Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.897
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Physiol Rep ; 12(9): e16043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724885

RESUMO

The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.


Assuntos
Sistema Urinário , Animais , Camundongos , Masculino , Feminino , Sistema Urinário/metabolismo , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Camundongos Endogâmicos C57BL , Urotélio/metabolismo , Urotélio/citologia , Células Epiteliais/metabolismo
2.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747287

RESUMO

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Assuntos
Angiopoietina-2 , Proteína Forkhead Box O1 , Canais Iônicos , Linfangiogênese , Linfedema , Receptor de TIE-1 , Transdução de Sinais , Canais Iônicos/metabolismo , Canais Iônicos/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Animais , Angiopoietina-2/metabolismo , Angiopoietina-2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patologia , Camundongos , Linfangiogênese/genética , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Células Endoteliais/metabolismo , Mecanotransdução Celular , Proteína ADAM17/metabolismo , Proteína ADAM17/genética
3.
Arch Oral Biol ; 163: 105963, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608563

RESUMO

OBJECTIVES: Orthodontic tooth movement is a mechanobiological reaction induced by appropriate forces, including bone remodeling. The mechanosensitive Piezo channels have been shown to contribute to bone remodeling. However, information about the pathways through which Piezo channels affects osteoblasts remains limited. Thus, we aimed to investigate the influence of Piezo1 on the osteogenic and osteoclast factors in osteoblasts under mechanical load. MATERIALS AND METHODS: Cyclic stretch (CS) experiments on MC3T3-E1 were conducted using a BioDynamic mechanical stretching device. The Piezo1 channel blocker GsMTx4 and the Piezo1 channel agonist Yoda1 were used 12 h before the application of CS. MC3T3-E1 cells were then subjected to 15% CS, and the expression of Piezo1, Piezo2, BMP-2, OCN, Runx2, RANKL, p-p65/p65, and ALP was measured using quantitative real-time polymerase chain reaction, western blot, alkaline phosphatase staining, and immunofluorescence staining. RESULTS: CS of 15% induced the highest expression of Piezo channel and osteoblast factors. Yoda1 significantly increased the CS-upregulated expression of Piezo1 and ALP activity but not Piezo2 and RANKL. GsMTx4 downregulated the CS-upregulated expression of Piezo1, Piezo2, Runx2, OCN, p-65/65, and ALP activity but could not completely reduce CS-upregulated BMP-2. CONCLUSIONS: The appropriate force is more suitable for promoting osteogenic differentiation in MC3T3-E1. The Piezo1 channel participates in osteogenic differentiation of osteoblasts through its influence on the expression of osteogenic factors like BMP-2, Runx2, and OCN and is involved in regulating osteoclasts by influencing phosphorylated p65. These results provide a foundation for further exploration of osteoblast function in orthodontic tooth movement.


Assuntos
Proteína Morfogenética Óssea 2 , Subunidade alfa 1 de Fator de Ligação ao Core , Canais Iônicos , Osteoblastos , Osteogênese , Osteoblastos/metabolismo , Canais Iônicos/metabolismo , Animais , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Osteogênese/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoclastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ligante RANK/metabolismo , Western Blotting , Estresse Mecânico , Diferenciação Celular , Osteocalcina/metabolismo , Fosfatase Alcalina/metabolismo , Oligopeptídeos/farmacologia , Técnicas de Movimentação Dentária , Mecanotransdução Celular/fisiologia , Linhagem Celular , Remodelação Óssea/fisiologia , Pirazinas , Venenos de Aranha , Tiadiazóis , Peptídeos e Proteínas de Sinalização Intercelular
4.
Respir Res ; 25(1): 188, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678280

RESUMO

Repetitive bouts of coughing expose the large airways to significant cycles of shear stress. This leads to the release of alarmins and the tussive agent adenosine triphosphate (ATP) which may be modulated by the activity of ion channels present in the human airway. This study aimed to investigate the role of the transient receptor potential subfamily vanilloid member 2 (TRPV2) channel in mechanically induced ATP release from primary bronchial epithelial cells (PBECs).PBECs were obtained from individuals undergoing bronchoscopy. They were cultured in vitro and exposed to mechanical stress in the form of compressive and fluid shear stress (CFSS) or fluid shear stress (FSS) alone at various intensities. ATP release was measured using a luciferin-luciferase assay. Functional TRPV2 protein expression in human PBECs was investigated by confocal calcium imaging. The role of TRPV2 inhibition on FSS-induced ATP release was investigated using the TRPV2 inhibitor tranilast or siRNA knockdown of TRPV2. TRPV2 protein expression in human lung tissue was also determined by immunohistochemistry.ATP release was significantly increased in PBECs subjected to CFSS compared with control (unstimulated) PBECs (N = 3, ***P < 0.001). PBECs expressed functional TRPV2 channels. TRPV2 protein was also detected in fixed human lung tissue. ATP release from FFS stimulated PBECs was decreased by the TRPV2 inhibitor tranilast (N = 3, **P < 0.01) (vehicle: 159 ± 17.49 nM, tranilast: 25.08 ± 5.1 nM) or by TRPV2 siRNA knockdown (N = 3, *P < 0.05) (vehicle: 197 ± 24.52 nM, siRNA: 119 ± 26.85 nM).In conclusion, TRPV2 is expressed in the human airway and modulates ATP release from mechanically stimulated PBECs.


Assuntos
Trifosfato de Adenosina , Brônquios , Células Epiteliais , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Trifosfato de Adenosina/metabolismo , Brônquios/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Estresse Mecânico , Masculino , Mecanotransdução Celular/fisiologia
5.
J Exp Clin Cancer Res ; 43(1): 107, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594748

RESUMO

BACKGROUND: Tumor cells have the ability to invade and form small clusters that protrude into adjacent tissues, a phenomenon that is frequently observed at the periphery of a tumor as it expands into healthy tissues. The presence of these clusters is linked to poor prognosis and has proven challenging to treat using conventional therapies. We previously reported that p60AmotL2 expression is localized to invasive colon and breast cancer cells. In vitro, p60AmotL2 promotes epithelial cell invasion by negatively impacting E-cadherin/AmotL2-related mechanotransduction. METHODS: Using epithelial cells transfected with inducible p60AmotL2, we employed a phenotypic drug screening approach to find compounds that specifically target invasive cells. The phenotypic screen was performed by treating cells for 72 h with a library of compounds with known antitumor activities in a dose-dependent manner. After assessing cell viability using CellTiter-Glo, drug sensitivity scores for each compound were calculated. Candidate hit compounds with a higher drug sensitivity score for p60AmotL2-expressing cells were then validated on lung and colon cell models, both in 2D and in 3D, and on colon cancer patient-derived organoids. Nascent RNA sequencing was performed after BET inhibition to analyse BET-dependent pathways in p60AmotL2-expressing cells. RESULTS: We identified 60 compounds that selectively targeted p60AmotL2-expressing cells. Intriguingly, these compounds were classified into two major categories: Epidermal Growth Factor Receptor (EGFR) inhibitors and Bromodomain and Extra-Terminal motif (BET) inhibitors. The latter consistently demonstrated antitumor activity in human cancer cell models, as well as in organoids derived from colon cancer patients. BET inhibition led to a shift towards the upregulation of pro-apoptotic pathways specifically in p60AmotL2-expressing cells. CONCLUSIONS: BET inhibitors specifically target p60AmotL2-expressing invasive cancer cells, likely by exploiting differences in chromatin accessibility, leading to cell death. Additionally, our findings support the use of this phenotypic strategy to discover novel compounds that can exploit vulnerabilities and specifically target invasive cancer cells.


Assuntos
Neoplasias do Colo , Mecanotransdução Celular , Humanos , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética
6.
Sci Rep ; 14(1): 7862, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570547

RESUMO

The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in the inner ear hair cells (HCs), possibly regulating auditory function. In the last decade, several mutations in SMPX have been associated with X-chromosomal progressive non syndromic hearing loss in humans and, in line with this, Smpx-deficient animal models, namely zebrafish and mouse, showed significant impairment of inner ear HCs development, maintenance, and functioning. In this work, we uncovered smpx expression in the neuromast mechanosensory HCs of both Anterior and Posterior Lateral Line (ALL and PLL, respectively) of zebrafish larvae and focused our attention on the PLL. Smpx was subcellularly localized throughout the cytoplasm of the HCs, as well as in their primary cilium. Loss-of-function experiments, via both morpholino-mediated gene knockdown and CRISPR/Cas9 F0 gene knockout, revealed that the lack of Smpx led to fewer properly differentiated and functional neuromasts, as well as to a smaller PLL primordium (PLLp), the latter also Smpx-positive. In addition, the kinocilia of Smpx-deficient neuromast HCs appeared structurally and numerically altered. Such phenotypes were associated with a significant reduction in the mechanotransduction activity of the neuromast HCs, in line with their positivity for Smpx. In summary, this work highlights the importance of Smpx in lateral line development and, specifically, in proper HCs differentiation and/or maintenance, and in the mechanotransduction process carried out by the neuromast HCs. Because lateral line HCs are both functionally and structurally analogous to the cochlear HCs, the neuromasts might represent an invaluable-and easily accessible-tool to dissect the role of Smpx in HCs development/functioning and shed light on the underlying mechanisms involved in hearing loss.


Assuntos
Perda Auditiva , Sistema da Linha Lateral , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistema da Linha Lateral/metabolismo , Mecanotransdução Celular , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/genética , Proteínas Musculares/metabolismo
7.
J Orthop Surg Res ; 19(1): 257, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649946

RESUMO

BACKGROUND: The mechanotransduction mechanisms by which cells regulate tissue remodeling are not fully deciphered. Circular RNAs (circRNAs) are crucial to various physiological processes, including cell cycle, differentiation, and polarization. However, the effects of mechanical force on circRNAs and the role of circRNAs in the mechanobiology of differentiation and remodeling in stretched periodontal ligament stem cells (PDLSCs) remain unclear. This article aims to explore the osteogenic function of mechanically sensitive circular RNA protein kinase D3 (circPRKD3) and elucidate its underlying mechanotransduction mechanism. MATERIALS AND METHODS: PDLSCs were elongated with 8% stretch at 0.5 Hz for 24 h using the Flexcell® FX-6000™ Tension System. CircPRKD3 was knockdown or overexpressed with lentiviral constructs or plasmids. The downstream molecules of circPRKD3 were predicted by bioinformatics analysis. The osteogenic effect of related molecules was evaluated by quantitative real-time PCR (qRT-PCR) and western blot. RESULTS: Mechanical force enhanced the osteogenesis of PDLSCs and increased the expression of circPRKD3. Knockdown of circPRKD3 hindered PDLSCs from osteogenesis under mechanical force, while overexpression of circPRKD3 promoted the early osteogenesis process of PDLSCs. With bioinformatics analysis and multiple software predictions, we identified hsa-miR-6783-3p could act as the sponge of circPRKD3 to indirectly regulate osteogenic differentiation of mechanically stimulated PDLSCs. CONCLUSIONS: Our results first suggested that both circPRKD3 and hsa-miR-6783-3p could enhance osteogenesis of stretched PDLSCs. Furthermore, hsa-miR-6783-3p could sponge circPRKD3 to indirectly regulate RUNX2 during the periodontal tissue remodeling process in orthodontic treatment.


Assuntos
MicroRNAs , Osteogênese , Ligamento Periodontal , RNA Circular , Células-Tronco , Ligamento Periodontal/citologia , Osteogênese/genética , Osteogênese/fisiologia , Humanos , RNA Circular/genética , RNA Circular/fisiologia , MicroRNAs/genética , Células-Tronco/metabolismo , Células Cultivadas , Mecanotransdução Celular/fisiologia , Diferenciação Celular/genética , Estresse Mecânico , Proteínas Serina-Treonina Quinases/genética
8.
Arterioscler Thromb Vasc Biol ; 44(5): 1065-1085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572650

RESUMO

Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.


Assuntos
Prótese Vascular , Hemodinâmica , Humanos , Animais , Modelos Cardiovasculares , Falha de Prótese , Estresse Mecânico , Fenômenos Biomecânicos , Mecanotransdução Celular , Implante de Prótese Vascular/efeitos adversos , Desenho de Prótese , Oclusão de Enxerto Vascular/fisiopatologia , Oclusão de Enxerto Vascular/etiologia , Remodelação Vascular
9.
Sci Adv ; 10(17): eadl4463, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669327

RESUMO

Slowing peritoneal spread in high-grade serous ovarian cancer (HGSOC) would improve patient prognosis and quality of life. HGSOC spreads when single cells and spheroids detach, float through the peritoneal fluid and take over new sites, with spheroids thought to be more aggressive than single cells. Using our in vitro model of spheroid collective detachment, we determine that increased substrate stiffness led to the detachment of more spheroids. We identified a mechanism where Piezo1 activity increased MMP-1/MMP-10, decreased collagen I and fibronectin, and increased spheroid detachment. Piezo1 expression was confirmed in omental masses from patients with stage III/IV HGSOC. Using OV90 and CRISPR-modified PIEZO1-/- OV90 in a mouse xenograft model, we determined that while both genotypes efficiently took over the omentum, loss of Piezo1 significantly decreased ascitic volume, tumor spheroids in the ascites, and the number of macroscopic tumors in the mesentery. These results support that slowing collective detachment may benefit patients and identify Piezo1 as a potential therapeutic target.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Neoplasias Ovarianas , Esferoides Celulares , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Gradação de Tumores , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Esferoides Celulares/metabolismo
10.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563084

RESUMO

Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.


Assuntos
Adesões Focais , Proteínas Ativadoras de GTPase , Mecanotransdução Celular , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular , Retroalimentação Fisiológica , Adesões Focais/metabolismo , Adesões Focais/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular/genética , Neovascularização Fisiológica , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP/metabolismo
11.
Commun Biol ; 7(1): 467, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632473

RESUMO

Differences in shape can be a distinguishing feature between different cell types, but the shape of a cell can also be dynamic. Changes in cell shape are critical when cancer cells escape from the primary tumor and undergo major morphological changes that allow them to squeeze between endothelial cells, enter the vasculature, and metastasize to other areas of the body. A shift from rounded to spindly cellular geometry is a consequence of epithelial-mesenchymal plasticity, which is also associated with changes in gene expression, increased invasiveness, and therapeutic resistance. However, the consequences and functional impacts of cell shape changes and the mechanisms through which they occur are still poorly understood. Here, we demonstrate that altering the morphology of a cell produces a remodeling of calcium influx via the ion channel PIEZO1 and identify PIEZO1 as an inducer of features of epithelial-to-mesenchymal plasticity. Combining automated epifluorescence microscopy and a genetically encoded calcium indicator, we demonstrate that activation of the PIEZO1 force channel with the PIEZO1 agonist, YODA 1, induces features of epithelial-to-mesenchymal plasticity in breast cancer cells. These findings suggest that PIEZO1 is a critical point of convergence between shape-induced changes in cellular signaling and epithelial-mesenchymal plasticity in breast cancer cells.


Assuntos
Neoplasias da Mama , Células Endoteliais , Canais Iônicos , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Transição Epitelial-Mesenquimal/genética , Plasticidade Celular/genética
12.
Science ; 383(6689): 1374-1379, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513010

RESUMO

Cells connect with their environment through surface receptors and use physical tension in receptor-ligand bonds for various cellular processes. Single-molecule techniques have revealed bond strength by measuring "rupture force," but it has long been recognized that rupture force is dependent on loading rate-how quickly force is ramped up. Thus, the physiological loading rate needs to be measured to reveal the mechanical strength of individual bonds in their functional context. We have developed an overstretching tension sensor (OTS) to allow more accurate force measurement in physiological conditions with single-molecule detection sensitivity even in mechanically active regions. We used serially connected OTSs to show that the integrin loading rate ranged from 0.5 to 4 piconewtons per second and was about three times higher in leukocytes than in epithelial cells.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Integrinas , Mecanotransdução Celular , Adesão Celular/fisiologia , Integrinas/química , Integrinas/metabolismo , Imagem Individual de Molécula , Humanos , Linhagem Celular Tumoral , Resistência à Tração , Sondas de Oligonucleotídeos , Hibridização de Ácido Nucleico
13.
J Clin Invest ; 134(6)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38488000

RESUMO

Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease disrupting lung health throughout the life of an individual and that is increasing in incidence. The TGF-ß superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that TGFbr2 is critical for alveolar epithelial (AT1) cell fate maintenance and function. Loss of TGFbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analyses reveal the necessity of TGFbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGF-ß signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGF-ß signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.


Assuntos
Displasia Broncopulmonar , Alvéolos Pulmonares , Humanos , Camundongos , Animais , Recém-Nascido , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Alvéolos Pulmonares/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Mecanotransdução Celular , Proteômica , Células Epiteliais Alveolares , Pulmão/patologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Displasia Broncopulmonar/patologia , Transcrição Gênica
14.
Proc Natl Acad Sci U S A ; 121(13): e2314947121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513099

RESUMO

Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.


Assuntos
Proteínas de Ancoragem à Quinase A , Adesões Focais , Adesões Focais/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Talina/metabolismo , Mecanotransdução Celular , Adesão Celular/fisiologia , Integrinas/metabolismo , Ligação Proteica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
15.
Biomaterials ; 308: 122542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547833

RESUMO

Focal adhesions (FAs) are nanoscale complexes containing clustered integrin receptors and intracellular structural and signaling proteins that function as principal sites of mechanotransduction in part via promoting the nuclear translocation and activation of the transcriptional coactivator yes-associated protein (YAP). Knockdown of FA proteins such as focal adhesion kinase (FAK), talin, and vinculin can prevent YAP nuclear localization. However, the mechanism(s) of action remain poorly understood. Herein, we investigated the role of different functional domains in vinculin, talin, and FAK in regulating YAP nuclear localization. Using genetic or pharmacological inhibition of fibroblasts and human mesenchymal stem cells (hMSCs) adhering to deformable substrates, we find that disruption of vinculin-talin binding versus talin-FAK binding reduces YAP nuclear localization and transcriptional activity via different mechanisms. Disruption of vinculin-talin binding or knockdown of talin-1 reduces nuclear size, traction forces, and YAP nuclear localization. In contrast, disruption of the talin binding site on FAK or elimination of FAK catalytic activity did not alter nuclear size yet still prevented YAP nuclear localization and activity. These data support both nuclear tension-dependent and independent models for matrix stiffness-regulated YAP nuclear localization. Our results highlight the importance of vinculin-talin-FAK interactions at FAs of adherent cells, controlling YAP nuclear localization and activity.


Assuntos
Núcleo Celular , Mecanotransdução Celular , Talina , Vinculina , Proteínas de Sinalização YAP , Talina/metabolismo , Vinculina/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Adesões Focais/metabolismo , Camundongos , Fibroblastos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Ligação Proteica
16.
Biofabrication ; 16(3)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471164

RESUMO

Cells sense mechanical signals from the surrounding environment and transmit them to the nucleus through mechanotransduction to regulate cellular behavior. Microcontact printing, which utilizes elastomer stamps, is an effective method for simulating the cellular microenvironment and manipulating cell morphology. However, the conventional fabrication process of silicon masters and elastomer stamps requires complex procedures and specialized equipment, which restricts the widespread application of micropatterning in cell biology and hinders the investigation of the role of cell geometry in regulating cell behavior. In this study, we present an innovative method for convenient resin stamp microfabrication based on digital micromirror device planar lithography. Using this method, we generated a series of patterns ranging from millimeter to micrometer scales and validated their effectiveness in controlling adhesion at both collective and individual cell levels. Additionally, we investigated mechanotransduction and cell behavior on elongated micropatterned substrates. We then examined the effects of cell elongation on cytoskeleton organization, nuclear deformation, focal adhesion formation, traction force generation, nuclear mechanics, and the growth of HeLa cells. Our findings reveal a positive correlation between cell length and mechanotransduction. Interestingly, HeLa cells with moderate length exhibit the highest cell division and proliferation rates. These results highlight the regulatory role of cell elongation in mechanotransduction and its significant impact on cancer cell growth. Furthermore, our methodology for controlling cell adhesion holds the potential for addressing fundamental questions in both cell biology and biomedical engineering.


Assuntos
Elastômeros , Mecanotransdução Celular , Humanos , Células HeLa , Adesão Celular/fisiologia , Divisão Celular
17.
FEBS Open Bio ; 14(5): 867-882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538106

RESUMO

The extracellular matrix (ECM) regulates carcinogenesis by interacting with cancer cells via cell surface receptors. Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor implicated in cell survival, growth, and differentiation. Dysregulated DDR2 expression has been identified in various cancer types, making it as a promising therapeutic target. Additionally, cancer cells exhibit mechanosensing abilities, detecting changes in ECM stiffness, which is particularly important for carcinogenesis given the observed ECM stiffening in numerous cancer types. Despite these, whether collagen-activated DDR2 signaling and ECM stiffness-induced mechanosensing exert similar effects on cancer cell behavior and whether they operate through analogous mechanisms remain elusive. To address these questions, we performed bulk RNA sequencing (RNA-seq) on human SH-SY5Y neuroblastoma cells cultured on collagen-coated substrates. Our results show that DDR2 downregulation induces significant changes in the cell transcriptome, with changes in expression of 15% of the genome, specifically affecting the genes associated with cell division and differentiation. We validated the RNA-seq results by showing that DDR2 knockdown redirects the cell fate from proliferation to senescence. Like DDR2 knockdown, increasing substrate stiffness diminishes cell proliferation. Surprisingly, RNA-seq indicates that substrate stiffness has no detectable effect on the transcriptome. Furthermore, DDR2 knockdown influences cellular responses to substrate stiffness changes, highlighting a crosstalk between these two ECM-induced signaling pathways. Based on our results, we propose that the ECM could activate DDR2 signaling and mechanosensing in cancer cells to orchestrate their cell fate through distinct mechanisms, with or without involving gene expression, thus providing novel mechanistic insights into cancer progression.


Assuntos
Receptor com Domínio Discoidina 2 , Neuroblastoma , Transdução de Sinais , Transcriptoma , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Receptor com Domínio Discoidina 2/metabolismo , Receptor com Domínio Discoidina 2/genética , Transcriptoma/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Mecanotransdução Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética
18.
J Biomed Mater Res A ; 112(7): 1138-1148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450935

RESUMO

Induced Tregs (iTregs) have great promise in adoptive immunotherapy for treatment of autoimmune diseases. This report investigates the impacts of substrate stiffness on human Treg induction, providing a powerful yet simple approach to improving production of these cells. Conventional CD4+ human T cells were activated on materials of different elastic modulus and cultured under suppressive conditions. Enhanced Treg induction was observed on softer materials as early as 3 days following activation and persisted for multiple weeks. Substrate stiffness also affected epigenetic modification of Treg specific genes and Treg suppressive capacity. Tregs induced on substrates of an optimal stiffness balance quantity and suppressive quality.


Assuntos
Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Mecanotransdução Celular , Módulo de Elasticidade , Células Cultivadas , Epigênese Genética
19.
J Am Chem Soc ; 146(11): 7233-7242, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451498

RESUMO

The T cell membrane is studded with >104 T cell receptors (TCRs) that are used to scan target cells to identify short peptide fragments associated with viral infection or cancerous mutation. These peptides are presented as peptide-major-histocompatibility complexes (pMHCs) on the surface of virtually all nucleated cells. The TCR-pMHC complex forms at cell-cell junctions, is highly transient, and experiences mechanical forces. An important question in this area pertains to the role of the force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune the tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how the accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F > 7.1 piconewtons (pN) between TCRs and pMHCs. This rate of disruption, or force lifetime (τF), is tunable from tens of minutes down to 1.9 min. T cells challenged with FUSE probes with F > 7.1 pN presenting cognate antigens showed up to a 23% decrease in markers of early activation. FUSE probes with F > 17.0 pN showed weaker influence on T cell triggering further showing that TCR-pMHC with F > 17.0 pN are less frequent compared to F > 7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement boosting TCR activation.


Assuntos
Mecanotransdução Celular , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Ativação Linfocitária , Fenômenos Mecânicos , Peptídeos/química , Ligação Proteica
20.
Am J Physiol Cell Physiol ; 326(4): C1212-C1225, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372136

RESUMO

Fibronectin (FN) is a major extracellular matrix (ECM) protein involved in a wide range of physiological processes, including cell migration. These FN-mediated cell migration events are essential to processes such as wound repair, cancer metastasis, and vertebrate development. This review synthesizes mainly current literature to provide an overview of the mechanoregulatory role of FN-mediated cell migration. Background on FN structure and role in mechanotransduction is provided. Cell migration concepts are introduced, including the general cell migration mechanism and classification of cell migration types. Then, FN-mediated events that directly affect cell migration are explored. Finally, a focus on FN in tissue repair and cancer migration is presented, as these topics represent a large amount of current research.


Assuntos
Fibronectinas , Neoplasias , Humanos , Fibronectinas/metabolismo , Matriz Extracelular/metabolismo , Mecanotransdução Celular , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Adesão Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA