCLUSIONS: One-year average PM2.5 was associated with reduced eGFRcr, while O3 and NO2 were inversely associated. Neither PM2.5 or O3 were associated with a first-time identification of CKD, NO2 was inversely associated. We recommend future research examining the relationship between air pollution and impaired renal function.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Registros Eletrônicos de Saúde , Exposição Ambiental , Taxa de Filtração Glomerular , Dióxido de Nitrogênio , Ozônio , Material Particulado , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/análise , Material Particulado/efeitos adversos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/efeitos adversos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Ozônio/análise , Ozônio/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , North Carolina/epidemiologia , Adulto , Idoso de 80 Anos ou mais , Creatinina/sangue
10.
J Transl Med ; 22(1): 392, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685026

RESUMO

BACKGROUND: Epidemiological evidence links a close correlation between long-term exposure to air pollutants and autoimmune diseases, while the causality remained unknown. METHODS: Two-sample Mendelian randomization (TSMR) was used to investigate the role of PM10, PM2.5, NO2, and NOX (N = 423,796-456,380) in 15 autoimmune diseases (N = 14,890-314,995) using data from large European GWASs including UKB, FINNGEN, IMSGC, and IPSCSG. Multivariable Mendelian randomization (MVMR) was conducted to investigate the direct effect of each air pollutant and the mediating role of common factors, including body mass index (BMI), alcohol consumption, smoking status, and household income. Transcriptome-wide association studies (TWAS), two-step MR, and colocalization analyses were performed to explore underlying mechanisms between air pollution and autoimmune diseases. RESULTS: In TSMR, after correction of multiple testing, hypothyroidism was causally associated with higher exposure to NO2 [odds ratio (OR): 1.37, p = 9.08 × 10-4] and NOX [OR: 1.34, p = 2.86 × 10-3], ulcerative colitis (UC) was causally associated with higher exposure to NOX [OR: 2.24, p = 1.23 × 10-2] and PM2.5 [OR: 2.60, p = 5.96 × 10-3], rheumatoid arthritis was causally associated with higher exposure to NOX [OR: 1.72, p = 1.50 × 10-2], systemic lupus erythematosus was causally associated with higher exposure to NOX [OR: 4.92, p = 6.89 × 10-3], celiac disease was causally associated with lower exposure to NOX [OR: 0.14, p = 6.74 × 10-4] and PM2.5 [OR: 0.17, p = 3.18 × 10-3]. The risky effects of PM2.5 on UC remained significant in MVMR analyses after adjusting for other air pollutants. MVMR revealed several common mediators between air pollutants and autoimmune diseases. Transcriptional analysis identified specific gene transcripts and pathways interconnecting air pollutants and autoimmune diseases. Two-step MR revealed that POR, HSPA1B, and BRD2 might mediate from air pollutants to autoimmune diseases. POR pQTL (rs59882870, PPH4=1.00) strongly colocalized with autoimmune diseases. CONCLUSION: This research underscores the necessity of rigorous air pollutant surveillance within public health studies to curb the prevalence of autoimmune diseases.


Assuntos
Poluentes Atmosféricos , Doenças Autoimunes , Estudo de Associação Genômica Ampla , Humanos , Doenças Autoimunes/genética , Poluentes Atmosféricos/efeitos adversos , Análise da Randomização Mendeliana , Predisposição Genética para Doença , Material Particulado/efeitos adversos
12.
Front Public Health ; 12: 1247149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425468

RESUMO

Background: Air pollution poses a major threat to human health by causing various illnesses, such as cardiovascular diseases. While plenty of research indicates a correlation between air pollution and hypertension, a definitive answer has yet to be found. Methods: Our analyses were performed using the Genome-wide association study (GWAS) of exposure to air pollutants from UKB (PM2.5, PM10, NO2, and NOX; n = 423,796 to 456,380), essential hypertension from FinnGen (42,857 cases and 162,837 controls) and from UKB (54,358 cases and 408,652 controls) as a validated cohort. Univariable and multivariable Mendelian randomization (MR) were conducted to investigate the causal relationship between air pollutants and essential hypertension. Body mass index (BMI), alcohol intake frequency, and the number of cigarettes previously smoked daily were included in multivariable MRs (MVMRs) as potential mediators/confounders. Results: Our findings suggested that higher levels of both PM2.5 (OR [95%CI] per 1 SD increase in predicted exposure = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) and PM10 (OR [95%CI] = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) were linked to an increased risk for essential hypertension. Even though we used MVMR to adjust for the impacts of smoking and drinking on the relationship between PM2.5 exposure and essential hypertension risks, our findings suggested that although there was a direct positive connection between them, it is not present after adjusting BMI (OR [95%CI] = 1.05 [0.87-1.27], p = 6.17E-01). Based on the study, higher exposure to PM2.5 and PM10 increases the chances of developing essential hypertension, and this influence could occur through mediation by BMI. Conclusion: Exposure to both PM2.5 and PM10 is thought to have a causal relationship with essential hypertension. Those impacted by substantial levels of air pollution require more significant consideration for their cardiovascular health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Hipertensão Essencial/induzido quimicamente
13.
BMC Med ; 22(1): 93, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439026

RESUMO

BACKGROUND: Cardiovascular disease (CVD) caused by air pollution poses a considerable burden on public health. We aim to examine whether lifestyle factors mediate the associations of air pollutant exposure with the risk of CVD and the extent of the interaction between lifestyles and air pollutant exposure regarding CVD outcomes. METHODS: We included 7000 participants in 2011-2012 and followed up until 2018. The lifestyle evaluation consists of six factors as proxies, including blood pressure, blood glucose, blood lipids, body mass index, tobacco exposure, and physical activity, and the participants were categorized into three lifestyle groups according to the number of ideal factors (unfavorable, 0-1; intermediate, 2-4; and favorable, 5-6). Satellite-based spatiotemporal models were used to estimate exposure to ambient air pollutants (including particles with diameters ≤ 1.0 µm [PM1], ≤ 2.5 µm [PM2.5], ≤ 10 µm [PM10], nitrogen dioxide [NO2], and ozone [O3]). Cox regression models were used to examine the associations between air pollutant exposure, lifestyles and the risk of CVD. The mediation and modification effects of lifestyle categories on the association between air pollutant exposure and CVD were analyzed. RESULTS: After adjusting for covariates, per 10 µg/m3 increase in exposure to PM1 (HR: 1.09, 95% CI: 1.05-1.14), PM2.5 (HR: 1.04, 95% CI: 1.00-1.08), PM10 (HR: 1.05, 95% CI: 1.03-1.08), and NO2 (HR: 1.11, 95% CI: 1.05-1.18) was associated with an increased risk of CVD. Adherence to a healthy lifestyle was associated with a reduced risk of CVD compared to an unfavorable lifestyle (HR: 0.65, 95% CI: 0.56-0.76 for intermediate lifestyle and HR: 0.41, 95% CI: 0.32-0.53 for favorable lifestyle). Lifestyle played a significant partial mediating role in the contribution of air pollutant exposure to CVD, with the mediation proportion ranging from 7.4% for PM10 to 14.3% for PM2.5. Compared to an unfavorable lifestyle, the relative excess risk due to interaction for a healthier lifestyle to reduce the effect on CVD risk was - 0.98 (- 1.52 to - 0.44) for PM1, - 0.60 (- 1.05 to - 0.14) for PM2.5, - 1.84 (- 2.59 to - 1.09) for PM10, - 1.44 (- 2.10 to - 0.79) for NO2, and - 0.60 (- 1.08, - 0.12) for O3. CONCLUSIONS: Lifestyle partially mediated the association of air pollution with CVD, and adherence to a healthy lifestyle could protect middle-aged and elderly people from the adverse effects of air pollution regarding CVD.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Idoso , Pessoa de Meia-Idade , Humanos , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Dióxido de Nitrogênio , Poluição do Ar/efeitos adversos , Estilo de Vida , Poluentes Atmosféricos/efeitos adversos , China/epidemiologia , Material Particulado/efeitos adversos
14.
Artigo em Inglês | MEDLINE | ID: mdl-38494707

RESUMO

BACKGROUND: Air pollution-induced systemic inflammation and oxidative stress are hypothesized to be the major biological mechanisms underlying pathological outcomes. We examined the association between short-term exposure to ambient air pollutants and biomarkers of inflammation and oxidative stress in 2199 general middle-aged Korean population residing in metropolitan areas. METHODS: Serum levels of inflammatory cytokines (interleukin [IL]-1ß, IL-6, IL-8, IL-10, and tumor necrosis factor [TNF]-α) and urinary levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. Daily concentrations of a series of air pollutants (particulate matter [PM]10, PM2.5, SO2, NO2, CO, and O3) were predicted using the Community Multiscale Air Quality modeling system, and participant-level pollutant exposure was determined using geocoded residential addresses. Short-term exposure was defined as the 1- to 7-day moving averages. RESULTS: The multivariable-adjusted linear models controlling for the sociodemographic, lifestyle, temporal, and meteorological factors identified positive associations of PM with IL-1ß, IL-8, IL-10, TNF-α, and 8-OHdG levels; SO2 with IL-10 levels, CO with IL-1ß, IL-10, and TNF-α levels; and O3 with IL-1ß, IL-8, and 8-OHdG levels. O3 levels were inversely associated with IL-10 levels. For each pollutant, the strongest associations were observed for the 7-day average PM and CO with IL-1ß (per 10-µg/m3 increase in PM10: 2.7%, 95% confidence interval [CI] = 0.6-4.8; per 10-µg/m3 increase in PM2.5: 6.4%, 95% CI = 2.4-10.5; per 0.1-ppm increase in CO: 3.3%, 95% CI = 0.3-6.5); the 2-day average SO2 with IL-10 levels (per 1-ppb increase in SO2: 1.1%, 95% CI = 0.1-2.1); and the 7-day average O3 with IL-8 levels (per 1-ppb increase in O3: 1.3%, 95% CI = 0.7-1.9). CONCLUSIONS: Short-term exposure to ambient air pollutants may induce oxidative damage and pro-inflammatory roles, together with counter-regulatory anti-inflammatory response.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Pessoa de Meia-Idade , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos Transversais , Interleucina-10 , Interleucina-8 , Fator de Necrose Tumoral alfa , Material Particulado/efeitos adversos , Material Particulado/análise , Inflamação/induzido quimicamente , Inflamação/epidemiologia , Biomarcadores , Estresse Oxidativo
15.
Eur Rev Med Pharmacol Sci ; 28(5): 1959-1969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497879

RESUMO

OBJECTIVE: Numerous investigations have indicated a correlation between air pollution (AP) and an elevated ischemic stroke (IS) likelihood. The existing literature does not provide a consensus about the possible link between AP and IS. A two-sample Mendelian randomization (MR) analysis was utilized to systematically measure the causal link between AP and ischemic stroke. Furthermore, the mediating impact of inflammatory factors was also performed by a two-step MR. MATERIALS AND METHODS: A two-sample MR analysis was utilized to examine the AP impact on the incidence of IS. Additionally, a two-step MR approach was carried out to account for possible mediating variables. The indirect impact was determined by employing the product approach, which included multiplying the AP impact on inflammatory factors by the inflammatory factors' impacts on IS. The MR effect was identified through inverse variance-weighted (IVW) meta-analysis of each Wald Ratio. Additionally, complementary studies were conducted using the weighted median and MR-egger approaches. RESULTS: The IVW method with random effects showed that the per unit increase in genetically predicted PM2.5 was linked to the 0.362-fold elevated ischemic stroke risk (OR: 1.362, 95% CI: 1.032-1.796, p=0.029). Furthermore, the IVM technique, incorporating random effects, demonstrated that the per unit increase in genetically predicted PM2.5 was related to an elevated Interleukin (IL)-1ß risk (OR: 1.529, 95% CI: 1.191-1.963, p=0.001), IL-6 (OR: 1.498, 95% CI: 1.094-2.052, p=0.012) and IL-17 (OR: 1.478, 95% CI: 1.021-2.139, p=0.038). IL-1ß, IL-6, and IL-17 modulated the PM2.5 impact on ischemic stroke, while the proportion mediated by them was 59.5%. CONCLUSIONS: A positive correlation between genetically predicted PM2.5 levels and elevated ischemic stroke risk is mediated by IL-1ß, IL-6, and IL-17.


Assuntos
Poluição do Ar , AVC Isquêmico , Humanos , AVC Isquêmico/epidemiologia , AVC Isquêmico/genética , Interleucina-17 , Interleucina-6/genética , Análise da Randomização Mendeliana , Poluição do Ar/efeitos adversos , Interleucina-1beta , Material Particulado/efeitos adversos
16.
Environ Int ; 185: 108529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484612

RESUMO

The London Underground (LU) employs over 19,000 staff, some of whom are exposed to elevated concentrations of particulate matter (PM) within the network. This study quantified the occupational exposure of LU staff to subway PM and investigated the possible association with sickness absence (SA). A job exposure matrix to quantify subway PM2.5 staff exposure was developed by undertaking measurement campaigns across the LU network. The association between exposure and SA was evaluated using zero-inflated mixed-effects negative binomial models. Staff PM2.5 exposure varied by job grade and tasks undertaken. Drivers had the highest exposure over a work shift (mean: 261 µg/m3), but concentrations varied significantly by LU line and time the train spent subway. Office staff work in office buildings separate to the LU network and are unexposed to occupational subway PM2.5. They were found to have lower rates of all-cause and respiratory infection SA compared to non-office staff, those who work across the LU network and are occupational exposed to subway PM2.5. Train drivers on five out of eight lines showed higher rates of all-cause SA, but no dose-response relationship was seen. Only drivers from one line showed higher rates of SAs from respiratory infections (incidence rate ratio: 1.24, 95% confidence interval 1.10-1.39). Lower-grade customer service (CS) staff showed higher rates of all-cause and respiratory infection SA compared to higher grade CS staff. Doctor-certified chronic respiratory and cardiovascular SAs were associated with occupational PM2.5 exposure in CS staff and drivers. While some groups with higher occupational exposure to subway PM reported higher rates of SA, no evidence suggests that subway PM is the main contributing factor to SA. This is the largest subway study on health effects of occupational PM2.5 exposure and may have wider implications for subway workers, contributing to safer working environments.


Assuntos
Poluentes Atmosféricos , Exposição Ocupacional , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/análise , Londres/epidemiologia , Monitoramento Ambiental , Exposição Ocupacional/efeitos adversos
17.
Sci Rep ; 14(1): 7141, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531903

RESUMO

The impact of common environmental exposures in combinations with socioeconomic and lifestyle factors on cancer development, particularly for young adults, remains understudied. Here, we leveraged environmental and cancer incidence data collected in New York State at the county level to examine the association between 31 exposures and 10 common cancers (i.e., lung and bronchus, thyroid, colorectal, kidney and renal pelvis, melanoma, non-Hodgkin lymphoma, and leukemia for both sexes; corpus uteri and female breast cancer; prostate cancer), for three age groups (25-49, 50-69, and 70-84 year-olds). For each cancer, we stratified by age group and sex, and applied regression models to examine the associations with multiple exposures simultaneously. The models included 642,013 incident cancer cases during 2010-2018 and found risk factors consistent with previous reports (e.g., smoking and physical inactivity). Models also found positive associations between ambient air pollutants (ozone and PM2.5) and prostate cancer, female breast cancer, and melanoma of the skin across multiple population strata. Additionally, the models were able to better explain the variation in cancer incidence data among 25-49 year-olds than the two older age groups. These findings support the impact of common environmental exposures on cancer development, particularly for younger age groups.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias da Mama , Melanoma , Neoplasias da Próstata , Masculino , Adulto Jovem , Humanos , Idoso , Incidência , New York , Poluentes Atmosféricos/análise , Neoplasias da Mama/epidemiologia , Exposição Ambiental , Neoplasias da Próstata/induzido quimicamente , Material Particulado/efeitos adversos , Poluição do Ar/análise
18.
JCO Glob Oncol ; 10: e2300427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513187

RESUMO

PURPOSE: This study aims to examine the association between exposure to major ambient air pollutants and the incidence and mortality of lung cancer and some nonlung cancers. METHODS: This meta-analysis used PubMed and EMBASE databases to access published studies that met the eligibility criteria. Primary analysis investigated the association between exposure to air pollutants and cancer incidence and mortality. Study quality was assessed using the Newcastle Ottawa Scale. Meta-analysis was conducted using R software. RESULTS: The meta-analysis included 61 studies, of which 53 were cohort studies and eight were case-control studies. Particulate matter 2.5 mm or less in diameter (PM2.5) was the exposure pollutant in half (55.5%), and lung cancer was the most frequently studied cancer in 59% of the studies. A pooled analysis of exposure reported in cohort and case-control studies and cancer incidence demonstrated a significant relationship (relative risk [RR], 1.04 [95% CI, 1.02 to 1.05]; I2, 88.93%; P < .05). A significant association was observed between exposure to pollutants such as PM2.5 (RR, 1.08 [95% CI, 1.04 to 1.12]; I2, 68.52%) and nitrogen dioxide (NO2) (RR, 1.03 [95% CI, 1.01 to 1.05]; I2, 73.52%) and lung cancer incidence. The relationship between exposure to the air pollutants and cancer mortality demonstrated a significant relationship (RR, 1.08 [95% CI, 1.07 to 1.10]; I2, 94.77%; P < .001). Among the four pollutants, PM2.5 (RR, 1.15 [95% CI, 1.08 to 1.22]; I2, 95.33%) and NO2 (RR, 1.05 [95% CI, 1.02 to 1.08]; I2, 89.98%) were associated with lung cancer mortality. CONCLUSION: The study confirms the association between air pollution exposure and lung cancer incidence and mortality. The meta-analysis results could contribute to community cancer prevention and diagnosis and help inform stakeholders and policymakers in decision making.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Humanos , Incidência , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Neoplasias Pulmonares/epidemiologia
19.
JAMA Netw Open ; 7(2): e240535, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416497

RESUMO

Importance: Exposure to outdoor air pollution contributes to childhood asthma development, but many studies lack the geographic, racial and ethnic, and socioeconomic diversity to evaluate susceptibility by individual-level and community-level contextual factors. Objective: To examine early life exposure to fine particulate matter (PM2.5) and nitrogen oxide (NO2) air pollution and asthma risk by early and middle childhood, and whether individual and community-level characteristics modify associations between air pollution exposure and asthma. Design, Setting, and Participants: This cohort study included children enrolled in cohorts participating in the Children's Respiratory and Environmental Workgroup consortium. The birth cohorts were located throughout the US, recruited between 1987 and 2007, and followed up through age 11 years. The survival analysis was adjusted for mother's education, parental asthma, smoking during pregnancy, child's race and ethnicity, sex, neighborhood characteristics, and cohort. Statistical analysis was performed from February 2022 to December 2023. Exposure: Early-life exposures to PM2.5 and NO2 according to participants' birth address. Main Outcomes and Measures: Caregiver report of physician-diagnosed asthma through early (age 4 years) and middle (age 11 years) childhood. Results: Among 5279 children included, 1659 (31.4%) were Black, 835 (15.8%) were Hispanic, 2555 (48.4%) where White, and 229 (4.3%) were other race or ethnicity; 2721 (51.5%) were male and 2596 (49.2%) were female; 1305 children (24.7%) had asthma by 11 years of age and 954 (18.1%) had asthma by 4 years of age. Mean values of pollutants over the first 3 years of life were associated with asthma incidence. A 1 IQR increase in NO2 (6.1 µg/m3) was associated with increased asthma incidence among children younger than 5 years (HR, 1.25 [95% CI, 1.03-1.52]) and children younger than 11 years (HR, 1.22 [95% CI, 1.04-1.44]). A 1 IQR increase in PM2.5 (3.4 µg/m3) was associated with increased asthma incidence among children younger than 5 years (HR, 1.31 [95% CI, 1.04-1.66]) and children younger than 11 years (OR, 1.23 [95% CI, 1.01-1.50]). Associations of PM2.5 or NO2 with asthma were increased when mothers had less than a high school diploma, among Black children, in communities with fewer child opportunities, and in census tracts with higher percentage Black population and population density; for example, there was a significantly higher association between PM2.5 and asthma incidence by younger than 5 years of age in Black children (HR, 1.60 [95% CI, 1.15-2.22]) compared with White children (HR, 1.17 [95% CI, 0.90-1.52]). Conclusions and Relevance: In this cohort study, early life air pollution was associated with increased asthma incidence by early and middle childhood, with higher risk among minoritized families living in urban communities characterized by fewer opportunities and resources and multiple environmental coexposures. Reducing asthma risk in the US requires air pollution regulation and reduction combined with greater environmental, educational, and health equity at the community level.


Assuntos
Poluição do Ar , Asma , Criança , Gravidez , Feminino , Masculino , Humanos , Pré-Escolar , Incidência , Estudos de Coortes , Dióxido de Nitrogênio , Asma/epidemiologia , Asma/etiologia , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos
20.
Respirology ; 29(5): 379-386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378265

RESUMO

BACKGROUND AND OBJECTIVE: When multiple complex air pollutants are combined in real-world settings, the reliability of estimating the effect of a single pollutant is questionable. This study aimed to investigate the combined effects of changes in air pollutants on small airway dysfunction (SAD). METHODS: We analysed Korea National Health and Nutrition Examination Survey (KNHANES) V-VIII database from 2010 to 2018 to elucidate the associations between annual changes in air pollutants over a previous 5-year period and small airway function. We estimated the annual concentrations of five air pollutants: NO2, O3, PM2.5, SO2 and CO. Forced expiratory flow between 25% and 75% of vital capacity (FEF25%-75%) <65% was defined as SAD. Using the quantile generalized-Computation (g-Computation) model, the combined effect of the annual changes in different air pollutants was estimated. RESULTS: A total of 29,115 individuals were included. We found significant associations between SAD and the quartiles of annual changes in NO2 (OR = 1.10, 95% CI = 1.08-1.12), O3 (OR = 1.03, 95% CI = 1.00-1.05), PM2.5 (OR = 1.03, 95% CI = 1.00-1.05), SO2 (OR = 1.04, 95% CI = 1.02-1.08) and CO (OR = 1.16, 95% CI = 1.12-1.19). The combined effect of the air pollutant changes was significantly associated with SAD independent of smoking (OR = 1.31, 95% CI = 1.26-1.35, p-value <0.001), and this trend was consistently observed across the entire study population and various subgroup populations. As the estimated risk of SAD, determined by individual-specific combined effect models, increased and the log odds for SAD increased linearly. CONCLUSION: The combined effect of annual changes in multiple air pollutant concentrations were associated with an increased risk of SAD.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Inquéritos Nutricionais , Reprodutibilidade dos Testes , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA