Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 523(7559): 240-4, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26030525

RESUMO

The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (∼1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the boundary. Thus, the DCC imposes a distinct higher-order structure onto X chromosomes while regulating gene expression chromosome-wide.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose/fisiologia , Complexos Multiproteicos/metabolismo , Cromossomo X/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Mecanismo Genético de Compensação de Dose/genética , Feminino , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente , Masculino , Ligação Proteica , Análise de Sequência de RNA , Cromossomo X/genética
2.
Dev Cell ; 33(5): 498-9, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26058053

RESUMO

Eukaryotic chromosomes are organized into topological domains, but how these are established and maintained is poorly understood. Writing in Nature, Crane et al. (2015) show that a specialized condensin complex enforces the domain boundaries along the C. elegans X chromosome to equalize transcription from the X between males and hermaphrodites.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose/fisiologia , Complexos Multiproteicos/metabolismo , Cromossomo X/metabolismo , Animais , Feminino , Masculino
3.
PLoS One ; 8(4): e60450, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565249

RESUMO

Male Drosophila are monosomic for the X chromosome, but survive due to dosage compensation. They use the Male Specific Lethal (MSL) complex composed of noncoding roX RNA and histone modifying enzymes to hypertranscribe most genes along the X ∼1.6-1.8 fold relative to each female allele. It is not known how the MSL complex achieves this precise adjustment to a large and diverse set of target genes. We carried out a genetic screen searching for novel factors that regulate dosage compensation in flies. This strategy generated thirty alleles in a previously uncharacterized gene, over compensating males (ocm) that antagonizes some aspect of MSL activity. The mutations were initially recovered because they derepressed an MSL-dependent eye color reporter. Null ocm mutations are lethal to both sexes early in development revealing an essential function. Combinations of hypomorphic ocm alleles display a male specific lethality similar to mutations in the classic msl genes, but ocm males die due to excessive, rather than lack of dosage compensation. Males that die due to very low MSL activity can be partially rescued by ocm mutations. Likewise, males that would die from ocm mutations can be rescued by reducing the dose of various msl and roX genes. ocm encodes a large nuclear protein that shares a novel cysteine rich motif with known transcription factors.


Assuntos
Mecanismo Genético de Compensação de Dose/fisiologia , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose/genética , Proteínas de Drosophila/genética , Feminino , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Cromossomo X/metabolismo
4.
Chromosome Res ; 17(2): 215-27, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19308702

RESUMO

The C. elegans dosage compensation complex (DCC) reduces transcript levels from each of the two hermaphrodite X chromosomes to equalize X-linked gene expression to that of XO males. Several of the proteins that comprise the DCC are homologous to subunits of the evolutionarily conserved condensin complexes, which in most organisms function in mitotic and meiotic chromosome condensation. These include the DCC subunits MIX-1 and DPY-27, which belong to the structural maintenance of chromosomes (SMC) family of proteins. Several of the C. elegans DCC subunits also perform double duty as members of the canonical meiotic and mitotic condensin complexes. Here, we review what is known about the C. elegans DCC and how study of this model might shed light on general mechanisms of domain-scale transcriptional regulation. We discuss how condensin-like complexes may be targeted to specific chromosomal locations for performance of their functions.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/fisiologia , Mecanismo Genético de Compensação de Dose , Regulação da Expressão Gênica , Complexos Multiproteicos/fisiologia , Animais , Proteínas de Caenorhabditis elegans/genética , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Mecanismo Genético de Compensação de Dose/genética , Mecanismo Genético de Compensação de Dose/fisiologia , Drosophila melanogaster/genética , Feminino , Genes Ligados ao Cromossomo X , Humanos , Masculino , Meiose , Mitose , Modelos Genéticos , Especificidade da Espécie , Transcrição Gênica , Inativação do Cromossomo X
5.
Genes Dev ; 23(5): 602-18, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19270160

RESUMO

In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X-gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the Caenorhabditis elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites (recruitment elements on X) recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12-base-pair (bp) consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites (dependent on X) lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and noncompensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X-gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.


Assuntos
Adenosina Trifosfatases/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma Helmíntico/fisiologia , Complexos Multiproteicos/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Consenso/genética , Feminino , Genoma Helmíntico/genética , Masculino , Ligação Proteica , Elementos Reguladores de Transcrição , Cromossomo X/genética , Cromossomo X/metabolismo
6.
Curr Biol ; 19(1): 9-19, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19119011

RESUMO

BACKGROUND: Condensin complexes organize chromosome structure and facilitate chromosome segregation. Higher eukaryotes have two complexes, condensin I and condensin II, each essential for chromosome segregation. The nematode Caenorhabditis elegans was considered an exception, because it has a mitotic condensin II complex but appeared to lack mitotic condensin I. Instead, its condensin I-like complex (here called condensin I(DC)) dampens gene expression along hermaphrodite X chromosomes during dosage compensation. RESULTS: Here we report the discovery of a third condensin complex, condensin I, in C. elegans. We identify new condensin subunits and show that each complex has a conserved five-subunit composition. Condensin I differs from condensin I(DC) by only a single subunit. Yet condensin I binds to autosomes and X chromosomes in both sexes to promote chromosome segregation, whereas condensin I(DC) binds specifically to X chromosomes in hermaphrodites to regulate transcript levels. Both condensin I and II promote chromosome segregation, but associate with different chromosomal regions during mitosis and meiosis. Unexpectedly, condensin I also localizes to regions of cohesion between meiotic chromosomes before their segregation. CONCLUSIONS: We demonstrate that condensin subunits in C. elegans form three complexes, one that functions in dosage compensation and two that function in mitosis and meiosis. These results highlight how the duplication and divergence of condensin subunits during evolution may facilitate their adaptation to specialized chromosomal roles and illustrate the versatility of condensins to function in both gene regulation and chromosome segregation.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Caenorhabditis elegans/genética , Segregação de Cromossomos/fisiologia , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Mecanismo Genético de Compensação de Dose/genética , Regulação da Expressão Gênica/genética , Modelos Biológicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Divisão do Núcleo Celular/fisiologia , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose/fisiologia , Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Imunoprecipitação , Complexos Multiproteicos/metabolismo , Proteômica/métodos , Interferência de RNA
7.
Curr Biol ; 18(17): 1344-8, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18771921

RESUMO

In mammals, the increase in gene dosage, in the form of polyploidy or involving chromosomal fragments, has deleterious effects [1]. Regulation of appropriate gene product amounts has to be warranted by complex dosage-compensation mechanisms. Lower vertebrates, on the other hand, cope very well with ploidy increase [2-4], implying either effective compensation or a lack of necessity for such mechanisms. Unfortunately, nothing is known about the genetic and molecular mechanisms underlying this phenomenon. For an experimental approach, we have studied gene expression in the allotriploid form of Squalius alburnoides. In these organisms, different genomes are joined through hybridization; thus, sequence differences can be used to follow expression of different alleles [5, 6]. We found that a compensation mechanism exists, reducing transcript levels to the diploid state. Our data suggest a silencing of one of the three alleles. Unexpectedly, it is not a whole haplome that is inactivated. The allelic expression patterns differ between genes and between different tissues for one and the same gene. Our data provide the first evidence of a regulation mechanism involving gene-copy silencing in a triploid vertebrate.


Assuntos
Cyprinidae/genética , Mecanismo Genético de Compensação de Dose/fisiologia , Proteínas de Peixes/genética , Dosagem de Genes , Inativação Gênica , Poliploidia , Alelos , Animais , Proteínas de Peixes/metabolismo , Expressão Gênica , Genoma , Genótipo , Gônadas/metabolismo , Hibridização Genética , Fígado/metabolismo , Polimorfismo Genético
8.
Eur J Hum Genet ; 16(2): 153-62, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17971834

RESUMO

Only one X chromosome functions in diploid human cells irrespective of the sex of the individual and the number of X chromosomes. Yet, as we show, more than one X is active in the majority of human triploid cells. Therefore, we suggest that (i) the active X is chosen by repression of its XIST locus, (ii) the repressor is encoded by an autosome and is dosage sensitive, and (iii) the extra dose of this key repressor enables the expression of more than one X in triploid cells. Because autosomal trisomies might help locate the putative dosage sensitive trans-acting factor, we looked for two active X chromosomes in such cells. Previously, we reported that females trisomic for 18 different human autosomes had only one active X and a normal inactive X chromosome. Now we report the effect of triplication of the four autosomes not studied previously; data about these rare trisomies - full or partial - were used to identify autosomal regions relevant to the choice of active X. We find that triplication of the entire chromosomes 5 and 11 and parts of chromosomes 1 and 19 is associated with normal patterns of X inactivation, excluding these as candidate regions. However, females with inherited triplications of 1p21.3-q25.3, 1p31 and 19p13.2-q13.33 were not ascertained. Thus, if a single key dose-sensitive gene induces XIST repression, it could reside in one of these locations. Alternatively, more than one dosage-sensitive autosomal locus is required to form the repressor complex.


Assuntos
Cromossomos Humanos X/metabolismo , Mecanismo Genético de Compensação de Dose/fisiologia , Regulação da Expressão Gênica/fisiologia , Poliploidia , Transativadores/fisiologia , Trissomia/genética , Inativação do Cromossomo X/genética , Animais , Cromossomos Humanos X/genética , Feminino , Humanos , Masculino , Camundongos , RNA Longo não Codificante , RNA não Traduzido/fisiologia
9.
Development ; 133(22): 4475-83, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17035293

RESUMO

DNA supercoiling factor (SCF) is a protein capable of generating negative supercoils in DNA in conjunction with topoisomerase II. To clarify the biological functions of SCF, we introduced a heritable SCF RNAi into Drosophila. Upon knockdown of SCF, we observed male lethality and male-specific reduction in the expression levels of X-linked genes. SCF functionally interacts with components of the MSL complex, which are required for dosage compensation via hypertranscription of the male X chromosome. Moreover, SCF colocalizes with the MSL complex along the male X chromosome. Upon overexpression of SCF, the male X chromosome had a bloated appearance. This phenotype was dependent on the histone acetyltransferase MOF and was suppressed by simultaneous overexpression of ISWI. These findings demonstrate that SCF plays a role in transcriptional activation via alteration of chromatin structure and provide evidence that SCF contributes to dosage compensation.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Cromatina/metabolismo , Mecanismo Genético de Compensação de Dose/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/genética , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X/genética , Proteínas Nucleares/fisiologia , Cromossomo X/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Cromatina/genética , Primers do DNA , Mecanismo Genético de Compensação de Dose/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona Acetiltransferases/metabolismo , Immunoblotting , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA