Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Plant J ; 119(3): 1508-1525, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923649

RESUMO

Legumes have evolved a nitrogen-fixing symbiotic interaction with rhizobia, and this association helps them to cope with the limited nitrogen conditions in soil. The compatible interaction between the host plant and rhizobia leads to the formation of root nodules, wherein internalization and transition of rhizobia into their symbiotic form, termed bacteroids, occur. Rhizobia in the nodules of the Inverted Repeat-Lacking Clade legumes, including Medicago truncatula, undergo terminal differentiation, resulting in elongated and endoreduplicated bacteroids. This transition of endocytosed rhizobia is mediated by a large gene family of host-produced nodule-specific cysteine-rich (NCR) peptides in M. truncatula. Few NCRs have been recently found to be essential for complete differentiation and persistence of bacteroids. Here, we show that a M. truncatula symbiotic mutant FN9285, defective in the complete transition of rhizobia, is deficient in a cluster of NCR genes. More specifically, we show that the loss of the duplicated genes NCR086 and NCR314 in the A17 genotype, found in a single copy in Medicago littoralis R108, is responsible for the ineffective symbiotic phenotype of FN9285. The NCR086 and NCR314 gene pair encodes the same mature peptide but their transcriptional activity varies considerably. Nevertheless, both genes can restore the effective symbiosis in FN9285 indicating that their complementation ability does not depend on the strength of their expression activity. The identification of the NCR086/NCR314 peptide, essential for complete bacteroid differentiation, has extended the list of peptides, from a gene family of several hundred members, that are essential for effective nitrogen-fixing symbiosis in M. truncatula.


Assuntos
Medicago truncatula , Família Multigênica , Proteínas de Plantas , Nódulos Radiculares de Plantas , Simbiose , Medicago truncatula/microbiologia , Medicago truncatula/genética , Medicago truncatula/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Rhizobium/fisiologia , Rhizobium/genética , Fixação de Nitrogênio/genética , Peptídeos/metabolismo , Peptídeos/genética , Sinorhizobium meliloti/fisiologia , Sinorhizobium meliloti/genética , Cisteína/metabolismo
2.
J Plant Physiol ; 297: 154262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703548

RESUMO

Aluminum (Al) is the major limiting factor affecting plant productivity in acidic soils. Al3+ ions exhibit increased solubility at a pH below 5, leading to plant root tip toxicity. Alternatively, plants can perceive very low concentrations of Al3+, and Al triggers downstream signaling even at pH 5.7 without causing Al toxicity. The ALUMINUM-ACTIVATED-MALATE-TRANSPORTER (ALMT) family members act as anion channels, with some regulating the secretion of malate from root apices to chelate Al, which is a crucial mechanism for plant Al resistance. To date, the role of the ALMT gene family within the legume Medicago species has not been fully characterized. In this study, we investigated the ALMT gene family in M. sativa and M. truncatula and identified 68 MsALMTs and 18 MtALMTs, respectively. Phylogenetic analysis classified these genes into five clades, and synteny analysis uncovered genuine paralogs and orthologs. The real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that MtALMT8, MtALMT9, and MtALMT15 in clade 2-2b are expressed in both roots and root nodules, and MtALMT8 and MtALMT9 are significantly upregulated by Al in root tips. We also observed that MtALMT8 and MtALMT9 can partially restore the Al sensitivity of Atalmt1 in Arabidopsis. Moreover, transcriptome analysis examined the expression patterns of these genes in M. sativa in response to Al at both pH 5.7 and pH 4.6, as well as to protons, and found that Al and protons can independently induce some Al-resistance genes. Overall, our findings indicate that MtALMT8 and MtALMT9 may play a role in Al resistance, and highlight the resemblance between the ALMT genes in Medicago species and those in Arabidopsis.


Assuntos
Alumínio , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas , Alumínio/toxicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Medicago truncatula/genética , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/metabolismo , Medicago sativa/genética , Medicago sativa/efeitos dos fármacos , Medicago sativa/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Genoma de Planta , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Medicago/genética , Medicago/fisiologia
3.
Plant Cell Physiol ; 65(7): 1149-1159, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38581668

RESUMO

Establishment of arbuscular mycorrhiza relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short-chain chitooligosaccharides and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF); however, its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization and carry mutations in LysM1 and 2, respectively, have similar LCO-binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter [genetically encoded Ca2+ indicators (GECO)], showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short-chain chitooligosaccharides also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+ spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.


Assuntos
Micorrizas , Proteínas de Plantas , Raízes de Plantas , Transdução de Sinais , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Micorrizas/fisiologia , Quitina/metabolismo , Lipopolissacarídeos/farmacologia , Oligossacarídeos/metabolismo , Mutação/genética , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Nicotiana/metabolismo , Quitosana/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/enzimologia
4.
Plant J ; 119(1): 557-576, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38627952

RESUMO

Medicago truncatula is a model legume for fundamental research on legume biology and symbiotic nitrogen fixation. Tnt1, a retrotransposon from tobacco, was used to generate insertion mutants in M. truncatula R108. Approximately 21 000 insertion lines have been generated and publicly available. Tnt1 retro-transposition event occurs during somatic embryogenesis (SE), a pivotal process that triggers massive methylation changes. We studied the SE of M. truncatula R108 using leaf explants and explored the dynamic shifts in the methylation landscape from leaf explants to callus formation and finally embryogenesis. Higher cytosine methylation in all three contexts of CG, CHG, and CHH patterns was observed during SE compared to the controls. Higher methylation patterns were observed in assumed promoter regions (~2-kb upstream regions of transcription start site) of the genes, while lowest was recorded in the untranslated regions. Differentially methylated promoter region analysis showed a higher CHH methylation in embryogenesis tissue samples when compared to CG and CHG methylation. Strong correlation (89.71%) was identified between the differentially methylated regions (DMRs) and the site of Tnt1 insertions in M. truncatula R108 and stronger hypermethylation of genes correlated with higher number of Tnt1 insertions in all contexts of CG, CHG, and CHH methylation. Gene ontology enrichment and KEGG pathway enrichment analysis identified genes and pathways enriched in the signal peptide processing, ATP hydrolysis, RNA polymerase activity, transport, secondary metabolites, and nitrogen metabolism pathways. Combined gene expression analysis and methylation profiling showed an inverse relationship between methylation in the DMRs (regions spanning genes) and the expression of genes. Our results show that a dynamic shift in methylation happens during the SE process in the context of CG, CHH and CHG methylation, and the Tnt1 retrotransposition correlates with the hyperactive methylation regions.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Medicago truncatula , Técnicas de Embriogênese Somática de Plantas , Retroelementos , Medicago truncatula/genética , Medicago truncatula/metabolismo , Retroelementos/genética , Genoma de Planta/genética , Regiões Promotoras Genéticas/genética
5.
Int J Biol Macromol ; 268(Pt 1): 131631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631584

RESUMO

Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and they function in lipid metabolism, membrane biosynthesis, cellular signaling, stress response, disease resistance, and other biological activities in plants. However, the roles of ACBP family members in Medicago remain unclear. In this study, a total of eight ACBP genes were identified in the genome of Medicago truncatula and Medicago sativa, and they were clustered into four sub-families (Class I-IV). Many cis-acting elements related to abiotic response were identified in the promoter region of these ACBP genes, in particular light-responsive elements. These ACBP genes exhibited distinct expression pattern in various tissues, and the expression level of MtACBP1/MsACBP1 and MtACBP2/MsACBP2 gene pairs were significantly increased under NaCl treatment. Subcellular localization analysis showed that MtACBP1/MsACBP1 and MtACBP2/MsACBP2 were localized in the endoplasmic reticulum of tobacco epidermal cells. Arabidopsis seedlings over-expressing MtACBP2/MsACBP2 displayed increased root length than the wild type under short light, Cu2+, ABA, PEG, and NaCl treatments. Over-expression of MtACBP2/MsACBP2 also significantly enhanced Arabidopsis tolerance under NaCl and PEG treatments in mature plants. Collectively, our study identified salt and drought responsive ACBP genes in Medicago and verified their functions in increasing resistance against salt and drought stresses.


Assuntos
Arabidopsis , Resistência à Seca , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal , Arabidopsis/genética , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Medicago/genética , Medicago truncatula/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
6.
Arch Microbiol ; 206(4): 147, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462552

RESUMO

Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.


Assuntos
Medicago truncatula , Rhizobium , Peptídeo Hidrolases/genética , Rhizobium/genética , Rhizobium/metabolismo , Simbiose , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Ecossistema , Peptídeos/metabolismo , Verduras , Nitrogênio , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia
7.
Commun Biol ; 7(1): 289, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459083

RESUMO

Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA in Medicago truncatula identified from salt-treated Medicago truncatula is important for salinity tolerance. We name the lncRNA LAL, LncRNA ANTISENSE to M. truncatula LIGHT-HARVESTING CHLOROPHYLL A/B BINDING (MtLHCB) genes. LAL is an antisense to four consecutive MtLHCB genes on chromosome 6. In salt-treated M. truncatula, LAL is suppressed in an early stage but induced later; this pattern is opposite to that of the four MtLHCBs. The lal mutants show enhanced salinity tolerance, while overexpressing LAL disrupts this superior tolerance in the lal background, which indicates its regulatory role in salinity response. The regulatory role of LAL on MtLHCB1.4 is further verified by transient co-expression of LAL and MtLHCB1.4-GFP in tobacco leaves, in which the cleavage of MtLHCB1.4 and production of secondary interfering RNA is identified. This work demonstrates a lncRNA, LAL, functioning as a regulator that fine-tunes salinity tolerance via regulating MtLHCB1s' expression in M. truncatula.


Assuntos
Medicago truncatula , RNA Longo não Codificante , Tolerância ao Sal/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Estresse Fisiológico/genética , Clorofila A/metabolismo
8.
Phytopathology ; 114(5): 971-981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376984

RESUMO

Nodule-specific cysteine-rich (NCR) peptides, encoded in the genome of the Mediterranean legume Medicago truncatula (barrelclover), are known to regulate plant-microbe interactions. A subset of computationally derived 20-mer peptide fragments from 182 NCR peptides was synthesized to identify those with activity against the unculturable vascular pathogen associated with citrus greening disease, 'Candidatus Liberibacter asiaticus' (CLas). Grounded in a design of experiments framework, we evaluated the peptides in a screening pipeline involving three distinct assays: a bacterial culture assay with Liberibacter crescens, a CLas-infected excised citrus leaf assay, and an assay to evaluate effects on bacterial acquisition by the nymphal stage of hemipteran vector Diaphorina citri. A subset of the 20-mer NCR peptide fragments inhibits both CLas growth in citrus leaves and CLas acquisition by D. citri. Two peptides induced higher levels of D. citri mortality. These findings reveal 20-mer NCR peptides as a new class of plant-derived biopesticide molecules to control citrus greening disease.


Assuntos
Citrus , Medicago truncatula , Peptídeos , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Citrus/microbiologia , Peptídeos/química , Peptídeos/metabolismo , Medicago truncatula/microbiologia , Cisteína , Hemípteros/microbiologia , Agentes de Controle Biológico , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Liberibacter/genética , Animais , Rhizobiaceae/genética
9.
Plant J ; 118(3): 607-625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361340

RESUMO

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Proteínas de Plantas , Raízes de Plantas , Nódulos Radiculares de Plantas , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Nodulação/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/genética
10.
Microbiol Spectr ; 12(2): e0182723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38236024

RESUMO

One of the major issues in healthcare today is antibiotic resistance. Antimicrobial peptides (AMPs), a subclass of host defense peptides, have been suggested as a viable solution for the multidrug resistance problem. Legume plants express more than 700 nodule-specific cysteine-rich (NCR) peptides. Three NCR peptides (NCR094, NCR888, and NCR992) were predicted to have antimicrobial activity using in silico AMP prediction programs. This study focused on investigating the roles of the NCRs in antimicrobial activity and antibiofilm activity, followed by in vitro toxicity profiling. Different variants were synthesized, i.e., mutated and truncated derivatives. The effect on the growth of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) was monitored post-treatment, and survived cells were counted using an in vitro and ex vivo killing assay. The antibiofilm assay was conducted using subinhibitory concentrations of the NCRs and monitoring K. pneumoniae biomass, followed by crystal violet staining. The cytotoxicity profile was evaluated using erythrocyte hemolysis and leukemia (K562) cell line toxicity assays. Out of the NCRs, NCR094 and NCR992 displayed mainly in vitro and ex vivo bactericidal activity on K. pneumoniae. NCR094 wild type (WT) and NCR992 eradicated K. pneumoniae at different potency; NCR094 and NCR992 killed K. pneumoniae completely at 25 and 50 µM, respectively. However, both peptides in the wild type showed negligible bactericidal effect on MRSA in vitro and ex vivo. NCR094 and its derivatives relatively retained the antimicrobial activity on K. pneumoniae in vitro and ex vivo. NCR992 WT lost its antimicrobial activity on K. pneumoniae ex vivo, yet the different truncated and mutated variants retained some of the antimicrobial role ex vivo. All the different variants of NCR094 had no effect on MRSA in vitro and ex vivo. Similarly, NCR992's variants had a negligible bactericidal role on MRSA in vitro, yet the truncated variants had a significantly high bactericidal effect on MRSA ex vivo. NCR094.3 (cystine replacement variant) and NCR992.1 displayed significant antibiofilm activity more than 90%. NCR992.3 and NCR992.2 displayed more than 50% of antibiofilm activity. All the NCR094 forms had no toxicity, except NCR094.1 (49.38%, SD ± 3.46) and all NCR992 forms (63%-93%), which were above the cutoff (20%). Only NCR992.2 showed low toxicity on K562 (24.8%, SD ± 3.40), yet above the 20% cutoff. This study provided preliminary antimicrobial and safety data for the potential use of these peptides for therapeutical applications.IMPORTANCEThe discovery of new antibiotics is urgently needed, given the global expansion of antibiotic-resistant bacteria and the rising mortality rate. One of the initial lines of defense against microbial infections is antimicrobial peptides (AMPs). Plants can express hundreds of such AMPs as defensins and defensin-like peptides. The nodule-specific cysteine-rich (NCR) peptides are a class of defensin-like peptides that have evolved in rhizobial-legume symbioses. This study screened the antimicrobial activity of a subset of NCR sequences using online computational AMP prediction algorithms. Two novel NCRs, NCR094 and NCR992, with different variants were identified to exhibit antimicrobial activity with various potency on two problematic pathogens, K. pneumoniae and MRSA, using in vitro and ex vivo killing assays. Yet, one variant, NCR094.3, had no toxicity toward human cells and displayed antibiofilm activity, which make it a promising lead for antimicrobial drug development.


Assuntos
Anti-Infecciosos , Medicago truncatula , Staphylococcus aureus Resistente à Meticilina , Humanos , Medicago truncatula/química , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Peptídeos Antimicrobianos , Cisteína/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae , Verduras , Defensinas/farmacologia , Testes de Sensibilidade Microbiana
11.
New Phytol ; 241(1): 24-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924218

RESUMO

C-terminally encoded peptides (CEP) signaling peptides are drivers of systemic pathways regulating nitrogen (N) acquisition in different plants, from Arabidopsis to legumes, depending on mineral N availability (e.g. nitrate) and on the whole plant N demand. Recent studies in the Medicago truncatula model legume revealed how root-produced CEP peptides control the root competence for endosymbiosis with N fixing rhizobia soil bacteria through the activity of the Compact Root Architecture 2 (CRA2) CEP receptor in shoots. Among CEP genes, MtCEP7 was shown to be tightly linked to nodulation, and the dynamic temporal regulation of its expression reflects the plant ability to maintain a different symbiotic root competence window depending on the symbiotic efficiency of the rhizobium strain, as well as to reinitiate a new window of root competence for nodulation.


Assuntos
Medicago truncatula , Rhizobium , Nódulos Radiculares de Plantas/microbiologia , Nodulação/genética , Simbiose/fisiologia , Raízes de Plantas/metabolismo , Sinais Direcionadores de Proteínas , Rhizobium/fisiologia , Medicago truncatula/microbiologia , Peptídeos/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Sci Rep ; 13(1): 20676, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001333

RESUMO

The host-produced nodule specific cysteine-rich (NCR) peptides control the terminal differentiation of endosymbiotic rhizobia in the nodules of IRLC legumes. Although the Medicago truncatula genome encodes about 700 NCR peptides, only few of them have been proven to be crucial for nitrogen-fixing symbiosis. In this study, we applied the CRISPR/Cas9 gene editing technology to generate knockout mutants of NCR genes for which no genetic or functional data were previously available. We have developed a workflow to analyse the mutation and the symbiotic phenotype of individual nodules formed on Agrobacterium rhizogenes-mediated transgenic hairy roots. The selected NCR genes were successfully edited by the CRISPR/Cas9 system and nodules formed on knockout hairy roots showed wild type phenotype indicating that peptides NCR068, NCR089, NCR128 and NCR161 are not essential for symbiosis between M. truncatula Jemalong and Sinorhizobium medicae WSM419. We regenerated stable mutants edited for the NCR068 from hairy roots obtained by A. rhizogenes-mediated transformation. The analysis of the symbiotic phenotype of stable ncr068 mutants showed that peptide NCR068 is not required for symbiosis with S. meliloti strains 2011 and FSM-MA either. Our study reports that gene editing can help to elicit the role of certain NCRs in symbiotic nitrogen fixation.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolismo , Cisteína/metabolismo , Sistemas CRISPR-Cas/genética , Mutagênese , Peptídeos/metabolismo , Sinorhizobium meliloti/genética , Simbiose/genética , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/microbiologia
13.
New Phytol ; 240(2): 815-829, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37533094

RESUMO

Bacteroid (name for rhizobia inside nodule cells) differentiation is a prerequisite for successful nitrogen-fixing symbiosis. In certain legumes, under the regulation of host proteins, for example, a large group of NCR (nodule cysteine rich) peptides, bacteroids undergo irreversible terminal differentiation. This process causes them to lose the ability to propagate inside nodule cells while boosting their competency for nitrogen fixation. How host cells maintain the viability of differentiated bacteroids while maximizing their nitrogen-reducing activities remains elusive. Here, through mutant screen, map-based cloning, and genetic complementation, we find that NCR343 is required for the viability of differentiated bacteroids. In Medicago truncatula debino1 mutant, differentiated bacteroids decay prematurely, and NCR343 is proved to be the casual gene for debino1. NCR343 is mainly expressed in the nodule fixation zone, where bacteroids are differentiated. In nodule cells, mature NCR343 peptide is secreted into the symbiosomes. RNA-Seq assay shows that many stress-responsive genes are significantly induced in debino1 bacteroids. Additionally, a group of stress response-related rhizobium proteins are identified as putative interacting partners of NCR343. In summary, our findings demonstrate that beyond promoting bacteroid differentiation, NCR peptides are also required in maintaining the viability of differentiated bacteroids.


Assuntos
Medicago truncatula , Rhizobium , Medicago truncatula/genética , Medicago truncatula/metabolismo , Peptídeos/metabolismo , Diferenciação Celular , Simbiose/fisiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Nódulos Radiculares de Plantas/metabolismo
14.
Plant Physiol ; 193(3): 1897-1912, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37555448

RESUMO

Symbiotic interactions between legumes and rhizobia lead to the development of root nodules and nitrogen fixation by differentiated bacteroids within nodules. Differentiation of the endosymbionts is reversible or terminal, determined by plant effectors. In inverted repeat lacking clade legumes, nodule-specific cysteine-rich (NCR) peptides control the terminal differentiation of bacteroids. Medicago truncatula contains ∼700 NCR-coding genes. However, the role of few NCR peptides has been demonstrated. Here, we report characterization of fast neutron 2106 (FN2106), a symbiotic nitrogen fixation defective (fix-) mutant of M. truncatula. Using a transcript-based approach, together with linkage and complementation tests, we showed that loss-of-function of NCR343 results in impaired bacteroid differentiation and/or maintenance and premature nodule senescence of the FN2106 mutant. NCR343 was specifically expressed in nodules. Subcellular localization studies showed that the functional NCR343-YFP fusion protein colocalizes with bacteroids in symbiosomes in infected nodule cells. Transcriptomic analyses identified senescence-, but not defense-related genes, as being significantly upregulated in ncr343 (FN2106) nodules. Taken together, results from our phenotypic and transcriptomic analyses of a loss-of-function ncr343 mutant demonstrate an essential role of NCR343 in bacteroid differentiation and/or maintenance required for symbiotic nitrogen fixation.


Assuntos
Medicago truncatula , Medicago truncatula/metabolismo , Fixação de Nitrogênio/genética , Cisteína/metabolismo , Peptídeos/metabolismo , Simbiose , Nódulos Radiculares de Plantas/metabolismo
15.
New Phytol ; 239(5): 1974-1988, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381081

RESUMO

In the nodules of IRLC legumes, including Medicago truncatula, nitrogen-fixing rhizobia undergo terminal differentiation resulting in elongated and endoreduplicated bacteroids specialized for nitrogen fixation. This irreversible transition of rhizobia is mediated by host produced nodule-specific cysteine-rich (NCR) peptides, of which c. 700 are encoded in the M. truncatula genome but only few of them have been proved to be essential for nitrogen fixation. We carried out the characterization of the nodulation phenotype of three ineffective nitrogen-fixing M. truncatula mutants using confocal and electron microscopy, monitored the expression of defence and senescence-related marker genes, and analysed the bacteroid differentiation with flow cytometry. Genetic mapping combined with microarray- or transcriptome-based cloning was used to identify the impaired genes. Mtsym19 and Mtsym20 mutants are defective in the same peptide NCR-new35 and the lack of NCR343 is responsible for the ineffective symbiosis of NF-FN9363. We found that the expression of NCR-new35 is significantly lower and limited to the transition zone of the nodule compared with other crucial NCRs. The fluorescent protein-tagged version of NCR343 and NCR-new35 localized to the symbiotic compartment. Our discovery added two additional members to the group of NCR genes essential for nitrogen-fixing symbiosis in M. truncatula.


Assuntos
Medicago truncatula , Rhizobium , Medicago truncatula/genética , Medicago truncatula/metabolismo , Cisteína/metabolismo , Nitrogênio/metabolismo , Peptídeos/metabolismo , Fixação de Nitrogênio , Simbiose , Nódulos Radiculares de Plantas/metabolismo
17.
Nat Commun ; 14(1): 2807, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198152

RESUMO

The adjustment of cellular redox homeostasis is essential in when responding to environmental perturbations, and the mechanism by which cells distinguish between normal and oxidized states through sensors is also important. In this study, we found that acyl-protein thioesterase 1 (APT1) is a redox sensor. Under normal physiological conditions, APT1 exists as a monomer through S-glutathionylation at C20, C22 and C37, which inhibits its enzymatic activity. Under oxidative conditions, APT1 senses the oxidative signal and is tetramerized, which makes it functional. Tetrameric APT1 depalmitoylates S-acetylated NAC (NACsa), and NACsa relocates to the nucleus, increases the cellular glutathione/oxidized glutathione (GSH/GSSG) ratio through the upregulation of glyoxalase I expression, and resists oxidative stress. When oxidative stress is alleviated, APT1 is found in monomeric form. Here, we describe a mechanism through which APT1 mediates a fine-tuned and balanced intracellular redox system in plant defence responses to biotic and abiotic stresses and provide insights into the design of stress-resistant crops.


Assuntos
Glutationa , Lactoilglutationa Liase , Medicago truncatula , Núcleo Celular/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Lactoilglutationa Liase/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Oxirredução , Estresse Oxidativo , Tioléster Hidrolases
18.
Plant Sci ; 332: 111718, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105378

RESUMO

Iron (Fe) is an essential plant micronutrient, being a major limiting growth factor in calcareous soils. To increase Fe uptake, plants induce lateral roots growth, the expression of a Fe(III)-chelate reductase (FCR), a Fe(II)-transporter and a H+-ATPase and the secretion of flavins. Furthermore, auxin hormone family is involved in the Fe-deficiency responses but the action mechanism remains elusive. In this work, we evaluated the effect of the auxin-precursor indole-3-acetaldoxime (IAOx) on hydroponically grown Medicago truncatula plants under different Fe conditions. Upon 4-days of Fe starvation, the pH of the nutrient solution decreased, while both the FCR activity and the presence of flavins increased. Exogenous IAOx increased lateral roots growth contributing to superroot phenotype, decreased chlorosis, and delayed up to 3-days the pH-decrease, the FCR-activity increase, and the presence of flavins, compared to Fe-deficient plants. Gene expression levels were in concordance with the physiological responses. RESULTS: showed that IAOx was immediately transformed to IAN in roots and shoots to maintain auxin homeostasis. IAOx plays an active role in iron homeostasis delaying symptoms and responses in Fe-deficient plants. We may speculate that IAOx or its derivatives remobilize Fe from root cells to alleviate Fe-deficiency. Overall, these results point out that the IAOx-derived phenotype may have advantages to overcome nutritional stresses.


Assuntos
Deficiências de Ferro , Medicago truncatula , Medicago truncatula/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Ácidos Indolacéticos/metabolismo , Flavinas/metabolismo , Homeostase , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Photochem Photobiol Sci ; 22(7): 1637-1654, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36995651

RESUMO

Ground level UV-B (290-315 nm) and UV-A (315-400 nm) radiation regulates multiple aspects of plant growth and development. In a natural environment, UV radiation interacts in a complex manner with other environmental factors (e.g., drought) to regulate plants' morphology, physiology, and growth. To assess the interactive effects of UV radiation and soil drying on plants' secondary metabolites and transcript abundance, we performed a field experiment using two different accessions of Medicago truncatula (F83005-5 French origin and Jemalong A17 Australian origin). Plants were grown for 37 days under long-pass filters to assess the effects of UV short wavelength (290-350 nm, UVsw) and UV-A long wavelength (350-400 nm, UV-Alw). Soil-water deficit was induced by not watering half of the plants during the last seven days of the experiment. The two accessions differed in the concentration of flavonoids in the leaf epidermis and in the whole leaf: F83005-5 had higher concentration than Jemalong A17. They also differed in the composition of the flavonoids: a greater number of apigenin derivatives than tricin derivatives in Jemalong A17 and the opposite in F83005-5. Furthermore, UVsw and soil drying interacted positively to regulate the biosynthesis of flavonoids in Jemalong A17 through an increase in transcript abundance of CHALCONE SYNTHASE (CHS). However, in F83005-5, this enhanced CHS transcript abundance was not detected. Taken together the observed metabolite and gene transcript responses suggest differences in mechanisms for acclimation and stress tolerance between the accessions.


Assuntos
Medicago truncatula , Raios Ultravioleta , Medicago truncatula/genética , Solo , Austrália , Flavonoides , Plantas
20.
J Plant Physiol ; 281: 153922, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669364

RESUMO

CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION-related) peptides are systemic regulators of legume-rhizobium symbiosis that negatively control the number of nitrogen-fixing nodules. CLE peptides are produced in the root in response to rhizobia inoculation and/or nitrate treatment and are transported to the shoot where they are recognized by the CLV1-like (CLAVATA1-like) receptor kinase. As a result, a shoot-derived signaling pathway is activated that inhibits subsequent nodule development in the root. In Medicago truncatula, MtCLE35 is activated in response to rhizobia and nitrate treatment and the overexpression of this gene systemically inhibits nodulation. The inhibitory effect of MtCLE35 overexpression is dependent on the CLV1-like receptor kinase MtSUNN (SUPER NUMERIC NODULES), suggesting that MtSUNN could be involved in the reception of the MtCLE35 peptide. Yet little is known about the downstream genes regulated by a MtCLE35-activated response in the root. In order to identify genes whose expression levels could be regulated by the MtCLE35-MtSUNN pathway, we performed a MACE-Seq (Massive Analysis of cDNA Ends) transcriptomic analysis of MtCLE35-overexpressing roots. Among upregulated genes, the gene MtSUNN that encodes a putative receptor of MtCLE35 was detected. Moreover, we found that MtSUNN, as well as several other differentially expressed genes, were upregulated locally in MtCLE35-overexpressing roots whereas the MtTML1 and MtTML2 genes were upregulated systemically. Our data suggest that MtCLE35 has both local and systemic effects on target genes in the root.


Assuntos
Medicago truncatula , Medicago truncatula/metabolismo , Nodulação/genética , Nitratos/metabolismo , Transdução de Sinais/genética , Peptídeos/genética , Peptídeos/metabolismo , Simbiose , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA