Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biomed Mater ; 16(3)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33740781

RESUMO

In bladder tissue engineering, regeneration of muscle is of equal importance to epithelial regeneration. However, as yet there is no effective strategy for promoting bladder muscle regeneration. In this study we aim to promote bladder muscle regeneration by sustainably delivering heparin from a bilayer scaffold carrying stem cells. The bilayer scaffold [heparin-polycaprolactone (PCL)/bladder decellularized matrix (BAM) Hep-PB/PCL] comprises an electrospun layer (Hep-PB electrospun membrane) and a three-dimensional (3D) printed layer (PCL scaffold), fabricated via coaxial-electrospinning and 3D printing, respectively. Heparin was encapsulated into the core of the Hep-PB fibers with a core-shell structure to sustain its release. The morphology of the bilayer scaffold and the microstructure of the electrospun fibers were characterized. The release behavior of heparin from various electrospun membranes was evaluated. The role of Hep-PB in promoting myogenic differentiation of the adipose-derived stem cells (ADSCs) through sustainable release of heparin was also evaluated. After 7 d culture, Hep-PB/PCL scaffolds carrying ADSCs (defined as ASHP) were used for bladder reconstruction in a rat partial cystotomy model. The result shows that the PCL printed scaffold has ordered macropores (∼370 µm), unlike the compact microstructure of electrospun films. The Hep-PB membrane exhibits a sustained release behavior for heparin. This membrane also shows better growth and proliferation of ADSCs than the other membranes. The polymerase chain reaction results show that the expression of smooth muscle cell markers in ADSCs is enhanced by the Hep-PB scaffold. The results of retrograde urethrography and histological staining indicate that the bladder volume in the ASHP group recovers better, and the regenerated bladder muscle bundles are arranged in a more orderly fashion compared with the direct suture and bladder decellularized matrix groups. Therefore, findings from this study show that bladder muscle regeneration could be enhanced by bilayer scaffolds delivering heparin and carrying stem cells, which may provide a new strategy for bladder tissue engineering.


Assuntos
Cistectomia/métodos , Heparina/química , Regeneração , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Células-Tronco/citologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Bexiga Urinária/cirurgia , Adipócitos/citologia , Animais , Diferenciação Celular , Eletroquímica , Feminino , Heparina/administração & dosagem , Bicamadas Lipídicas/química , Reação em Cadeia da Polimerase , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais
2.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322369

RESUMO

In the field of tissue engineering and regenerative medicine, hydrogels are used as biomaterials to support cell attachment and promote tissue regeneration due to their unique biomimetic characteristics. The use of natural-origin materials significantly influenced the origin and progress of the field due to their ability to mimic the native tissues' extracellular matrix and biocompatibility. However, the majority of these natural materials failed to provide satisfactory cues to guide cell differentiation toward the formation of new tissues. In addition, the integration of technological advances, such as 3D printing, microfluidics and nanotechnology, in tissue engineering has obsoleted the first generation of natural-origin hydrogels. During the last decade, a new generation of hydrogels has emerged to meet the specific tissue necessities, to be used with state-of-the-art techniques and to capitalize the intrinsic characteristics of natural-based materials. In this review, we briefly examine important hydrogel crosslinking mechanisms. Then, the latest developments in engineering natural-based hydrogels are investigated and major applications in the field of tissue engineering and regenerative medicine are highlighted. Finally, the current limitations, future challenges and opportunities in this field are discussed to encourage realistic developments for the clinical translation of tissue engineering strategies.


Assuntos
Produtos Biológicos/química , Hidrogéis/química , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Motivos de Aminoácidos , Animais , Anisotropia , Colágeno/química , Elastina/química , Matriz Extracelular , Humanos , Ácido Hialurônico/química , Íons , Ligantes , Metais/química , Microfluídica , Nanotecnologia , Peptídeos/química , Polímeros/química , Polissacarídeos/química , Impressão Tridimensional , Medicina Regenerativa/instrumentação , Eletricidade Estática , Engenharia Tecidual/instrumentação
3.
Sci China Life Sci ; 63(10): 1450-1490, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32621058

RESUMO

Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.


Assuntos
Oftalmologia/tendências , Medicina Regenerativa/tendências , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Produtos Biológicos/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos , Edição de Genes , Humanos , Oftalmologia/instrumentação , Medicina Regenerativa/instrumentação , Materiais Inteligentes/química , Materiais Inteligentes/uso terapêutico , Células-Tronco/citologia , Engenharia Tecidual
4.
J Mater Sci Mater Med ; 31(8): 69, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32705408

RESUMO

In recent years, the engineering of biomimetic cellular microenvironments has emerged as a top priority for regenerative medicine, being the in vitro recreation of the arcade-like cartilaginous tissue one of the most critical challenges due to the notorious absence of cost- and time-efficient microfabrication techniques capable of building 3D fibrous scaffolds with precise anisotropic properties. Taking this into account, we suggest a feasible and accurate methodology that uses a sequential adaptation of an electrospinning-electrospraying set up to construct a hierarchical system comprising both polycaprolactone (PCL) fibres and polyethylene glycol sacrificial microparticles. After porogen leaching, the bi-layered PCL scaffold was capable of presenting not only a depth-dependent fibre orientation similar to natural cartilage, but also mechanical features and porosity proficient to encourage an enhanced cell response. In fact, cell viability studies confirmed the biocompatibility of the scaffold and its ability to guarantee suitable cell adhesion, proliferation and migration throughout the 3D anisotropic fibrous network during 21 days of culture. Additionally, likewise the hierarchical relationship between chondrocytes and their extracellular matrix, the reported PCL scaffold was able to induce depth-dependent cell-material interactions responsible for promoting a spatial modulation of the morphology, alignment and density of the cells in vitro.


Assuntos
Cartilagem/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Biomimética , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Bovinos , Sobrevivência Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Galvanoplastia/métodos , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Microtecnologia/métodos , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
5.
Biomed Mater ; 15(5): 055031, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32554897

RESUMO

ADA16 peptide hydrogels have been broadly used in tissue engineering due to their good biocompatibility and nanofibrous structure mimicking the native extracellular matrix (ECM). However, the low mechanical strength often fails them as implantable scaffolds. To improve the mechanical stability of the RADA16 peptide hydrogel, a photocrosslinkable diacrylated poly(ϵ-caprolactone)-b-poly(ethylene glycol)-b-poly(ϵ-caprolactone) triblock copolymer (PCECDA) was physically combined with RADA16 peptide pre-modified with cell adhesive Arg-Gly-Asp sequence (RADA16-RGD). Consequently, an interpenetrating network, RADA16-RGD/PCECDA, was formed with highly enhanced mechanical property. The storage modulus (G') of RADA16-RGD/PCECDA (6% w/v, mass ratio mRADA16-RGD/mPCECDA = 1:5) hybrid hydrogel was elevated to ∼2000 Pa, compared to the RADA16-RGD (1% w/v) hydrogel alone (∼700 Pa). Furthermore, this hybrid hydrogel retained the nanofibrous structure from RADA16-RGD peptide, but underwent much slower degradation than RADA16-RGD alone. In vitro, the hybrid hydrogel exhibited excellent cytocompatibility and promoted the differentiation of the seeded neural stem cells. Finally, the RADA16-RGD/PCECDA hydrogel demonstrated capability in reducing cavitation, glial scar formation and inflammation at the lesion sites of hemi-sectioned spinal cord injury model in rats, which holds great potential for application in neural tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Peptídeos/química , Poliésteres/química , Polietilenoglicóis/química , Traumatismos da Medula Espinal/terapia , Engenharia Tecidual/métodos , Animais , Adesão Celular , Diferenciação Celular , Sobrevivência Celular , Cromatografia em Gel , Feminino , Gliose , Inflamação , Espectroscopia de Ressonância Magnética , Teste de Materiais , Microscopia Eletrônica de Transmissão , Células-Tronco Neurais/metabolismo , Neurotrofina 3/química , Oligopeptídeos/química , Polímeros/química , Pressão , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa/instrumentação , Traumatismos da Medula Espinal/fisiopatologia , Estresse Mecânico
6.
Acta Biomater ; 99: 84-99, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31521813

RESUMO

Current tissue-regenerative biomaterials confront two critical issues: the uncontrollable delivery capacity of vascular endothelial growth factor (VEGF) for adequate vascularization and the poor mechanical properties of the system for tissue regeneration. To overcome these two issues, a self-assembling in situ gel based on lyotropic liquid crystals (LLC) was developed. VEGF-LLC was administrated as a precursor solution that would self-assemble into an in situ gel with well-defined internal inverse bicontinuous cubic phases when exposed to physiological fluid at a defect site. The inverse cubic phase with a 3D bicontinuous water channel enabled a 7-day sustained release of VEGF. The release profile of VEGF-LLC was controlled using octyl glucoside (OG) as a hydration-modulating agent, which could enlarge the water channel, yielding a 2-fold increase in water channel size and a 7-fold increase in VEGF release. For the mechanical properties, the elastic modulus was found to decrease from ∼100 kPa to ∼1.2 kPa, which might be more favorable for angiogenesis. Furthermore, the self-recovery ability of the VEGF-LLC gel was confirmed by quick recovery of the inner network in step-strain measurements. In vitro, VEGF-LLC considerably promoted the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) as compared to free VEGF (p < 0.05). Furthermore, angiogenesis was successfully induced in rats after subcutaneous injection of VEGF-LLC. The self-assembling LLC gel showed satisfactory degradability and mild inflammatory response with little impact on the surrounding tissue. The controllable release profile and unique mechanical properties of VEGF-LLC offer a new approach for tissue regeneration. STATEMENT OF SIGNIFICANCE: The potential clinical use of currently available biomaterials in tissue regeneration is limited by their uncontrollable drug delivery capacity and poor mechanical properties. Herein, a self-assembling in situ gel based on lyotropic liquid crystals (LLC) for induced angiogenesis was developed. The results showed that the addition of octyl glucoside (OG) could change the water channel size of LLC, which enabled the LLC system to release VEGF in a sustained manner and to possess a suitable modulus to favor angiogenesis simultaneously. Moreover, the self-recovery capability allowed the gel to match the deformation of surrounding tissues during body motion to maintain its properties and reduce discomfort. In vivo, angiogenesis was induced by VEGF-LLC 14 days after administering subcutaneous injection. These results highlight the potential of LLC as a promising sustained protein drug delivery system for vascular formation and tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Cristais Líquidos/química , Regeneração , Fator A de Crescimento do Endotélio Vascular/farmacologia , Indutores da Angiogênese/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Módulo de Elasticidade , Glucosídeos/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa/instrumentação , Reologia , Estresse Mecânico
7.
Acta Biomater ; 99: 100-109, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31536841

RESUMO

A scaffold that is inherently bioactive, osteoinductive and osteoconductive may guide mesenchymal stem cells (MSCs) to regenerate bone tissue in the absence of exogenous growth factors. Previously, we established that hydrogel scaffolds formed by crosslinking methacrylated star poly(dimethylsiloxane) (PDMSstar-MA) with diacrylated poly(ethylene glycol) (PEG-DA) promote bone bonding by induction of hydroxyapatite formation ("bioactive") and promote MSC lineage progression toward osteoblast-like fate ("osteoinductive"). Herein, we have combined solvent induced phase separation (SIPS) with a fused salt template to create PDMSstar-PEG hydrogel scaffolds with controlled PDMSstar-MA distribution as well as interconnected macropores of a tunable size to allow for subsequent cell seeding and neotissue infiltration ("osteoconductive"). Scaffolds were prepared with PDMSstar-MA of two number average molecular weights (Mns) (2k and 7k) with varying PDMSstar-MA:PEG-DA ratios and template salt sizes. The distribution of PDMSstar-MA within the hydrogels was examined as well as pore size, percent interconnectivity, dynamic and static moduli, hydration, degradation and in vitro bioactivity (i.e. mineralization when exposed to simulated body fluid, SBF). Finally, cell culture with seeded human bone marrow-derived MSCs (hBMSCs) was used to confirm non-cytotoxicity and characterize osteoinductivity. Tunable, interconnected macropores were achieved by utilization of a fused salt template of a specified salt size during fabrication. Distribution of PDMSstar-MA within the PEG-DA matrix improved for the lower Mn and contributed to differences in specific material properties (e.g. local modulus) and cellular response. However, all templated SIPS PDMSstar-PEG hydrogels were confirmed to be bioactive, non-cytotoxic and displayed PDMSstar-MA dose-dependent osteogenesis. STATEMENT OF SIGNIFICANCE: A tissue engineering scaffold that can inherently guide mesenchymal stem cells (MSCs) to regenerate bone tissue without growth factors would be a more cost-effective and safe strategy for bone repair. Typically, glass/ceramic fillers are utilized to achieve this through their ability to induce hydroxyapatite formation ("bioactive") and promote MSC differentiation to an osteoblast-like fate ("osteoinductive"). Herein, we have fabricated an interconnected, macroporous PEG-DA hydrogel scaffold that utilizes PDMSstar-MA as a bioactive and osteoinductive scaffold component. We were able to show that these PDMSstar-PEG hydrogels maintain several key material characteristics for bone repair. Further, bioactivity and osteoinductivity were simultaneously achieved in human bone marrow-derived MSC culture, representing a notable achievement for an exclusively material-based strategy.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Hidrogéis/química , Osteogênese/efeitos dos fármacos , Polietilenoglicóis/química , Silício/química , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Elasticidade , Humanos , Espectroscopia de Ressonância Magnética , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Osteoblastos/metabolismo , Medicina Regenerativa/instrumentação , Sais , Solventes/química , Estresse Mecânico , Engenharia Tecidual/instrumentação
8.
Adv Healthc Mater ; 8(19): e1900831, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31464099

RESUMO

Tendon to bone (enthesis) rupture, which may cause disability and persistent pain, shows high rate of re-rupture after surgical repair. Tendon or enthesis scaffolds have been widely studied, but few of these materials can recapitulate the tissue continuity. Thus, this study is conducted to prepare a triphasic decellularized bone-fibrocartilage-tendon (D-BFT) composite scaffold. The D-BFT scaffold is developed using a combination of physical, chemical, and enzymatic treatments using liquid nitrogen, Triton-X 100, sodium-dodecyl sulfate, and DNase I, which effectively removes the cell components while preserving the biological composite and microstructure. Moreover, the mechanical properties of D-BFT are highly preserved and similar to those of the human Achilles tendon. Additionally, in vitro, mesenchymal stem cells (MSCs) adhered, proliferated, and infiltrated into the D-BFT scaffold, and MSC differentiation is confirmed by up-regulation of osteogenic-related and tenogenic-related genes. The repair outcomes are explored by applying the D-BFT scaffold in the model of femur-tibia defects in vivo, which shows good repair results. Thus, the D-BFT scaffold developed in this study is a promising graft for enthesis regeneration.


Assuntos
Tendão do Calcâneo/fisiologia , Osso e Ossos/fisiologia , Matriz Extracelular/química , Fibrocartilagem/fisiologia , Regeneração , Alicerces Teciduais/química , Animais , Adesão Celular , Diferenciação Celular , Proliferação de Células , Colágeno/química , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Nitrogênio/química , Osteogênese , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Estresse Mecânico , Engenharia Tecidual/métodos , Microtomografia por Raio-X
9.
Acta Biomater ; 94: 64-81, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128319

RESUMO

The rotator cuff consists of a cuff of soft tissue responsible for rotating the shoulder. Rotator cuff tendon tears are responsible for a significant source of disability and pain in the adult population. Most rotator cuff tendon tears occur at the bone-tendon interface. Tear size, patient age, fatty infiltration of muscle, have a major influence on the rate of retear after surgical repair. The high incidence of retears (up to 94% in some studies) after surgery makes rotator cuff injuries a critical musculoskeletal problem to address. The limitations of current treatments motivate regenerative engineering approaches for rotator cuff regeneration. Various fiber-based matrices are currently being investigated due to their structural similarity with native tendons and their ability to promote regeneration. This review will discuss the current approaches for rotator cuff regeneration, recent advances in fabrication and enhancement of nanofiber-based matrices and the development and use of complex nano/microstructures for rotator cuff regeneration. STATEMENT OF SIGNIFICANCE: Regeneration paradigms for musculoskeletal tissues involving the rotator cuff of the shoulder have received great interest. Novel technologies based on nanomaterials have emerged as possible robust solutions for rotator cuff injury and treatment due to structure/property relationships. The aim of the review submitted is to comprehensively describe and evaluate the development and use of nano-based material technologies for applications to rotator cuff tendon healing and regeneration.


Assuntos
Nanofibras/química , Medicina Regenerativa/instrumentação , Lesões do Manguito Rotador/cirurgia , Engenharia Tecidual/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Artroscopia , Materiais Biocompatíveis/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Pessoa de Meia-Idade , Ratos , Regeneração , Medicina Regenerativa/métodos , Manguito Rotador/anatomia & histologia , Ruptura , Tendões/cirurgia
10.
Expert Opin Biol Ther ; 19(8): 773-779, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009588

RESUMO

INTRODUCTION: Biomaterials have provided a wide range of exciting opportunities in tissue engineering and regenerative medicine. Gelatin, a collagen-derived natural biopolymer, has been extensively used in regenerative medicine applications over the years, due to its cell-responsive properties and the capacity to deliver a wide range of biomolecules. AREAS COVERED: The most relevant properties of gelatin as biomaterial are presented together with its main therapeutic applications. The latter includes drug delivery systems, tissue engineering approaches, potential uses as ink for 3D/4D Bioprinting, and its relevance in organ-on-a-chip platforms. EXPERT OPINION: Advances in polymer chemistry, mechanobiology, imaging technologies, and 3D biofabrication techniques have expanded the application of gelatin in multiple biomedical research applications ranging from bone and cartilage tissue engineering, to wound healing and anti-cancer therapy. Here, we highlight the latest advances in gelatin-based approaches within the fields of biomaterial-based drug delivery and tissue engineering together with some of the most relevant challenges and limitations.


Assuntos
Materiais Biocompatíveis/química , Terapia Biológica/instrumentação , Gelatina/química , Animais , Terapia Biológica/métodos , Terapia Biológica/tendências , Humanos , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
11.
Small ; 15(23): e1901269, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018047

RESUMO

Mesenchymal stem cells (MSCs) are considered as a promising alternative for the treatment of various inflammatory disorders. However, poor viability and engraftment of MSCs after transplantation are major hurdles in mesenchymal stem cell therapy. Extracellular matrix (ECM)-coated scaffolds provide better cell attachment and mechanical support for MSCs after transplantation. A single-step method for ECM functionalization on poly(lactic-co-glycolic acid) (PLGA) microspheres using a novel compound, dopamine-conjugated poly(ethylene-alt-maleic acid), as a stabilizer during the preparation of microspheres is reported. The dopamine molecules on the surface of microspheres provide active sites for the conjugation of ECM in an aqueous solution. The results reveal that the viability of MSCs improves when they are coated over the ECM-functionalized PLGA microspheres (eMs). In addition, the incorporation of a broad-spectrum caspase inhibitor (IDN6556) into the eMs synergistically increases the viability of MSCs under in vitro conditions. Intraperitoneal injection of the MSC-microsphere hybrid alleviates experimental colitis in a murine model via inhibiting Th1 and Th17 differentiation of CD4+ T cells in colon-draining mesenteric lymph nodes. Therefore, drug-loaded ECM-coated surfaces may be considered as attractive tools for improving viability, proliferation, and functionality of MSCs following transplantation.


Assuntos
Colite/terapia , Matriz Extracelular/química , Transplante de Células-Tronco Mesenquimais/instrumentação , Células-Tronco Mesenquimais/citologia , Microesferas , Ácidos Pentanoicos/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Inibidores de Caspase/administração & dosagem , Células Cultivadas , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Humanos , Injeções Intraperitoneais , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/síntese química , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Alicerces Teciduais/química
12.
Biomolecules ; 10(1)2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905668

RESUMO

Degenerative cartilage pathologies are nowadays a major problem for the world population. Factors such as age, genetics or obesity can predispose people to suffer from articular cartilage degeneration, which involves severe pain, loss of mobility and consequently, a loss of quality of life. Current strategies in medicine are focused on the partial or total replacement of affected joints, physiotherapy and analgesics that do not address the underlying pathology. In an attempt to find an alternative therapy to restore or repair articular cartilage functions, the use of bioengineered tissues is proposed. In this study we present a three-dimensional (3D) bioengineered platform combining a 3D printed polycaprolactone (PCL) macrostructure with RAD16-I, a soft nanofibrous self-assembling peptide, as a suitable microenvironment for human mesenchymal stem cells' (hMSC) proliferation and differentiation into chondrocytes. This 3D bioengineered platform allows for long-term hMSC culture resulting in chondrogenic differentiation and has mechanical properties resembling native articular cartilage. These promising results suggest that this approach could be potentially used in articular cartilage repair and regeneration.


Assuntos
Cartilagem Articular/fisiologia , Impressão Tridimensional , Regeneração , Medicina Regenerativa/instrumentação , Engenharia Tecidual , Cartilagem Articular/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
13.
Expert Opin Biol Ther ; 18(11): 1151-1158, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30295075

RESUMO

INTRODUCTION: Cartilage tissue engineering has rapidly developed in recent decades, exhibiting promising potential to regenerate and repair cartilage. However, the origin of a large amount of a suitable seed cell source is the major bottleneck for the further clinical application of cartilage tissue engineering. The use of a monoculture of passaged chondrocytes or mesenchymal stem cells results in undesired outcomes, such as fibrocartilage formation and hypertrophy. In the last two decades, co-cultures of chondrocytes and a variety of mesenchymal stem cells have been intensively investigated in vitro and in vivo, shedding light on the perspective of co-culture in cartilage tissue engineering. AREAS COVERED: We summarize the recent literature on the application of heterologous cell co-culture systems in cartilage tissue engineering and compare the differences between direct and indirect co-culture systems as well as discuss the underlying mechanisms. EXPERT OPINION: Co-culture system is proven to address many issues encountered by monocultures in cartilage tissue engineering, including reducing the number of chondrocytes needed and alleviating the dedifferentiation of chondrocytes. With the further development and knowledge of biomaterials, cartilage tissue engineering that combines the co-culture system and advanced biomaterials is expected to solve the difficult problem regarding the regeneration of functional cartilage.


Assuntos
Cartilagem/citologia , Cartilagem/fisiologia , Regeneração/fisiologia , Medicina Regenerativa , Engenharia Tecidual/tendências , Animais , Materiais Biocompatíveis , Cartilagem Articular/citologia , Cartilagem Articular/fisiologia , Condrócitos/citologia , Condrócitos/fisiologia , Condrogênese/fisiologia , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Técnicas de Cocultura/tendências , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/tendências , Engenharia Tecidual/métodos
14.
J Mater Sci Mater Med ; 29(5): 54, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725867

RESUMO

In this study, 3D macroporous bioscaffolds were developed from poly(dimethylsiloxane) (PDMS) which is inert, biocompatible, non-biodegradable, retrievable and easily manufactured at low cost. PDMS bioscaffolds were synthesized using a solvent casting and particulate leaching (SCPL) technique and exhibited a macroporous interconnected architecture with 86 ± 3% porosity and 300 ± 100 µm pore size. As PDMS intrinsically has a hydrophobic surface, mainly due to the existence of methyl groups, its surface was modified by oxygen plasma treatment which, in turn, enabled us to apply a novel polydopamine coating onto the surface of the bioscaffold. The addition of a polydopamine coating to bioscaffolds was confirmed using composition analysis. Characterization of oxygen plasma treated-PDMS bioscaffolds coated with polydopamine (polydopamine coated-PDMS bioscaffolds) showed the presence of hydroxyl and secondary amines on their surface which resulted in a significant decrease in water contact angle when compared to uncoated-PDMS bioscaffolds (35 ± 3%, P < 0.05). Seeding adipose tissue-derived mesenchymal stem cells (AD-MSCs) into polydopamine coated-PDMS bioscaffolds resulted in cells demonstrating a 70 ± 6% increase in viability and 40 ± 5% increase in proliferation when compared to AD-MSCs seeded into uncoated-PDMS bioscaffolds (P < 0.05). In summary, this two-step method of oxygen plasma treatment followed by polydopamine coating improves the biocompatibility of PDMS bioscaffolds and only requires the use of simple reagents and mild reaction conditions. Hence, our novel polydopamine coated-PDMS bioscaffolds can represent an efficient and low-cost bioscaffold platform to support MSC therapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Materiais Revestidos Biocompatíveis/síntese química , Indóis/química , Oxigênio/química , Gases em Plasma/química , Polímeros/química , Alicerces Teciduais/química , Animais , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/farmacologia , Gases em Plasma/farmacologia , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos , Propriedades de Superfície/efeitos dos fármacos
15.
Biomed Mater ; 13(5): 055002, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29775181

RESUMO

Hydroxyapatite (HA) is a commonly used biomaterial in bone-tissue engineering, but pure HA is deficient in osteoinduction. In this study, we fabricated scaffolds of lithium-doped HA (Li-HA) and assess the bone generation enhancement of Li-HA scaffolds seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells (BMMSCs). We found that 1.5%Li-HA obtained optimal cell proliferation activity in vitro. In an in vivo study, Li-HA/BMSCs enhanced new bone formation, reducing the GSK-3ß and increasing the ß-catenin, but the angiogenic effect was not modified significantly. However, when the seeded BMMSCs had been preconditioned in hypoxia condition, the new bone formation was increased, with lower GSK-3ß and higher ß-catenin amounts detected. The HIF-1α secretion was up-regulated, and the vascular endothelial growth factor and CD31 expression increased. In conclusion, the bone scaffold developed from Li-doped HA seeded with hypoxia-preconditioned BMMSCs exerted positive effect on activating the Wnt and HIF-1α signal pathway, and showed good osteogenesis and angiogenesis potential. The composited scaffold contributed to an encouraging result in bone regeneration.


Assuntos
Durapatita/química , Lítio/química , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Células da Medula Óssea/citologia , Substitutos Ósseos/química , Hipóxia Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Neovascularização Patológica , Osteogênese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Porosidade , Coelhos , Transdução de Sinais , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo , Difração de Raios X , Microtomografia por Raio-X , beta Catenina/metabolismo
16.
Annu Rev Biomed Eng ; 20: 353-374, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621404

RESUMO

Inorganic nanomaterials have witnessed significant advances in areas of medicine including cancer therapy, imaging, and drug delivery, but their use in soft tissue repair and regeneration is in its infancy. Metallic, ceramic, and carbon allotrope nanoparticles have shown promise in facilitating tissue repair and regeneration. Inorganic nanomaterials have been employed to improve stem cell engraftment in cellular therapy, material mechanical stability in tissue repair, electrical conductivity in nerve and cardiac regeneration, adhesion strength in tissue approximation, and antibacterial capacity in wound dressings. These nanomaterials have also been used to improve or replace common surgical materials and restore functionality to damaged tissue. We provide a comprehensive overview of inorganic nanomaterials in tissue repair and regeneration, and discuss their promise and limitations for eventual translation to the clinic.


Assuntos
Nanopartículas/química , Nanoestruturas/química , Medicina Regenerativa/instrumentação , Engenharia Tecidual/métodos , Animais , Antibacterianos/química , Bandagens , Carbono/química , Sistemas de Liberação de Medicamentos , Condutividade Elétrica , Humanos , Compostos Inorgânicos , Nanopartículas Metálicas , Regeneração , Regeneração da Medula Espinal , Cicatrização
17.
J Biosci Bioeng ; 126(1): 111-118, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29502942

RESUMO

Although the reconstruction of functional 3D liver tissue models in vitro presents numerous challenges, it is in great demand for drug development, regenerative medicine, and physiological studies. Here we propose a new approach to perform perfusion cultivation of liver cells by assembling cell-laden hydrogel microfibers. HepG2 cells were densely packed into the core of sandwich-type anisotropic microfibers, which were produced using microfluidic devices. The obtained microfibers were bundled up and packed into a perfusion chamber, and perfusion cultivation was performed. We evaluated cell viability and functions, and also monitored the oxygen consumption. Furthermore, fibers covered with vascular endothelial cells were united during the perfusion culture, to form vascular network-like conduits between fibers. The presented technique can structurally mimic the hepatic lobule in vivo and could prove to be a useful model for various biomedical research applications.


Assuntos
Técnicas de Cultura de Células , Hepatócitos/citologia , Fígado/citologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Bovinos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Células Hep G2 , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Dispositivos Lab-On-A-Chip , Microtecnologia/instrumentação , Microvasos/citologia , Perfusão , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Alicerces Teciduais
18.
Int J Mol Sci ; 18(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065466

RESUMO

Maintenance of mesenchymal stem cells (MSCs) requires a tissue-specific microenvironment (i.e., niche), which is poorly represented by the typical plastic substrate used for two-dimensional growth of MSCs in a tissue culture flask. The objective of this study was to address the potential use of collagen-based medical devices (HEMOCOLLAGENE®, Saint-Maur-des-Fossés, France) as mimetic niche for MSCs with the ability to preserve human MSC stemness in vitro. With a chemical composition similar to type I collagen, HEMOCOLLAGENE® foam presented a porous and interconnected structure (>90%) and a relative low elastic modulus of around 60 kPa. Biological studies revealed an apparently inert microenvironment of HEMOCOLLAGENE® foam, where 80% of cultured human MSCs remained viable, adopted a flattened morphology, and maintained their undifferentiated state with basal secretory activity. Thus, three-dimensional HEMOCOLLAGENE® foams present an in vitro model that mimics the MSC niche with the capacity to support viable and quiescent MSCs within a low stiffness collagen I scaffold simulating Wharton's jelly. These results suggest that haemostatic foam may be a useful and versatile carrier for MSC transplantation for regenerative medicine applications.


Assuntos
Microambiente Celular , Colágeno , Células-Tronco Mesenquimais , Preservação Biológica/métodos , Medicina Regenerativa/instrumentação , Humanos
19.
Curr Res Transl Med ; 65(3): 103-113, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28916449

RESUMO

Cadaveric organ transplantation represents the definitive treatment option for end-stage disease but is restricted by the shortage of clinically-viable donor organs. This limitation has, in part, driven current research efforts for in vitro generation of transplantable tissue surrogates. Recent advances in organ reconstruction have been facilitated by the re-purposing of decellularized whole organs to serve as three-dimensional bio-scaffolds. Notably, studies in rodents indicate that such scaffolds retain native extracellular matrix components that provide appropriate biochemical, mechanical and physical stimuli for successful tissue/organ reconstruction. As such, they support the migration, adhesion and differentiation of reseeded primary and/or pluripotent cell populations, which mature and achieve functionality through short-term conditioning within specialized tissue bioreactors. Whilst these findings are encouraging, significant challenges remain to up-scale the present technology to accommodate human-sized organs and thereby further the translation of this approach towards clinical use. Of note, the diverse structural and cellular composition of large mammalian organ systems mean that a "one-size fits all" approach cannot be adopted either to the methods used for their decellularization or the cells required for subsequent re-population, to create fully functional entities. The present review seeks to highlight the clinical potential of decellularized organ bio-scaffolds as a route to further advance the field of tissue- and organ-regeneration, and to discuss the challenges which are yet to be addressed if such a technology is ever to become a credible rival to conventional organ allo-transplantation.


Assuntos
Regeneração/fisiologia , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais , Animais , Humanos , Transplante de Órgãos/instrumentação , Transplante de Órgãos/métodos , Organogênese/fisiologia , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química
20.
Exp Cell Res ; 360(2): 404-412, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28943462

RESUMO

DNA polymeric films (DNA-PFs) are a promising drug delivery system (DDS) in modern medicine. In this study, we evaluated the growth behavior of oral squamous cell carcinoma (OSCC) cells on DNA-PFs. The morphological, biochemical, and cytometric features of OSCC cell adhesion on DNA-PFs were also assessed. An initial, temporary alteration in cell morphology was observed at early time points owing to the inhibition of cell attachment to the film, which then returned to a normal morphological state at later time points. MTT and resazurin assays showed a moderate reduction in cell viability related to increased DNA concentration in the DNA-PFs. Flow cytometry studies showed low cytotoxicity of DNA-PFs, with cell viabilities higher than 90% in all the DNA-PFs tested. Flow cytometric cell cycle analysis also showed average cell cycle phase distributions at later time points, indicating that OSCC cell growth is maintained in the presence of DNA-PFs. These results show high biocompatibility of DNA-PFs and suggest their use in designing "dressing material," where the DNA film acts as a support for cell growth, or with incorporation of active or photoactive compounds, which can induce tissue regeneration and are useful to treat many diseases, especially oral cancer.


Assuntos
Proliferação de Células , DNA/química , Membranas Artificiais , Polímeros/química , Medicina Regenerativa , Técnicas de Cultura de Tecidos/instrumentação , Alicerces Teciduais/química , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/farmacologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , DNA/farmacologia , Humanos , Teste de Materiais , Neoplasias Bucais/patologia , Polímeros/farmacologia , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Técnicas de Cultura de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA