Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.096
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 30, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720310

RESUMO

BACKGROUND: Venous thromboembolism (VTE), is a noteworthy complication in individuals with gastric cancer, but the current diagnosis and treatment methods lack accuracy. In this study, we developed a t-PAIC chemiluminescence kit and employed chemiluminescence to detect the tissue plasminogen activator inhibitor complex (t-PAIC), thrombin-antithrombin III complex (TAT), plasmin-α2-plasmin inhibitor complex (PIC) and thrombomodulin (TM), combined with D-dimer and fibrin degradation products (FDP), to investigate their diagnostic potential for venous thrombosis in gastric cancer patients. The study assessed variations in six indicators among gastric cancer patients at different stages. RESULTS: The t-PAIC reagent showed LOD is 1.2 ng/mL and a linear factor R greater than 0.99. The reagents demonstrated accurate results, with all accuracy deviations being within 5%. The intra-batch and inter-batch CVs for the t-PAIC reagent were both within 8%. The correlation coefficient R between this method and Sysmex was 0.979. Gastric cancer patients exhibited elevated levels of TAT, PIC, TM, D-D, FDP compared to the healthy population, while no significant difference was observed in t-PAIC. In the staging of gastric cancer, patients in III-IV stages exhibit higher levels of the six markers compared to those in I-II stages. The ROC curve indicates an enhancement in sensitivity and specificity of the combined diagnosis of four or six indicators. CONCLUSION: Our chemiluminescence assay performs comparably to Sysmex's method and at a reduced cost. The use of multiple markers, including t-PAIC, TM, TAT, PIC, D-D, and FDP, is superior to the use of single markers for diagnosing VTE in patients with malignant tumors. Gastric cancer patients should be screened for the six markers to facilitate proactive prophylaxis, determine the most appropriate treatment timing, ameliorate their prognosis, decrease the occurrence of venous thrombosis and mortality, and extend their survival.


Assuntos
Medições Luminescentes , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Masculino , Pessoa de Meia-Idade , Medições Luminescentes/métodos , Feminino , Idoso , Antitrombina III/metabolismo , Antitrombina III/análise , Trombomodulina/sangue , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , alfa 2-Antiplasmina/metabolismo , alfa 2-Antiplasmina/análise , Adulto , Fibrinolisina/metabolismo , Fibrinolisina/análise , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/sangue , Peptídeo Hidrolases
2.
Anal Chem ; 96(15): 5852-5859, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556977

RESUMO

A multicolor electrochemiluminescence (ECL) biosensor based on a closed bipolar electrode (BPE) array was proposed for the rapid and intuitive analysis of three prostate cancer staging indicators. First, [Irpic-OMe], [Ir(ppy)2(acac)], and [Ru(bpy)3]2+ were applied as blue, green, and red ECL emitters, respectively, whose mixed ECL emission colors covered the whole visible region by varying the applied voltages. Afterward, we designed a simple Mg2+-dependent DNAzyme (MNAzyme)-driven tripedal DNA walker (TD walker) to release three output DNAs. Immediately after, three output DNAs were added to the cathodic reservoirs of the BPE for incubation. After that, we found that the emission colors from the anode of the BPE changed as a driving voltage of 8.0 V was applied, mainly due to changes in the interfacial potential and faradaic currents at the two poles of the BPE. Via optimization of the experimental parameters, cutoff values of such three indicators at different clinical stages could be identified instantly with the naked eye, and standard precision swatches with multiple indicators could be prepared. Finally, in order to precisely determine the prostate cancer stage, the multicolor ECL device was used for clinical analysis, and the resulting images were then compared with standard swatches, laying the way for accurate prostate cancer therapy.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Masculino , Humanos , Medições Luminescentes/métodos , Fotometria , Neoplasias da Próstata/diagnóstico , Antígeno Prostático Específico , DNA , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodos
3.
Sci Rep ; 14(1): 9710, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678103

RESUMO

Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.


Assuntos
Dependovirus , Fibroínas , Vetores Genéticos , Medições Luminescentes , Camundongos Endogâmicos C57BL , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Dependovirus/genética , Humanos , Camundongos , Medições Luminescentes/métodos , Vetores Genéticos/genética , Fibroínas/metabolismo , Sistema Nervoso Central/metabolismo , Masculino , Luciferases/metabolismo , Luciferases/genética
4.
Anal Chem ; 96(17): 6652-6658, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38630909

RESUMO

A low-triggering potential and a narrow-potential window are anticipated to decrease the electrochemical interference and cross talk of electrochemiluminescence (ECL). Herein, by exploiting the low oxidative potential (0.82 V vs Ag/AgCl) of dihydrolipoic acid-capped sliver nanoclusters (DHLA-AgNCs), a coreactant ECL system of DHLA-AgNCs/hydrazine (N2H4) is proposed to achieve efficient and oxidative-reduction ECL with a low-triggering potential of 0.82 V (vs Ag/AgCl) and a narrow-potential window of 0.22 V. The low-triggering-potential and narrow-potential-window nature of ECL can be primarily preserved upon labeling DHLA-AgNCs to probe DNA and immobilizing DHLA-AgNCs onto the Au surface via sandwiched hybridization, which eventually enables a selective ECL strategy for the gene assay at +0.82 V. This gene assay strategy can sensitively determine the gene of human papillomavirus from 10 to 1000 pM with a low limit of detection of 5 pM (S/N = 3) and would open a way to improve the applied ECL bioassay.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Nanopartículas Metálicas , Prata , Ácido Tióctico/análogos & derivados , Prata/química , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Medições Luminescentes/métodos , Humanos , Ácido Tióctico/química , Técnicas Biossensoriais/métodos , DNA Viral/análise , DNA Viral/genética , Limite de Detecção
5.
Anal Bioanal Chem ; 416(13): 3251-3260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38584178

RESUMO

Multiplexed lateral flow assays (LFAs) offer efficient on-site testing by simultaneously detecting multiple biomarkers from a single sample, reducing costs. In cancer diagnostics, where biomarkers can lack specificity, multiparameter detection provides more information at the point-of-care. Our research focuses on epithelial ovarian cancer (EOC), where STn-glycosylated forms of CA125 and CA15-3 antigens can better discriminate cancer from benign conditions. We have developed a dual-label LFA that detects both CA125-STn and CA15-3-STn within a single anti-STn antibody test line. This utilizes spectral separation of green (540 nm) and blue (450 nm) emitting erbium (NaYF4:Yb3+, Er3+)- and thulium (NaYF4: Yb3+, Tm3+)-doped upconverting nanoparticle (UCNP) reporters conjugated with antibodies against the protein epitopes in CA125 or CA15-3. This technology allows the simultaneous detection of different antigen variants from a single test line. The developed proof-of-concept dual-label LFA was able to distinguish between the ascites fluid samples from diagnosed ovarian cancer patients (n = 10) and liver cirrhosis ascites fluid samples (n = 3) used as a negative control. The analytical sensitivity of CA125-STn for the dual-label LFA was 1.8 U/ml in buffer and 3.6 U/ml in ascites fluid matrix. Here we demonstrate a novel approach of spectrally separated measurement of STn-glycosylated forms of two different cancer-associated protein biomarkers by using UCNP reporter technology.


Assuntos
Antígeno Ca-125 , Proteínas de Membrana , Mucina-1 , Neoplasias Ovarianas , Humanos , Antígeno Ca-125/análise , Feminino , Neoplasias Ovarianas/diagnóstico , Glicosilação , Biomarcadores Tumorais/análise , Antígenos Glicosídicos Associados a Tumores/análise , Medições Luminescentes/métodos , Carcinoma Epitelial do Ovário/diagnóstico , Imunoensaio/métodos
6.
Talanta ; 274: 125934, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574533

RESUMO

Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Exodesoxirribonucleases , Nanopartículas Metálicas , Estruturas Metalorgânicas , Paládio , Progesterona , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Paládio/química , Progesterona/análise , Progesterona/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Limite de Detecção , Medições Luminescentes/métodos , Humanos , DNA/química
7.
Talanta ; 274: 126025, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574539

RESUMO

Exposure to bioaerosol contamination has detrimental effects on human health. Recent advances in ATP bioluminescence provide more opportunities for the quantitative detection of bioaerosols. Since almost all active organisms can produce ATP, the amount of airborne microbes can be easily measured by detecting ATP-driven bioluminescence. The accurate evaluation of microorganisms mainly relies on following the four key steps: sampling and enrichment of airborne microbes, lysis for ATP extraction, enzymatic reaction, and measurement of luminescence intensity. To enhance the effectiveness of ATP bioluminescence, each step requires innovative strategies and continuous improvement. In this review, we summarized the recent advances in the quantitative detection of airborne microbes based on ATP bioluminescence, which focuses on the advanced strategies for improving sampling devices combined with ATP bioluminescence. Meanwhile, the optimized and innovative strategies for the remaining three key steps of the ATP bioluminescence assay are highlighted. The aim is to reawaken the prosperity of ATP bioluminescence and promote its wider utilization for efficient, real-time, and accurate detection of airborne microbes.


Assuntos
Trifosfato de Adenosina , Microbiologia do Ar , Medições Luminescentes , Trifosfato de Adenosina/análise , Medições Luminescentes/métodos , Bactérias/isolamento & purificação , Humanos , Monitoramento Ambiental/métodos
8.
Talanta ; 274: 126023, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583328

RESUMO

Dual-potential ratiometric electrochemiluminescence (ECL) is in favor of resistance to environmental interference. However, two kinds of emitters or coreactants, and a wide scan potential range (>2 V) are mandatory. This work developed a new dual-potential ratiometric ECL sensor for detection of carcinoembryonic antigen (CEA) using single emitter (luminol) and single coreactant (H2O2) with a mild potential range from -0.1 to 0.6 V. Luminol could produce a strong cathodic ECL (Ec) induced by hydroxyl radicals (HO‧) from the reduction of H2O2, and a relatively weak anodic ECL (Ea). After the ferrocene modified CEA aptamer (Apt-Fc) was attached, Fc could promote Ea by catalyzing the oxidation of H2O2, and reduce Ec by consuming HO‧. With the cycling amplification of the exonuclease I, CEA could substantially reduce the amount of Apt-Fc, resulting in the decrease of Ea and the rise of Ec. So, the ratio of Ec to Ea (Ec/Ea) was used as the detection signal, realizing the sensitive determination of CEA from 0.1 pg mL-1 to 10 ng mL-1 with a LOD of 41.85 fg mL-1 (S/N = 3). The developed sensor demonstrated excellent specificity, stability and reproducibility, with satisfactory results in practical detection.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Medições Luminescentes , Luminol , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/sangue , Técnicas Eletroquímicas/métodos , Humanos , Medições Luminescentes/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Luminol/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Metalocenos/química , Compostos Ferrosos/química
9.
Crit Rev Biomed Eng ; 52(3): 41-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523440

RESUMO

Microfluidic devices are capable of handling 10-9 L to 10-18 L of fluids by incorporating tiny channels with dimensions of ten to hundreds of micrometers, and they can be fabricated using a wide range of materials including glass, silicon, polymers, paper, and cloth for tailored sensing applications. Microfluidic biosensors integrated with detection methods such as electrochemiluminescence (ECL) can be used for the diagnosis and prognosis of diseases. Coupled with ECL, these tandem devices are capable of sensing biomarkers at nanomolar to picomolar concentrations, reproducibly. Measurement at this low level of concentration makes microfluidic electrochemiluminescence (MF-ECL) devices ideal for biomarker detection in the context of early warning systems for diseases such as myocardial infarction, cancer, and others. However, the technology relies on the nature and inherent characteristics of an efficient luminophore. The luminophore typically undergoes a redox process to generate excited species which emit energy in the form of light upon relaxation to lower energy states. Therefore, in biosensor design the efficiency of the luminophore is critical. This review is focused on the integration of microfluidic devices with biosensors and using electrochemiluminescence as a detection method. We highlight the dual role of carbon quantum dots as a luminophore and co-reactant in electrochemiluminescence analysis, drawing on their unique properties that include large specific surface area, easy functionalization, and unique luminescent properties.


Assuntos
Técnicas Biossensoriais , Microfluídica , Humanos , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Polímeros
10.
ACS Sens ; 9(4): 1992-1999, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38536770

RESUMO

The construction of assays is capable of accurately detecting cytokeratin-19 (CYFRA 21-1), which is critical for the rapid diagnosis of nonsmall cell lung cancer. In this work, a novel electrochemiluminescence (ECL) immunosensor based on the co-reaction promotion of luminol@Au@Ni-Co nanocages (NCs) as ECL probe by Ti3C2Tx MXene@TiO2-MoS2 hybrids as co-reaction accelerator was proposed to detect CYFRA 21-1. Ni-Co NCs, as a derivative of Prussian blue analogs, can be loaded with large quantities of Au NPs, luminol, and CYFRA 21-1 secondary antibodies due to their high specific surface area. To further improve the sensitivity of the developed ECL immunosensor, Ti3C2Tx MXene@TiO2-MoS2 hybrids were prepared by in situ growth of TiO2 nanosheets on highly conductive Ti3C2Tx MXene, and MoS2 was homogeneously grown on Ti3C2Tx MXene@TiO2 surfaces by the hydrothermal method. Ti3C2Tx MXene@TiO2-MoS2 hybrids possess excellent catalytic performance on the electro-redox of H2O2 generating more O2·- and obtaining optimal ECL intensity of the luminol/H2O2 system. Under the appropriate experimental conditions, the quantitative detection range of CYFRA 21-1 was from 0.1 pg mL-1 to 100 ng mL-1, and the limit of detection (LOD) was 0.046 pg mL-1. The present sensor has a lower LOD with a wider linear range, which provides a new analytical assay for the early diagnosis of small-cell-type lung cancer labels.


Assuntos
Antígenos de Neoplasias , Técnicas Biossensoriais , Dissulfetos , Técnicas Eletroquímicas , Ouro , Queratina-19 , Medições Luminescentes , Luminol , Molibdênio , Titânio , Queratina-19/sangue , Queratina-19/imunologia , Titânio/química , Luminol/química , Molibdênio/química , Ouro/química , Antígenos de Neoplasias/imunologia , Técnicas Eletroquímicas/métodos , Humanos , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Imunoensaio/métodos , Dissulfetos/química , Limite de Detecção , Níquel/química , Cobalto/química , Nanopartículas Metálicas/química , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
11.
ACS Sens ; 9(4): 2176-2182, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537645

RESUMO

Efficient and robust electrochemiluminescence (ECL) emitters are crucial for enhancing the ECL immunosensor sensitivity. This study introduces a novel ECL emitter, CoBIM/Cys, featuring a hierarchical core-shell structure. The core of the structure is created through the swift coordination between the sulfhydryl and carboxyl groups of l-cysteine (l-Cys) and cobalt ions (Co2+), while the shell is constructed by sequentially coordinating benzimidazole (BIM) with Co2+. This design yields a greater specific surface area and a more intricate porous structure compared to CoBIM, markedly enhancing mass transfer and luminophore accessibility. Moreover, the l-Cys and Co2+ core introduces Co-S and Co-O catalytic sites, which improve the catalytic decomposition of H2O2, leading to an increased production of hydroperoxyl radicals (OOH•). This mechanism substantially amplifies the ECL performance. Leveraging the competitive interaction between isoluminol and BIM for OOH• during ECL emission, we developed a ratiometric immunosensor for cardiac troponin I (cTnI) detection. This immunosensor demonstrates a remarkably broad detection range (1 pg mL-1 to 10 ng mL-1), a low detection limit (0.4 pg mL-1), and exceptional reproducibility and specificity.


Assuntos
Benzimidazóis , Cisteína , Técnicas Eletroquímicas , Medições Luminescentes , Troponina I , Benzimidazóis/química , Cisteína/análise , Cisteína/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Troponina I/análise , Troponina I/sangue , Humanos , Limite de Detecção , Técnicas Biossensoriais/métodos , Cobalto/química , Peróxido de Hidrogênio/química
12.
Diagn Microbiol Infect Dis ; 109(2): 116275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537505

RESUMO

BACKGROUND: Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a global health threat, necessitating faster and more accessible diagnostic methods. This study investigates critical parameters in the application of a commercial ATP bioluminescence assay for the detection of MTB. METHOD: Our objective was to optimize the ATP bioluminescence protocol using BacTiter-Glo™ for MTB, investigating the impact of varying volumes of MTB suspension and reagent on assay sensitivity, evaluating ATP extraction methods, establishing calibration curves, and elucidating strain-specific responses to antimicrobial agents. RESULTS: ATP extraction methods showed no significant improvement over controls. Calibration curves revealed a linear correlation between relative light units (RLU) and colony-forming units (CFU/mL), establishing low detection limits. Antimicrobial testing demonstrated strain-specific responses aligning with susceptibility and resistance patterns. CONCLUSION: Our findings contribute to refining ATP bioluminescence protocols for enhanced MTB detection and susceptibility testing. Further refinements and validation efforts are warranted, holding promise for more efficient diagnostic platforms in the future.


Assuntos
Trifosfato de Adenosina , Medições Luminescentes , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/efeitos dos fármacos , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Medições Luminescentes/métodos , Humanos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Sensibilidade e Especificidade , Testes de Sensibilidade Microbiana/métodos , Técnicas Bacteriológicas/métodos
13.
Anal Chim Acta ; 1301: 342488, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553118

RESUMO

Gastric cancer (GC) was one of the most common cancers with high mortality. The detection of GC peritoneal metastasis had important significance. In this work, we have developed the novel electrochemiluminescence (ECL) biosensor to detect microRNA in GC extracellular vesicle (EV). Firstly, in situ growth of Cu nanocluster (Cu NC) on the metal-organic frameworks (MOFs) nanosheet was achieved successfully. Due to the confinement effect, Cu NCs in the porous structure of Zn MOF possessed the high quantum yield and good stability. Meanwhile, Zn MOF provided good electrochemical activity for the ECL reaction. Furthermore, the nanosized MOFs did not only act as sensing platform to load Cu NCs and link biomolecules, but also reduce steric hindrance effect for biomolecular recognition. Additionally, Au NPs/MXene and phospholipid layer were prepared and modified on the electrode, which can regulate electron transfer and improve the target recognition efficiency. The Cu NCs/Zn MOF nanosheet-based ECL sensor was employed to detect miRNA-421 from 1 fM to 1 nM with a detection limit of 0.5 fM. Finally, extracellular vesicles form clinic GC patient ascites were extracted and analyzed. The results showed that the constructed biosensor can be used for the GC peritoneal metastasis diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , Neoplasias Peritoneais , Humanos , Estruturas Metalorgânicas/química , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química
14.
Biosens Bioelectron ; 253: 116170, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442619

RESUMO

In this paper, a proposal of closed bipolar electrode (BPE) and nanozyme based multi-mode biosensing platform is first presented. As a novel integrated chip, multi-mode-BPE (MMBPE) combines enzyme-linked immunoassay (ELISA), electrochemiluminescence (ECL), ECL imaging and light emitting diode (LED) imaging, enabling highly sensitive triple read-out visible detection of cancer embryonic antigen (CEA). The ECL probe Ab2@Au@Co3O4/CoFe2O4 hollow nanocubes (HNCs) with excellent peroxidase (POD) activity is introduced into the BPE cathode through immune adsorption. The Au@Co3O4/CoFe2O4 HNCs can increase the rate of hydrogen peroxide oxidation of TMB, thus promoting the reaction, and can be used for ELISA detection of CEA at different concentrations. The modification of the BPE sensing interface and reporting interface involved the introduction of the luminescent reagent Ru(bpy)32+ to the BPE anode. The decomposition rate of H2O2 increased under the catalytic action of Au@Co3O4/CoFe2O4 HNCs nanozyme, leading to an accelerated electron transfer rate in the MMBPE system and an enhanced ECL signal from Ru(bpy)32+. The LED imaging technology further provides a convenient and visible approach for CEA imaging in which no additional chemicals are needed. The integration of nanoenzymes as the catalytic core in MMBPE system provides impetus, while the combination of nanozymes with BPE expands the application of nanoenzymes in the field of biological analysis. The integration of intelligent chips with multiple modes of detection shows portable, miniaturized, and integrated excellent properties which meets the requirements of modern detection devices and thus offers a flexible approach for determination of nucleic acids, proteins, and cells.


Assuntos
Técnicas Biossensoriais , Cobalto , Neoplasias , Óxidos , Humanos , Medições Luminescentes/métodos , Peróxido de Hidrogênio/química , Técnicas Biossensoriais/métodos , Eletrodos
15.
Anal Chem ; 96(11): 4589-4596, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442212

RESUMO

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Humanos , Európio , Ligantes , DNA/química , Medições Luminescentes/métodos , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Géis , Técnicas Eletroquímicas/métodos , Limite de Detecção
16.
Biosens Bioelectron ; 255: 116258, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555769

RESUMO

In this work, a spatial-potential resolved bipolar electrode electrochemiluminescence (BPE-ECL) biosensor based on polarity conversion strategy and CuHCF electrocatalyst was constructed for dual-mode detection of miRNA-122 and carcinoembryonic antigen (CEA). ECL technology was firstly used to systematically study the polarity conversion of BPE. It was found that changing the polarity of the driving voltage would cause the polarity change of BPE, and led to the change of the luminescent position of Ru(bpy)32+. As a "proof-of-concept application", we developed a shielded dual-channel BPE-ECL biosensor for dual-mode detection of miRNA-122 and CEA. In order to further improve the detection sensitivity, a non-precious metal electrocatalyst CuHCF with outstanding electrocatalytic reduction activity of H2O2 was firstly introduced to the BPE-ECL biosensor for signal amplification, which could generate high faradaic current under the excitation of negative potential. Based on the charge neutrality principle of BPE, the enhancement of the faradaic current resulted in the ECL signal amplification of Ru(bpy)32+. The targets in the sensing grooves caused the introduction or fall off of CuHCF, which led to the ECL signal change of Ru(bpy)32+ in the signal grooves, and realized the dual-mode detection of miRNA-122 and CEA. This work provided a deeper understanding of the polarity change of BPE. Furthermore, the introduction of non-precious metal electrocatalyst had broadened the application range of BPE-ECL sensors.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Antígeno Carcinoembrionário , Peróxido de Hidrogênio , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas
17.
Hypertens Res ; 47(5): 1362-1371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454147

RESUMO

The measurement evolution enabled more accurate evaluation of aldosterone production in hypertensive patients. However, the cut-off values for novel assays have been not sufficiently validated. The present study was undertaken to validate the novel chemiluminescent enzyme immunoassay for aldosterone in conjunction with other methods. Moreover, we also aimed to establish a new cut-off value for primary aldosteronism in the captopril challenge test using the novel assay. First, we collected 390 plasma samples, in which aldosterone levels measured using liquid chromatography-mass spectrometry ranged between 0.18 and 1346 ng/dL. The novel chemiluminescent enzyme immunoassay showed identical correlation of plasma aldosterone with liquid chromatography-mass spectrometry, in contrast to conventional radioimmunoassay. Further, we enrolled 299 and 39 patients with primary aldosteronism and essential hypertension, respectively. Plasma aldosterone concentrations measured using the novel assay were lower than those measured by radioimmunoassay, which resulted in decreased aldosterone-to-renin ratios. Subsequently, positive results of the captopril challenge test based on radioimmunoassay turned into "negative" based on the novel assay in 45% patients with primary aldosteronism, using the conventional cut-off value (aldosterone-to-renin activity ratio > 20 ng/dL per ng/mL/h). Receiver operating characteristic curve analysis demonstrated that aldosterone-to-renin activity ratios > 8.2 ng/dL per ng/mL/h in the novel assay was compatible with the conventional diagnosis (sensitivity, 0.874; specificity, 0.980). Our study indicates the great measurement accuracy of the novel chemiluminescent enzyme immunoassay for aldosterone, and the importance of measurement-adjusted cut-offs in the diagnosis of primary aldosteronism.


Assuntos
Aldosterona , Captopril , Hiperaldosteronismo , Medições Luminescentes , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Aldosterona/sangue , Estudos Retrospectivos , Adulto , Idoso , Medições Luminescentes/métodos , Técnicas Imunoenzimáticas/métodos , Hipertensão/sangue , Hipertensão/diagnóstico , Renina/sangue , Estudos de Coortes , Radioimunoensaio
18.
Anal Chem ; 96(8): 3655-3661, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38362869

RESUMO

Chemiluminescence is a powerful analytical technique with many advantages, while aptamers are well-known as good molecular recognition units. However, many aptamer-based chemiluminescence assays employed interface sensing, which often needed several immobilization, separation, and washing steps. To minimize the risks of contamination and false-positive, we for the first time proposed a photocatalytic aptamer chemiluminescent system for a homogeneous, label-free, generic assay of small molecules. After binding to a DNA aptamer, thioflavin T has a unique photocatalytic oxidase activity to activate the system's luminol chemiluminescence. Then, the specific binding between the aptamer and target molecules will compete with the above process. Therefore, we can realize the efficient assay of different analytes including estradiol and adenosine. Such a homogeneous chemiluminescent system allowed a direct assay of small molecules with limits of detection in a nM level. Several control tests were carried out to avoid possible false-positive results, which were originated from the interactions between analytes and sensing interfaces previously. This homogeneous chemiluminescent system provides a useful strategy to reliably assay various analytes in the pharmacy or biology field.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Medições Luminescentes/métodos , Luminol/química , Adenosina
19.
Biosens Bioelectron ; 251: 116103, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382269

RESUMO

The near-infrared electrochemiluminescence technique (NIR ECL) has gained significant attention as a powerful analytical tool in biomedicine and clinical diagnosis due to its inherent advantages. In this work, we successfully synthesized a novel NIR ECL emitter of TPA-DCPP nanoparticles (NPs) with a D-π-A-π-D configuration. By utilizing the thermally activated delayed fluorescence (TADF) property, we achieved enhanced electrochemiluminescence (ECL) emission through complete exciton harvesting for radiative decay. Specifically, when BDEA was used as a co-reactant, the TPA-DCPP NPs exhibited strong bandgap ECL emission. Additionally, they demonstrated an exceptionally higher ECL efficiency compared to conventional near-infrared fluorescence organic nanomaterials (BSeT-BT NPs). By integrating the efficient anodic ECL performance of TPA-DCPP NPs with Exo III-assisted polymerase enzyme reaction cascade amplification, a highly efficient ECL resonance energy transfer (ECL-RET) platform was developed for ultrasensitive detection of circulating tumor DNA (ctDNA). The established biosensor demonstrated an exceptional linear dynamic range and achieved attomolar-level detection limit. This study highlights the immense potential of TADF emitters in enhancing ECL efficiency and extends the emission wavelength of organic nanomaterials to the NIR region, thereby expanding their applications in biological analysis.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Nanoestruturas , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
20.
Talanta ; 272: 125773, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359720

RESUMO

Noble metal nanostructures and photonic crystals (PhCs) have been widely investigated as substrates for constructing surface enhanced electrochemiluminescence (SE-ECL) biosensors. However, their applications are hindered by the limited enhancement intensity of surface plasmon resonance (SPR) and an incomplete mechanism for the photonic enhancement effect. Hence, developing a novel SE-ECL strategy with better signal enhanced capability and enriching our understanding of the intrinsic mechanisms for efficient bioanalysis is extremely urgent. Here, a synergistic SE-ECL strategy was developed for the sensitive determination of prostate specific antigen (PSA) protein. The randomly arranged polystyrene (r-PS) spheres and PS PhC arrays were applied to enhance the ECL emission of cadmium sulfide quantum dots (CdS QDs) and the results suggested that the PhC arrays displayed superior intensity (0.22) than the r-PS interface (0.10). Au nanoparticles (NPs) were introduced onto the two kinds of surfaces and further boosted the ECL intensity. According to the ECL measurements, Au NPs modified at the r-PS surface exhibited only a slight increase (0.13), while the PhC arrays showed approximately 5-fold enhancement (0.92), benefiting from the synergistic enhancement. The finite-difference time-domain (FDTD) simulation indicated that the ECL enhancement was ascribed to the coupled electromagnetic (EM) field at the surfaces of PS PhCs and Au NPs. The SE-ECL could achieve a detection range from 1 pg/mL to 1 µg/mL with a detection limit of 0.41 pg/mL (S/N = 3). This study provides the first combination of PhC arrays and metal surface plasmon nanostructure for the synergetic enhancement of SE-ECL systems. It opens a new avenue for the rational design of advanced ECL biosensors and shows great perspective for clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Pontos Quânticos , Ressonância de Plasmônio de Superfície/métodos , Ouro/química , Pontos Quânticos/química , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA