Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000020

RESUMO

Solid tumors as well as leukemias and lymphomas show striking changes in nuclear structure including nuclear size and shape, the number and size of nucleoli, and chromatin texture. These alterations have been used in cancer diagnosis and might be related to the altered functional properties of cancer cells. The nuclear matrix (NM) represents the structural composition of the nucleus and consists of nuclear lamins and pore complexes, an internal ribonucleic protein network, and residual nucleoli. In the nuclear microenvironment, the NM is associated with multi-protein complexes, such as basal transcription factors, signaling proteins, histone-modifying factors, and chromatin remodeling machinery directly or indirectly through scaffolding proteins. Therefore, alterations in the composition of NM could result in altered DNA topology and changes in the interaction of various genes, which could then participate in a cascade of the cancer process. Using an androgen-sensitive prostate cancer cell line, LNCaP, and its androgen-independent derivative, LN96, conventional 2D-proteomic analysis of the NM proteins revealed that purine-rich element binding protein alpha (PURα) was detected in the NM proteins and differentially expressed between the cell lines. In this article, we will review the potential role of the molecule in prostate cancer.


Assuntos
Neoplasias da Próstata , Animais , Humanos , Masculino , Progressão da Doença , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Matriz Nuclear/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética
2.
Cells ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891112

RESUMO

Matrin-3 (MATR3) was initially discovered as a component of the nuclear matrix about thirty years ago. Since then, accumulating studies have provided evidence that MATR3 not only plays a structural role in the nucleus, but that it is also an active protein involved in regulating gene expression at multiple levels, including chromatin organization, DNA transcription, RNA metabolism, and protein translation in the nucleus and cytoplasm. Furthermore, MATR3 may play a critical role in various cellular processes, including DNA damage response, cell proliferation, differentiation, and survival. In addition to the revelation of its biological role, recent studies have reported MATR3's involvement in the context of various diseases, including neurodegenerative and neurodevelopmental diseases, as well as cancer. Moreover, sequencing studies of patients revealed a handful of disease-associated mutations in MATR3 linked to amyotrophic lateral sclerosis (ALS), which further elevated the gene's importance as a topic of study. In this review, we synthesize the current knowledge regarding the diverse functions of MATR3 in DNA- and RNA-related processes, as well as its involvement in various diseases, with a particular emphasis on ALS.


Assuntos
Esclerose Lateral Amiotrófica , Regulação da Expressão Gênica , Proteínas Associadas à Matriz Nuclear , Matriz Nuclear , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Matriz Nuclear/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
Genetics ; 227(3)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38797871

RESUMO

Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Núcleo Celular , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Citoesqueleto de Actina/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Transdução de Sinais , Matriz Nuclear/metabolismo , Proteínas de Ligação ao GTP
4.
J Radiat Res ; 64(2): 358-368, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36694940

RESUMO

The linker of nucleoskeleton and cytoskeleton (LINC) complex has been implicated in various functions of the nuclear envelope, including nuclear migration, mechanotransduction and DNA repair. We previously revealed that the LINC complex component Sad1 and UNC84 domain containing 1 (SUN1) is required for sublethal-dose X-ray-enhanced cell migration and invasion. This study focused on epithelial-mesenchymal transition (EMT), which contributes to cell migration. Hence, the present study aimed to examine whether sublethal-dose X-irradiation induces EMT and whether LINC complex component SUN1 is involved in low-dose X-ray-induced EMT. This study showed that low-dose (0.5 Gy or 2 Gy) X-irradiation induced EMT in human breast cancer MDA-MB-231 cells. Additionally, X-irradiation increased the expression of SUN1. Therefore, SUN1 was depleted using siRNA. In SUN1-depleted cells, low-dose X-irradiation did not induce EMT. In addition, although the SUN1 splicing variant SUN1_916-depleted cells (containing 916 amino acids [AA] of SUN1) were induced EMT by low-dose X-irradiation like as non-transfected control cells, SUN1_888-depleted cells (which encodes 888 AA) were not induced EMT by low-dose X-irradiation. Moreover, since the Wnt/ß-catenin signaling pathway regulates E-cadherin expression via the expression of the E-cadherin repressor Snail, the expression of ß-catenin after X-irradiation was examined. After 24 hours of irradiation, ß-catenin expression increased in non-transfected cells or SUN1_916-depleted cells, whereas ß-catenin expression remained unchanged and did not increase in SUN1- or SUN1_888-depleted cells. Therefore, in this study, we found that low-dose X-irradiation induces EMT, and LINC complex component SUN1, especially SUN1_888, is required for X-ray-induced EMT via activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Transição Epitelial-Mesenquimal , beta Catenina , Humanos , beta Catenina/metabolismo , Raios X , Mecanotransdução Celular , Citoesqueleto/metabolismo , Matriz Nuclear/metabolismo , Movimento Celular , Linhagem Celular Tumoral , Caderinas/metabolismo
5.
Redox Biol ; 58: 102545, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36427398

RESUMO

The cellular response to hypoxia, in addition to HIF-dependent transcriptional reprogramming, also involves less characterized transcription-independent processes, such as alternative splicing of the VEGFA transcript leading to the production of the proangiogenic VEGF form. We now show that this event depends on reorganization of the splicing machinery, triggered after short-term hypoxia by ROS production and intranuclear redistribution of the nucleoskeletal proteins SAFB1/2. Exposure to low oxygen causes fast dissociation of SAFB1/2 from the nuclear matrix, which is reversible, inhibited by antioxidant treatment, and also observed under normoxia when the mitochondrial electron transport chain is blocked. This is accompanied by altered interactions between SAFB1/2 and the splicing machinery, translocation of kinase SRPK1 to the cytoplasm, and dephosphorylation of RS-splicing factors. Depletion of SAFB1/2 under normoxia phenocopies the hypoxic and ROS-mediated switch in VEGF mRNA splicing. These data suggest that ROS-dependent remodeling of the nuclear architecture can promote production of splicing variants that facilitate adaptation to hypoxia.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Proteínas Associadas à Matriz Nuclear , Humanos , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Matriz Nuclear/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , RNA Mensageiro/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular/genética , Proteínas Serina-Treonina Quinases
6.
Mol Cancer Res ; 19(7): 1196-1207, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33771882

RESUMO

Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamins are found in many cancers and its expression is correlated with better clinical outcomes. The nucleus is the largest organelle in the cell with a diameter between 10 and 20 µm. Nuclear size significantly impacts cell migration. Nuclear structural changes are predicted to impact cancer metastasis by regulating cancer cell migration. Here we show emerin regulates nuclear structure in invasive breast cancer cells to impact cancer metastasis. Invasive breast cancer cells had 40% to 50% less emerin than control cells, which resulted in decreased nuclear size. Overexpression of GFP-emerin in invasive breast cancer cells rescued nuclear size and inhibited migration through 3.0 and 8.0 µm pores. Mutational analysis showed emerin binding to nucleoskeletal proteins was important for its regulation of nuclear structure, migration, and invasion. Importantly, emerin expression inhibited lung metastasis by 91% in orthotopic mouse models of breast cancer. Emerin nucleoskeleton-binding mutants failed to inhibit metastasis. These results support a model whereby emerin binding to the nucleoskeleton regulates nuclear structure to impact metastasis. In this model, emerin plays a central role in metastatic transformation, because decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. IMPLICATIONS: Modulating emerin expression and function represents new targets for therapeutic interventions of metastasis, because increased emerin expression rescued cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Núcleo Celular/genética , Proteínas de Membrana/genética , Matriz Nuclear/genética , Proteínas Nucleares/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos Nus , Microscopia Confocal/métodos , Metástase Neoplásica , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Transplante Heterólogo
7.
Mol Biol Cell ; 31(25): 2768-2778, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026942

RESUMO

RHO GTPases are key regulators of the cytoskeletal architecture, which impact a broad range of biological processes in malignant cells including motility, invasion, and metastasis, thereby affecting tumor progression. One of the constraints during cell migration is the diameter of the pores through which cells pass. In this respect, the size and shape of the nucleus pose a major limitation. Therefore, enhanced nuclear plasticity can promote cell migration. Nuclear morphology is determined in part through the cytoskeleton, which connects to the nucleoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Here, we unravel the role of RAC1 as an orchestrator of nuclear morphology in melanoma cells. We demonstrate that activated RAC1 promotes nuclear alterations through its effector PAK1 and the tubulin cytoskeleton, thereby enhancing migration and intravasation of melanoma cells. Disruption of the LINC complex prevented RAC1-induced nuclear alterations and the invasive properties of melanoma cells. Thus, RAC1 induces nuclear morphology alterations through microtubules and the LINC complex to promote an invasive phenotype in melanoma cells.


Assuntos
Núcleo Celular/metabolismo , Melanoma/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Forma do Núcleo Celular/fisiologia , Embrião de Galinha , Citoesqueleto/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Invasividade Neoplásica/genética , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-31994437

RESUMO

We previously demonstrated that miR-351-5p regulates nuclear scaffold lamin B1 expression and mediates the anticancer floxuridine-induced necrosis shift to apoptosis in mammalian tumor cells. Notably, it is unknown whether lamin B1 mRNA is a direct target of miR-351-5p. Here, we show that miR-351-5p interacts with a lamin B1 mRNA partial sequence by using the cell-free in vitro miRNA and mRNA binding evaluation system. In addition, the interaction of miR-351-5p/lamin B1 mRNA was suppressed by an miR-351-5p inhibitor. Our findings are important in exploring the functions of miRNAs in cellular processes, including cell death.


Assuntos
Lamina Tipo B/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Sequência de Bases , Sítios de Ligação , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Regulação Neoplásica da Expressão Gênica , Matriz Nuclear/metabolismo , Imagem Óptica , Interferência de RNA , Transdução de Sinais
9.
J Cell Biochem ; 121(3): 2209-2224, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31646677

RESUMO

Common fragile sites (CFSs) correspond to chromosomal regions susceptible to present breaks, discontinuities or constrictions in metaphase chromosomes from cells subjected to replication stress. They are considered as genomic regions intrinsically difficult to replicate and they are evolutionary conserved at least in mammals. However, the recent discovery that CFSs are cell-type specific indicates that DNA sequence by itself cannot account for CFS instability. Nevertheless, the large gene FHIT that includes FRA3B, the most highly expressed CFS in human lymphocytes, is commonly deleted in a variety of tumors suggesting a tumor suppressor role for its product. Here, we report that the epicenter of fragility of Fra14A2/Fhit, the mouse ortholog of human FRA3B/FHIT that like its human counterpart is the most highly expressed CFS in mouse lymphocytes, is largely attached to the nuclear matrix compartment in naive B lymphocytes but not in primary hepatocytes or cortical neurons that do not express such a CFS. Our results suggest a structural explanation for the difficult-to-replicate nature of such a region and so for its common fragility in lymphocytes, that is independent of the possible tumor suppressor role of the gene harboring such CFS.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Sítios Frágeis do Cromossomo , Fragilidade Cromossômica , Cromossomos , Hepatócitos/metabolismo , Linfócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Matriz Nuclear/metabolismo , Hidrolases Anidrido Ácido/genética , Animais , Proliferação de Células , Células Cultivadas , Hepatócitos/citologia , Linfócitos/citologia , Masculino , Camundongos , Proteínas de Neoplasias/genética
10.
Nat Cell Biol ; 21(10): 1273-1285, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548606

RESUMO

Chromosome translocation is a major cause of the onset and progression of diverse types of cancers. However, the mechanisms underlying this process remain poorly understood. Here, we identified a non-homologous end-joining protein, IFFO1, which structurally forms a heterotetramer with XRCC4. IFFO1 is recruited to the sites of DNA damage by XRCC4 and promotes the repair of DNA double-strand breaks in a parallel pathway with XLF. Interestingly, IFFO1 interacts with lamin A/C, forming an interior nucleoskeleton. Inactivating IFFO1 or its interaction with XRCC4 or lamin A/C leads to increases in both the mobility of broken ends and the frequency of chromosome translocation. Importantly, the destruction of this nucleoskeleton accounts for the elevated frequency of chromosome translocation in many types of cancer cells. Our results reveal that the lamin A/C-IFFO1-constituted nucleoskeleton prevents chromosome translocation by immobilizing broken DNA ends during tumorigenesis.


Assuntos
Carcinogênese/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Lamina Tipo A/metabolismo , Translocação Genética , Animais , Carcinoma/genética , Cromossomos Humanos , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteínas de Filamentos Intermediários/genética , Camundongos , Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/fisiologia
11.
Cytokine ; 120: 264-272, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31153006

RESUMO

ProMyelocytic Leukemia (PML) protein is essential for the formation of nuclear matrix-associated organelles named PML nuclear bodies (NBs) that act as a platform for post-translational modifications and protein degradation. PML NBs harbor transiently and permanently localized proteins and are associated with the regulation of several cellular functions including apoptosis. There are seven PML isoforms, six nuclear (PMLI-VI) and one cytoplasmic (PMLVII), which are encoded by a single gene via alternative RNA splicing. It has been reported that murine PML-null primary cells are resistant to TGF-ß-induced apoptosis and that cytoplasmic PML is an essential activator of TGF-ß signaling. The role and the fate of interferon (IFN)-enhanced PML NBs in response to TGF-ß have not been investigated. Here we show that IFNα potentiated TGF-ß-mediated apoptosis in human cells. IFNα or ectopic expression of PMLIV, but not of PMLIII, enhanced TGF-ß-induced caspase 8 activation. In response to TGF-ß, both PMLIII and PMLIV were conjugated to SUMO and shifted from the nucleoplasm to the nuclear matrix, however only PMLIV, via its specific C-terminal region, interacted with caspase 8 and recruited it within PML NBs. This process was followed by a caspase-dependent PML degradation and PML NB disruption. Taken together, these findings highlight the role of PML NBs in the enhancement by IFN of TGF-ß-induced apoptosis and caspase 8 activation.


Assuntos
Núcleo Celular/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteólise , Sumoilação , Fator de Crescimento Transformador beta/farmacologia , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Interferon-alfa/farmacologia , Matriz Nuclear/metabolismo , Proteína da Leucemia Promielocítica/química , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos dos fármacos
12.
BMC Med Genomics ; 12(1): 9, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646906

RESUMO

BACKGROUND: It has been found that chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC). CRS can be caused by gastro-oesophageal reflux (GOR) that may reach nasopharynx. The major component of refluxate, bile acid (BA) has been found to be carcinogenic and genotoxic. BA-induced apoptosis has been associated with various cancers. We have previously demonstrated that BA induced apoptosis and gene cleavages in nasopharyngeal epithelial cells. Chromosomal cleavage occurs at the early stage of both apoptosis and chromosome rearrangement. It was suggested that chromosome breaks tend to cluster in the region containing matrix association region/scaffold attachment region (MAR/SAR). This study hypothesised that BA may cause chromosome breaks at MAR/SAR leading to chromosome aberrations in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is a deletion hotspot in NPC. METHODS: Potential MAR/SAR sites were predicted in the AF9 gene by using MAR/SAR prediction tools. Normal nasopharyngeal epithelial cells (NP69) and NPC cells (TWO4) were treated with BA at neutral and acidic pH. Inverse-PCR (IPCR) was used to identify chromosome breaks in SAR region (contains MAR/SAR) and non-SAR region (does not contain MAR/SAR). To map the chromosomal breakpoints within the AF9 SAR and non-SAR regions, DNA sequencing was performed. RESULTS: In the AF9 SAR region, the gene cleavage frequencies of BA-treated NP69 and TWO4 cells were significantly higher than those of untreated control. As for the AF9 non-SAR region, no significant difference in cleavage frequency was detected between untreated and BA-treated cells. A few breakpoints detected in the SAR region were mapped within the AF9 region that was previously reported to translocate with the mixed lineage leukaemia (MLL) gene in an acute lymphoblastic leukaemia (ALL) patient. CONCLUSIONS: Our findings suggest that MAR/SAR may be involved in defining the positions of chromosomal breakages induced by BA. Our report here, for the first time, unravelled the relation of these BA-induced chromosomal breakages to the AF9 chromatin structure.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/farmacologia , Quebra Cromossômica , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Nasofaringe/citologia , Matriz Nuclear/metabolismo , Apoptose/genética , Linhagem Celular , Quebra Cromossômica/efeitos dos fármacos , Simulação por Computador , DNA Topoisomerases Tipo II/metabolismo , Células Epiteliais/metabolismo , Humanos , Matriz Nuclear/efeitos dos fármacos
13.
Plant Physiol ; 179(2): 491-506, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530738

RESUMO

Nuclear movement is involved in cellular and developmental processes across eukaryotic life, often driven by Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes, which bridge the nuclear envelope (NE) via the interaction of Klarsicht/ANC-1/Syne-1 Homology (KASH) and Sad1/UNC-84 (SUN) proteins. Arabidopsis (Arabidopsis thaliana) LINC complexes are involved in nuclear movement and positioning in several cell types. Observations since the 1950s have described targeted nuclear movement and positioning during symbiosis initiation between legumes and rhizobia, but it has not been established whether these movements are functional or incidental. Here, we identify and characterize LINC complexes in the model legume Medicago truncatula We show that LINC complex characteristics such as NE localization, dependence of KASH proteins on SUN protein binding for NE enrichment, and direct SUN-KASH binding are conserved between plant species. Using a SUN dominant-negative strategy, we demonstrate that LINC complexes are necessary for proper nuclear shaping and movement in Medicago root hairs, and are important for infection thread initiation and nodulation.


Assuntos
Medicago/fisiologia , Complexos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/fisiologia , Actinas/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Medicago/citologia , Complexos Multiproteicos/genética , Matriz Nuclear/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Mapas de Interação de Proteínas , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Nicotiana/genética , Nicotiana/metabolismo
14.
Cell Cycle ; 17(18): 2268-2283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30280956

RESUMO

CIZ1 promotes cyclin-dependent DNA replication and resides in sub-nuclear foci that are part of the protein nuclear matrix (NM), and in RNA assemblies that are enriched at the inactive X chromosome (Xi) in female cells. It is subjected to alternative splicing, with specific variants implicated in adult and pediatric cancers. CIZ1-F is characterized by a frame shift that results from splicing exons 8-12 leading to inclusion of a short alternative reading frame (ARF), excluding the previously characterized C-terminal NM anchor domain. Here, we apply a set of novel variant-selective molecular tools targeted to the ARF to profile the expression of CIZ1-F at both transcript and protein levels, with focus on its relationship with the RNA-dependent and -independent fractions of the NM. Unlike full-length CIZ1, CIZ1-F does not accumulate at Xi, though like full-length CIZ1 it does resist extraction with DNase. Notably, CIZ1-F is sensitive to RNase identifying it as part of the RNA-fraction of the NM. In quiescent cells CIZ1-F transcript expression is suppressed and CIZ1-F protein is excluded from the nucleus, with re-expression not observed until the second cell cycle after exit from quiescence. Importantly, CIZ1-F is over-expressed in common solid tumors including colon and breast, pronounced in early stage but not highly-proliferative late stage tumors. Moreover, expression was significantly higher in hormone receptor negative breast tumors than receptor positive tumors. Together these data show that CIZ1-F is expressed in proliferating cells in an unusual cell cycle-dependent manner, and suggest that it may have potential as a tumor biomarker.


Assuntos
Proteínas Nucleares/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Biomarcadores Tumorais/metabolismo , Núcleo Celular/metabolismo , Replicação do DNA , Éxons , Feminino , Fase G1 , Humanos , Células MCF-7 , Estadiamento de Neoplasias , Neoplasias/metabolismo , Neoplasias/patologia , Matriz Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Curr Biol ; 28(19): 3086-3097.e4, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30245107

RESUMO

Many nuclear positioning events involve linker of nucleoskeleton and cytoskeleton (LINC) complexes, which transmit forces generated by the cytoskeleton across the nuclear envelope. LINC complexes are formed by trans-luminal interactions between inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins, but how these interactions are regulated is poorly understood. We combine in vivo C. elegans genetics, in vitro wounded fibroblast polarization, and in silico molecular dynamics simulations to elucidate mechanisms of LINC complexes. The extension of the KASH domain by a single alanine residue or the mutation of the conserved tyrosine at -7 completely blocked the nuclear migration function of C. elegans UNC-83. Analogous mutations at -7 of mouse nesprin-2 disrupted rearward nuclear movements in NIH 3T3 cells, but did not disrupt ANC-1 in nuclear anchorage. Furthermore, conserved cysteines predicted to form a disulfide bond between SUN and KASH proteins are important for the function of certain LINC complexes, and might promote a developmental switch between nuclear migration and nuclear anchorage. Mutations of conserved cysteines in SUN or KASH disrupted ANC-1-dependent nuclear anchorage in C. elegans and Nesprin-2G-dependent nuclear movements in polarizing fibroblasts. However, the SUN cysteine mutation did not disrupt nuclear migration. Moreover, molecular dynamics simulations showed that a disulfide bond is necessary for the maximal transmission of cytoskeleton-generated forces by LINC complexes in silico. Thus, we have demonstrated functions for SUN-KASH binding interfaces, including a predicted intermolecular disulfide bond, as mechanistic determinants of nuclear positioning that may represent targets for regulation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microtúbulos/metabolismo , Células NIH 3T3 , Matriz Nuclear/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
16.
Stem Cell Res Ther ; 9(1): 125, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720241

RESUMO

BACKGROUND: Adipose-derived stem cells (ASCs) that show multidifferentiation and anti-immune rejection capacities have been widely used in plastic and reconstructive surgery. Previous studies have indicated that mechanical and biophysical interactions between cells and their surrounding environment regulate essential processes, such as growth, survival, and differentiation, and the cytoskeleton system plays an important role in the mechanotransduction. However, the role of mechanical force in the determination of lineage fate is still unclear. METHODS: Human ASCs (hASCs) were obtained from three different donors by liposuction. Adipogenesis and osteogenesis were determined by Oil Red O and Alizarin Red staining, respectively. The mRNA levels of the cytoskeleton system, PPARγ, and C/EBPα were determined by real-time polymerase chain reaction (RT-PCR). The level of cytoskeleton, PPARγ, and C/EBPα protein levels were measured by Western blotting. The morphology of the cytoskeleton system during adipogenesis was observed with confocal microscopy. hASCs were transfected with a SUN2-specific shRNA to knockdown sun2, and a nontargeting shRNA was used as a control. RESULTS: We found that disrupting the physiological balance between the cytoskeleton and the linker of the nucleoskeleton and cytoskeleton (LINC) complex (especially SUN2) could impact the adipogenesis of hASCs in vitro. Microtubule (MT) depolymerization with nocodazole (which interferes with the polymerization of MTs) increased the expression of SUN2 and PPARγ, while taxol (an inhibitor of MT disassembly) showed the opposite results. Meanwhile, hASCs with sun2 knockdown overexpressed MTs and decreased PPARγ expression, thereby inhibiting the adipogenesis. Furthermore, knockdown of sun2 changed the structure of perinuclear MTs. CONCLUSIONS: We demonstrated the presence of cross-talk between MT and SUN2, and this cross-talk plays a critical role in the rebalance of the mechanical environment and is involved in the regulation of PPARγ transport during adipogenic differentiation of hASCs.


Assuntos
Adipogenia/genética , Tecido Adiposo/metabolismo , Microtúbulos/metabolismo , Matriz Nuclear/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Regulação para Cima
17.
J Cell Biol ; 217(5): 1701-1717, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29545370

RESUMO

Translocation of full-length or fragments of receptors to the nucleus has been reported for several tyrosine kinase receptors. In this paper, we show that a fraction of full-length cell surface platelet-derived growth factor (PDGF) receptor ß (PDGFRß) accumulates in the nucleus at the chromatin and the nuclear matrix after ligand stimulation. Nuclear translocation of PDGFRß was dependent on PDGF-BB-induced receptor dimerization, clathrin-mediated endocytosis, ß-importin, and intact Golgi, occurring in both normal and cancer cells. In the nucleus, PDGFRß formed ligand-inducible complexes with the tyrosine kinase Fer and its substrate, TATA element-modifying factor 1 (TMF-1). PDGF-BB stimulation decreased TMF-1 binding to the transcriptional regulator Brahma-related gene 1 (Brg-1) and released Brg-1 from the SWI-SNF chromatin remodeling complex. Moreover, knockdown of TMF-1 by small interfering RNA decreased nuclear translocation of PDGFRß and caused significant up-regulation of the Brg-1/p53-regulated cell cycle inhibitor CDKN1A (encoding p21) without affecting PDGFRß-inducible immediate-early genes. In conclusion, nuclear interactions of PDGFRß control proliferation by chromatin remodeling and regulation of p21 levels.


Assuntos
Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição/metabolismo , Becaplermina/farmacologia , Biotinilação , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Complexo de Golgi/metabolismo , Humanos , Ligantes , Masculino , Matriz Nuclear/efeitos dos fármacos , Matriz Nuclear/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Cancer Sci ; 109(4): 1158-1165, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29465769

RESUMO

The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell migration and invasion. A sublethal dose of X-ray radiation promoted human breast cancer MDA-MB-231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose-dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X-ray-enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X-ray-enhanced migration and invasion. In addition, the results suggested that X-ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon-enhanced cell migration and invasion.


Assuntos
Movimento Celular/fisiologia , Movimento Celular/efeitos da radiação , Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Matriz Nuclear/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/efeitos da radiação , Humanos , Mecanotransdução Celular/fisiologia , Mecanotransdução Celular/efeitos da radiação , Proteínas de Membrana/metabolismo , Invasividade Neoplásica/patologia , Membrana Nuclear/metabolismo , Matriz Nuclear/efeitos da radiação , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos da radiação , Splicing de RNA/efeitos da radiação , Raios X
19.
Biochem Biophys Res Commun ; 506(2): 378-386, 2018 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-29203242

RESUMO

In eukaryotic cells gene regulation is dependent on global genome organization. This is achieved, in response to favorable environmental conditions, through spatial redistribution of chromatin and changes in global epigenetic levels. This eventually drives movement of gene-rich chromatin loops and formation of DNA loops, consolidating neighborhoods of gene expression and silencing. One of the challenges for future work is to examine how these neighborhoods are formed and whether they host genes involved in the same cellular functions for sustained expression or silencing over time. In the present review, we summarize evidence that actin and actin-associated proteins regulate gene activity. Furthermore we discuss how these specific nuclear tasks in which actin is engaged are important to organize and consolidate the mammalian genome, ensuring gene activation and repression of gene programs important to establish cellular identity. We propose that these mechanisms are essential to control cellular development and differentiation.


Assuntos
Actinas/metabolismo , Cromatina/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Actinas/genética , Alveolados , Animais , Cromatina/química , Cromatina/ultraestrutura , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Matriz Nuclear/genética , Matriz Nuclear/metabolismo , Matriz Nuclear/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas , Transcrição Gênica
20.
Cardiovasc Res ; 114(3): 378-388, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040414

RESUMO

AIMS: Luma is a recently discovered, evolutionarily conserved protein expressed in mammalian heart, which is associated with the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex. The LINC complex structurally integrates the nucleus and the cytoplasm and plays a critical role in mechanotransduction across the nuclear envelope. Mutations in several LINC components in both humans and mice result in various cardiomyopathies, implying they play essential, non-redundant roles. A single amino acid substitution of serine 358 to leucine (S358L) in Luma is the unequivocal cause of a distinct form of arrhythmogenic cardiomyopathy. However, the role of Luma in heart has remained obscure. In addition, it also remains to be determined how the S358L mutation in Luma leads to cardiomyopathy. METHODS AND RESULTS: To determine the role of Luma in the heart, we first determined the expression pattern of Luma in mouse heart. Luma was sporadically expressed in cardiomyocytes throughout the heart, but was highly and uniformly expressed in cardiac fibroblasts and vascular smooth muscle cells. We also generated germline null Luma mice and discovered that germline null mutants were viable and exhibited normal cardiac function. Luma null mice also responded normally to pressure overload induced by transverse aortic constriction. In addition, localization and expression of other LINC complex components in both cardiac myocytes and fibroblasts was unaffected by global loss of Luma. Furthermore, we also generated and characterized Luma S358L knock-in mice, which displayed normal cardiac function and morphology. CONCLUSION: Our data suggest that Luma is dispensable for murine cardiac development and function and that the Luma S358L mutation alone may not cause cardiomyopathy in mice.


Assuntos
Coração/embriologia , Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Animais , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Coração/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Mecanotransdução Celular , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Matriz Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA