Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Biomed Pharmacother ; 173: 116389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461682

RESUMO

Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.


Assuntos
Anti-Infecciosos , Melaleuca , Óleos Voláteis , Infecções Estafilocócicas , Óleo de Melaleuca , Suínos , Animais , Camundongos , Staphylococcus aureus , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Melaleuca/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Anti-Infecciosos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
2.
J Cosmet Dermatol ; 23(5): 1840-1849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213091

RESUMO

BACKGROUND: Sleep is one of the most important factors affecting overall health. During the night, the skin repairs damage caused by daily stresses. Melatonin plays a key role in this process. Toxins are removed, and cellular repair and growth hormone production are increased. Inter alia, this also decreases signs of intrinsic aging. AIMS: The current study was intended to demonstrate the impact of a unique fraction of Melaleuca alternifolia (FMA) essential oil, on sleep and skin quality. METHODS: The effect of FMA was investigated in vitro on skin cells, evaluating its antioxidant and anti-inflammatory properties, and in an ex-vivo study on human skin biopsies treated with FMA following stress induction. In addition, two clinical studies were performed on volunteers with life-style-related sleep complaints. In one study, sleep was measured using a noncontact monitoring device (SleepScore Labs, Max). A second study was conducted to assess skin anti-aging effects. RESULTS: In vitro application of FMA reduced IL-8 and reactive oxygen species (ROS) generation in skin cells. This was confirmed ex vivo through a decrease in inflammatory markers and an increase in antioxidant enzymes after stress induction. Interestingly, FMA also upregulated melatonin-associated genes. Real-world sleep tracking revealed that FMA significantly improved sleep quality, relative to unscented control. In vivo applications also showed a reduction in signs of aging. CONCLUSION: These results provide initial data to suggest that this unique FMA delivers skin anti-aging benefits via a two-pronged mode of action, improving sleep quality, and reducing skin inflammatory and oxidative stress.


Assuntos
Antioxidantes , Melatonina , Pele , Qualidade do Sono , Humanos , Melatonina/farmacologia , Melatonina/administração & dosagem , Pele/efeitos dos fármacos , Pele/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Interleucina-8/metabolismo , Masculino , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Melaleuca/química , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem
3.
Drug Deliv Transl Res ; 14(5): 1239-1252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227165

RESUMO

Sepsis represents a complex clinical syndrome that results from a harmful host response to infection. The infections most associated with sepsis are pneumonia, intra-abdominal infection, and urinary tract infection. Tea tree oil (TTO) has shown high antibacterial activity; however, it exhibits low aqueous solubility and high volatility, which have motivated its nanoencapsulation. In this study, the performance of nanoemulsions (NE) and nanocapsules (NC) loaded with TTO was compared. These systems were prepared by spontaneous emulsification and nanoprecipitation methods, respectively. Poly-ε-caprolactone or Eudragit® RS100 were tested as polymers for NCs whereas Tween® 80 or Pluronic® F68 as surfactants in NE preparation. Pluronic® F68 and Eudragit® RS100 resulted in more homogeneous and stable nanoparticles. In accelerated stability studies at 4 and 25 °C, both colloidal suspensions (NC and NE) were kinetically stable. NCs showed to be more stable to photodegradation and less cytotoxic than NEs. After sepsis induction by the cecal ligation and puncture (CLP) model, both NE and NC reduced neutrophil infiltration into peritoneal lavage (PL) and kidneys. Moreover, the systems increased group thiols in the kidney and lung tissue and reduced bacterial growth in PL. Taken together, both systems showed to be effective against injury induced by sepsis; however, NCs should be prioritized due to advantages in terms of cytotoxicity and physicochemical stability.


Assuntos
Melaleuca , Nanocápsulas , Ácidos Polimetacrílicos , Sepse , Óleo de Melaleuca , Óleo de Melaleuca/farmacologia , Poloxâmero , Sepse/tratamento farmacológico
4.
Mol Biol Rep ; 51(1): 70, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175288

RESUMO

BACKGROUND: The tea tree (Melaleuca alternifolia) is renowned for its production of tea tree oil, an essential oil primarily composed of terpenes extracted from its shoot. MYB transcription factors, which are one of the largest TF families, play a crucial role in regulating primary and secondary metabolite synthesis. However, knowledge of the MYB gene family in M. alternifolia is limited. METHODS AND RESULTS: Here, we conducted a comprehensive genome-wide analysis of MYB genes in M. alternifolia, referred to as MaMYBs, including phylogenetic relationships, structures, promoter regions, and GO annotations. Our findings classified 219 MaMYBs into four subfamilies: one 5R-MYB, four 3R-MYBs, sixty-one MYB-related, and the remaining 153 are all 2R-MYBs. Seven genes (MYB189, MYB146, MYB44, MYB29, MYB175, MYB162, and MYB160) were linked to terpenoid synthesis based on GO annotation. Phylogenetic analysis with Arabidopsis homologous MYB genes suggested that MYB193 and MYB163 may also be involved in terpenoid synthesis. Additionally, through correlation analysis of gene expression and metabolite content, we identified 42 MYB genes associated with metabolite content. CONCLUSION: The results provide valuable insights into the importance of MYB transcription factors in essential oil production in M. alternifolia. These findings lay the groundwork for a better understanding of the MYB regulatory network and the development of novel strategies to enhance essential oil synthesis in M. alternifolia.


Assuntos
Arabidopsis , Melaleuca , Óleos Voláteis , Genes myb , Melaleuca/genética , Filogenia , Chás Medicinais , Fatores de Transcrição/genética , Terpenos
5.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989849

RESUMO

Treatment of wounds is challenging due to bacterial infections, including Staphylococcus aureus and Pseudomonas aeruginosa. Using the merits of alternative antimicrobials like tea tree oil (TTO) and nanotechnology, they can be helpful in combatting bacterial infections. Solid lipid nanoparticle (SLN) and chitosan (CS) nanoparticles show great potential as carriers for enhancing the stability and therapeutic benefits of oils. The aim of this study is to compare the influence of nanocarriers in enhancing the antibacterial effects of TTO. The study evaluates the physicochemical and antibacterial properties of TTO-SLN and TTO-CS against P. aeruginosa and S. aureus. The TTO-SLN nanoparticles showed a clear round shape with the average diameter size of 477 nm, while the TTO-CS nanoparticles illustrated very homogeneous morphology with 144 nm size. The encapsulation efficiency for TTO-CS and TTO-SLN was ∼88.3% and 73.5%, respectively. Minimum inhibitory concentration against S. aureus and P. aeruginosa for TTO-CS, TTO-SLN, and pure TTO were 35 and 45 µg ml-1, 130 and 170 µg ml-1, and 380 and 410 µg ml-1, respectively. Since TTO-CS revealed an impressively higher antimicrobial effects in comparison with TTO-SLN and TTO alone, it can be considered as a nanocarrier that produces the same antimicrobial effects with lower required amounts of the active substance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Quitosana , Melaleuca , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Óleo de Melaleuca , Staphylococcus aureus , Pseudomonas aeruginosa , Melaleuca/química , Quitosana/farmacologia , Árvores , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Nanopartículas/química , Testes de Sensibilidade Microbiana , Chá
6.
J Biomater Sci Polym Ed ; 34(17): 2438-2461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640030

RESUMO

Essential oil from Melaleuca alternifolia (also known as Tea tree essential oil, TTO) is used as traditional medicine and used as therapeutic in medicine, food and cosmetic sectors. However, this oil is highly unstable, volatile and prone to oxidation which limits its practical use. The objective of this study was synthesis of tea tree oil based O/W (oil/water) nanoemulsions (tea tree essential oil nanoemulsions, TNE) and evaluation of its biological potential. Physiological characterization was carried out using UV, fluorescent, and FT-IR techniques. Various biological activities such as anticancerous, antidiabetic and anti-inflammatory were also estimated. Pharmacokinetics study on TNE was carried out. Encapsulation efficiency of nanoemulsions was found to be 83%. Nanoemulsions were spherical in shape with globule size 308 nm, zeta potential -9.42 and polydispersity index was 0.31. Nanoemulsions were stable even after 50 days of storage at different temperatures. Anti-oxidant potential of TNE was conducted by various assays and IC50 were: Nitric oxide radical scavenging activity:225.1, DPPH radical scavenging activity:30.66, Iron chelating assay:38.73, and Iron reducing assay:39.36. Notable anticancer activity was observed with the percent cell viability of HeLa cells after treatment with 1, 2 and 5 µl of TNE was 82%, 41% and 24%, respectively. Antidiabetic study revealed that TNE inhibited -amylase in a dose-dependent manner, with 88% inhibition at its higher volume of 250 µl. Drug kinetic study revealed that nanoemulsions exhibited first-order model. Based on this, the possible role of M. alternifolia oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Melaleuca/química , Células HeLa , Espectroscopia de Infravermelho com Transformada de Fourier , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Anti-Inflamatórios/farmacologia , Chá
7.
J Zhejiang Univ Sci B ; 24(7): 554-573, 2023 Jul 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37455134

RESUMO

Over the past few decades, complementary and alternative treatments have become increasingly popular worldwide. The purported therapeutic characteristics of natural products have come under increased scrutiny both in vitro and in vivo as part of efforts to legitimize their usage. One such product is tea tree oil (TTO), a volatile essential oil primarily obtained from the native Australian plant, Melaleuca alternifolia, which has diverse traditional and industrial applications such as topical preparations for the treatment of skin infections. Its anti-inflammatory-linked immunomodulatory actions have also been reported. This systematic review focuses on the anti-inflammatory effects of TTO and its main components that have shown strong immunomodulatory potential. An extensive literature search was performed electronically for data curation on worldwide accepted scientific databases, such as Web of Science, Google Scholar, PubMed, ScienceDirect, Scopus, and esteemed publishers such as Elsevier, Springer, Frontiers, and Taylor & Francis. Considering that the majority of pharmacological studies were conducted on crude oils only, the extracted data were critically analyzed to gain further insight into the prospects of TTO being used as a neuroprotective agent by drug formulation or dietary supplement. In addition, the active constituents contributing to the activity of TTO have not been well justified, and the core mechanisms need to be unveiled especially for anti-inflammatory and immunomodulatory effects leading to neuroprotection. Therefore, this review attempts to correlate the anti-inflammatory and immunomodulatory activity of TTO with its neuroprotective mechanisms.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/uso terapêutico , Neuroproteção , Reposicionamento de Medicamentos , Doenças Neuroinflamatórias , Austrália , Anti-Inflamatórios/farmacologia
8.
Int J Biol Macromol ; 243: 125228, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290544

RESUMO

Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.


Assuntos
Anti-Infecciosos , COVID-19 , Desinfetantes , Melaleuca , Óleo de Melaleuca , Celulose/química , Emulsões/química , SARS-CoV-2 , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Água/química
9.
Planta Med ; 89(4): 454-463, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36626923

RESUMO

Antimicrobial research into the use of Melaleuca alternifolia essential oil has demonstrated broad-spectrum activity; however, much of the research published focuses on identifying the potential of this essential oil individually, rather than in combination for an enhanced antimicrobial effect. This study aimed to determine the antimicrobial activity of four essential oil combinations, all inclusive of M. alternifolia, against nine pathogens associated with the respiratory tract. The minimum inhibitory concentration assay was used to determine the antimicrobial activity of four essential oil combinations, M. alternifolia in combination with Cupressus sempervirens, Origanum majorana, Myrtus communis, and Origanum vulgare essential oils. The interactions between essential oil combinations were analyzed using isobolograms and SynergyFinder 2.0 software to visualize the synergistic potential at varied ratios. The antimicrobial activity of the different combinations of essential oils all demonstrated the ability to produce an enhanced antimicrobial effect compared to the essential oils when investigated independently. The findings of this study determined that isobolograms provide a more in-depth analysis of an essential oil combination interaction; however, the value of that interaction should be further quantified using computational modelling such as SynergyFinder. This study further supports the need for more studies where varied ratios of essential oils are investigated for antimicrobial potential.


Assuntos
Anti-Infecciosos , Melaleuca , Óleos Voláteis , Óleos Voláteis/farmacologia , Árvores , Anti-Infecciosos/farmacologia , Chá , Testes de Sensibilidade Microbiana
10.
Phytother Res ; 37(4): 1309-1318, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36420525

RESUMO

Tea tree (Melaleuca alternifolia) essential oil is widely used as an antiseptic. It mainly consists of monoterpenes with terpinen-4-ol as the major constituent. The aim of this study was to review literature on safety data about tea tree oil and to assess its safety by investigating 159 cases of adverse reactions possibly caused by the oil, reported to the World Health Organization (WHO) from December 1987 until September 2021. To extract these data, VigiBase, the WHO global database of individual case safety reports maintained by the Uppsala Monitoring Centre (UMC), was used. All cases were categorized and analysed and 16 serious cases further assessed. It was concluded that tea tree oil should never be administered orally, as it can lead to central nervous system depression and pneumonitis. Applied topically, skin disorders may occur, especially when the oil had been exposed to light or air. This yields monoterpene oxidation products, being potent skin irritants. Tea tree oil stored under appropriate conditions and not exceeding the expiration date should be considered safe to use by non-vulnerable people for non-serious inflammatory skin conditions, although the occurrence of adverse reactions such as contact allergies is difficult to predict.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Humanos , Monoterpenos
11.
Photochem Photobiol ; 99(1): 176-183, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35668682

RESUMO

This aim of this study was to evaluate the penetration depth, antioxidant capacity and the clinical efficacy of Melaleuca alternifolia pure essential oil and in a nanoemulsion to prevent skin photoaging. For this, 2% of pure essential oil or 2% of this essential oil in a nanoemulsion were vehiculated in a formulation. The skin penetration was evaluated using confocal Raman microspectroscopy. The radical protection factor was evaluated using electron paramagnetic resonance spectroscopy. For a clinical study, 40 male participants, aged 18-28 years, were enrolled, being divided into three groups: vehicle formulation, M. alternifolia pure essential oil and M. alternifolia Nanoemulsion. All the participants also received a sunscreen SPF 50 to use during the day. Before and after 90 days of study, skin hydrolipidics and morphological characteristics were performed by skin imaging and biophysical techniques. The nanoemulsion presented a lower antioxidant capacity and a higher penetration through the stratum corneum, reaching the viable epidermis, improving the stratum granulosum morphology. The groups presented an increase in the papillary depth, improving in the dermis echogenicity and the collagen fibers. Melaleuca alternifolia essential provides the potential to improve photoaged skin, being the application of nanoemulsion able to reach deeper skin layers.


Assuntos
Cosméticos , Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Masculino , Humanos , Melaleuca/química , Antioxidantes , Óleos Voláteis/química
12.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 643-649, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35468230

RESUMO

Coccidiosis is one of the most common infectious diseases seen in Japanese quails. The current study was conducted to evaluate the impact of tea tree essential oil (TTEO) on growth performance and intestinal health of quails in response to Eimeria tenella challenge. A total of 250 Japanese quails were divided into five treatments: untreated uninfected (negative control); untreated infected (positive control); infected + Amprolium; infected and 1% TTEO; infected and 2% TTEO. Except negative control, all groups were orally dosed with 5 × 104 sporulated oocysts of E. tenella. The results revealed that supplementation of 1% TTEO and treatment of amprolium improved feed intake, weight gain and feed conversion ratio in infected quails compared to the positive control. Similarly, lesion score and mortality was significantly (p < 0.01) reduced in quails supplemented with 2% TTEO and amprolium treated birds. Moreover, oocysts counts and histological features of caecum in infected birds were reversed in 1% TTEO and amprolium treatment. The histological findings of amprolium and 1% TTEO supplemented quails showed intact intestinal villi with mild sloughed epithelium. In conclusion, 1% TTEO can be safely used to control coccidiosis in Japanese quails as natural effective compound.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Melaleuca , Óleos Voláteis , Doenças das Aves Domésticas , Animais , Coturnix , Antibacterianos/farmacologia , Eimeria/fisiologia , Árvores , Óleos Voláteis/farmacologia , Amprólio/farmacologia , Coccidiose/veterinária , Codorniz , Chá , Doenças das Aves Domésticas/patologia , Galinhas
13.
Food Chem ; 401: 134114, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099820

RESUMO

This study reports first time investigation on efficacy of cajuput essential oil loaded chitosan nanoparticle (CjEO-CSNP) on shelf-life of white button mushroom (Agaricus bisporus) stored at 4±1 °C for 7-days. CjEO-CSNP was characterized through scanning electron microscopy, X-ray diffraction, and dynamic light scattering. The nanoparticles exhibited spherical shapes with average particle size 43.17-97.03 nm. The nanoencapsulation efficiency and loading capacity were ranged between 45.86 and 92.26% and 0.69-8.87%, respectively. The release study confirmed that CjEO-CSNP showed biphasic release patterns at different pH. Positive results were unveiled when the effect of CjEO-CSNP on shelf-life of mushroom was validated by analyzing the visual appearance and firmness. Further, CjEO-CSNP prevented weight loss and respiration rate, and improved the antioxidant activity of mushrooms. CjEO-CSNP also exhibited high safety profile (LD50= > 1200 mg/Kg body weight) without altering the sensory quality of coated mushrooms. Overall, CjEO-CSNP might be used as promising candidate to lengthen the shelf-life of button mushroom.


Assuntos
Agaricus , Quitosana , Melaleuca , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Conservação de Alimentos/métodos , Antioxidantes/farmacologia , Agaricus/química , Expectativa de Vida
14.
Braz. J. Pharm. Sci. (Online) ; 59: e23068, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505851

RESUMO

Abstract Bovine infectious mastitis is largely resistant to antibacterial treatment, mainly due to mechanisms of bacterial resistance in the biofilms formed by Staphylococcus aureus. Melaleuca (MEO) and citronella essential oils (CEO) are promising agents for reducing or eliminating biofilms. Free melaleuca oil presented a medium Minimum Inhibitory Concentration (MIC) of 0.625% and a Minimum Bactericidal Concentration (MBC) of 1.250%, while free citronella oil showed medium MIC and MBC of 0.313%. Thus, free CEO and MEO demonstrate bacteriostatic and bactericidal potential. We generated polymeric nanocapsules containing MEO or CEO and evaluated their efficacy at reducing biofilms formed by S. aureus. Glass and polypropylene spheres were used as test surfaces. To compare the responses of free and encapsulated oils, strains were submitted to 10 different procedures, using free and nanoencapsulated essential oils (EOs) in vitro. We observed no biofilm reduction by MEO, free or nanoencapsulated. However, CEO nanocapsules reduced biofilm formation on glass (p=0.03) and showed a tendency to diminish biofilms on polypropylene (p=0.051). Despite nanoencapsulated CEO reducing biofilms in vitro, the formulation could be improved to modify the CEO component polarity and, including MEO, to obtain more interactions with surfaces and the biofilm matrix


Assuntos
Staphylococcus aureus/isolamento & purificação , Óleos Voláteis/análise , Biofilmes/classificação , Nanocápsulas/efeitos adversos , Mastite Bovina/patologia , Técnicas In Vitro/métodos , Melaleuca/efeitos adversos , Cymbopogon/efeitos adversos
15.
Chem Biodivers ; 19(11): e202200567, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36008877

RESUMO

To develop a novel skeleton for broad-spectrum pesticides with high-efficiency against tea tree diseases, a series of aniline 2H-1,4-benzoxazin-3(4H)-one derivatives containing a propanolamine structure was synthesized and confirmed by 1 H-NMR, 13 C-NMR, 19 F-NMR, HRMS, and single-crystal diffraction analysis. Bioactivities were evaluated against tobacco mosaic virus (TMV, the model virus), three kinds of bacteria, and five typical plant fungi. Bioassay results showed that compound 2i (EC50 =395.05 µg/mL) had the best curative activity against TMV, 3d (EC50 =45.70 µg/mL) had the best inhibitory activity against Pseudomonas syringae pv. Actinidiae, and 3a (EC50 =13.53 µg/mL) had the best inhibitory activity against Pestalotiopsis trachicarpicola. Scanning electron microscope morphological observation of P. trachicarpicola treated with 0, 100, and 200 µg/mL 3a revealed dried, flattened and folded outer walls of the hyphae at higher concentrations, leading to inhibition of fungal growth. The broad-spectrum bioactivities (against viruses, bacteria and fungi) of this series of target compounds indicate that these 2H-1,4-benzoxazin-3(4H)-one derivatives containing a propanolamine moiety are potential skeletons for developing pesticides with wide-ranging activities against various tea tree diseases.


Assuntos
Melaleuca , Praguicidas , Propanolaminas , Bioensaio , Cristalografia por Raios X , Chá
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121766, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988468

RESUMO

Essential oil distilled from Melaleuca alternifolialeaves, commonly known as tea tree oil, is well known for its biological activity, principally its antimicrobial properties. However, many samples are adulterated with other, cheaper essential oils such as eucalyptus oil. Current methods of detecting such adulteration are costly and time-consuming, making them unsuitable for rapid authentication screening. This study investigated the use of mid-infrared (MIR) spectroscopy for detecting and quantifying the level of eucalyptus oil adulteration in spiked samples of pure Australian tea tree oil. To confirm the authenticity of the tea tree oil samples, GC-MS analysis was used to profile 37 of the main volatile constituents present, demonstrating that the samples conformed to ISO specifications. Three chemometric regression techniques (PLSR, PCR and SVR) were trialled on the MIR spectra, along with a variety of pre-processing techniques. The best-performing full-wavelength PLSR model showed excellent prediction of eucalyptus oil content, with an R2CV of 0.999 and RMSECV of 1.08 % v/v. The RMSECV could be further improved to 0.82 % v/v through a moving window wavenumber optimisation process. The results suggest that MIR spectroscopy combined with PLSR can be used to predict eucalyptus oil adulteration in Australian tea tree oil samples with a high level of accuracy.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Austrália , Óleo de Eucalipto , Melaleuca/química , Óleos Voláteis/química , Espectrofotometria Infravermelho , Óleo de Melaleuca/química
17.
J Ethnopharmacol ; 298: 115596, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987414

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Genus Melaleuca or tea tree species are well known to be an important source of biological active oils and extracts. The biological significance appears in their usage for treatment of several clinical disorder owing to their traditional uses as anti-inflammatory, antibacterial, antifungal, and cytotoxic activities. AIM OF THE STUDY: Our study aimed to investigate the metabolic profile of the M. rugulosa polyphenol-rich fraction along with determination of its anti-inflammatory potential, free radical scavenging and antiaging activities supported with virtual understanding of the mode of action using molecular modeling strategy. MATERIALS AND METHODS: The anti-inflammatory activity of the phenolic rich fraction was investigated through measuring its inhibitory activity against inflammatory mediators viz tumor necrosing factor receptor-2 (TNF-α) and cyclooxygenases 1/2 (COX-1/2) in a cell free and cell-based assays. Moreover, the radical scavenging activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and ß-carotene assays, while the antiaging activity in anti-elastase, anti-collagenase, and anti-tyrosinase inhibitory assays. Finally, the biological findings were supported with molecular docking study using MOE software. RESULTS: The chromatographic purification of the polyphenol-rich fraction of Melaleuca rugulosa (Link) Craven afforded fourteen phytoconstituents (1-14). The anti-inflammatory gauging experiments demonstrated inhibition of inflammatory-linked enzymes COX-1/2 and the TNF-α at low µg/mL levels in the enzyme-based assays. Further investigation of the underlying mechanism was inferred from the quantification of protein levels and gene expression in the lipopolysaccharide (LPS)-activated murine macrophages (RAW264.7) in vitro model. The results revealed the reduction of protein synthesis of COX-1/2 and TNF-α with the down regulation of gene expression. The cell free in vitro radical scavenging assessment of the polyphenol-rich fraction revealed a significant DPPH reduction, peroxyl radicals scavenging, and ß-carotene peroxidation inhibition. Besides, the polyphenol-rich fraction showed a considerable inhibition of the skin aging-related enzymes as elastase, collagenase, and tyrosinase. Ultimately, the computational molecular modelling studies uncovered the potential binding poses and relevant molecular interactions of the identified polyphenols with their targeted enzymes. Particularly, terflavin C (8) which showed a favorable binding pose at the elastase binding pocket, while rosmarinic acid (14) demonstrated the best binding pose at the COX-2 catalytic domain. In short, natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions. CONCLUSION: Natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions.


Assuntos
Melaleuca , Animais , Anti-Inflamatórios , Antioxidantes , Radicais Livres , Humanos , Inflamação , Melaleuca/química , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais , Polifenóis/química , Taninos , Fator de Necrose Tumoral alfa , beta Caroteno
18.
Rev Esc Enferm USP ; 56(spe): e20210480, 2022.
Artigo em Inglês, Português | MEDLINE | ID: mdl-35848603

RESUMO

OBJECTIVE: Evaluate the effect of essential oil in odor reduction for intestinal ostomy bags. METHOD: Primary study, semi-experimental, prospective clinical trial with quantitative approach. A product prepared with Melaleuca armillaris leaves was tested in ostomy pouches, with and without effluents, for adhesion and odor control. Instrument: Labeled Magnitude Scale. RESULTS: Colostomized participants, with a mean age of 73 ± 14.94, predominantly males; and informal caregivers, with a mean age of 44 ± 8.98, predominantly females. In the visual evaluation of the oil, 100% of the participants perceived its adherence. Regarding the evaluation of effluent odor by the colostomized, five reported "strong odor" before oil use and, six reported "weak" odor after use (p = 0.005). Five informal caregivers reported "very strong" effluent odor before oil use; and one reported "weak" and nine reported "moderate" after use (p = 0.0025). CONCLUSION: There was a reduction in the odor of effluents in the ostomy pouches with the essential oil of Melaleuca armillaris at 10%. Application for patent registration in the Brazilian National Institute of Industrial Property (INPI) under no. BR 10 2020 026987 9.


Assuntos
Melaleuca , Óleos Voláteis , Estomia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Odorantes , Estudos Prospectivos
19.
Molecules ; 27(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744913

RESUMO

The COVID-19 pandemic has highlighted the relevance of proper disinfection procedures and renewed interest in developing novel disinfectant materials as a preventive strategy to limit SARS-CoV-2 contamination. Given its widely known antibacterial, antifungal, and antiviral properties, Melaleuca alternifolia essential oil, also named Tea tree oil (TTO), is recognized as a potential effective and safe natural disinfectant agent. In particular, the proposed antiviral activity of TTO involves the inhibition of viral entry and fusion, interfering with the structural dynamics of the membrane and with the protein envelope components. In this study, for the first time, we demonstrated the virucidal effects of TTO against the feline coronavirus (FCoVII) and the human coronavirus OC43 (HCoV-OC43), both used as surrogate models for SARS-CoV-2. Then, to atomistically uncover the possible effects exerted by TTO compounds on the outer surface of the SARS-CoV-2 virion, we performed Gaussian accelerated Molecular Dynamics simulations of a SARS-CoV-2 envelope portion, including a complete model of the Spike glycoprotein in the absence or presence of the three main TTO compounds (terpinen-4-ol, γ-terpinene, and 1,8-cineole). The obtained results allowed us to hypothesize the mechanism of action of TTO and its possible use as an anti-coronavirus disinfectant agent.


Assuntos
Tratamento Farmacológico da COVID-19 , Desinfetantes , Melaleuca , Óleo de Melaleuca , Antivirais/farmacologia , Desinfetantes/farmacologia , Humanos , Melaleuca/química , Pandemias , SARS-CoV-2 , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia
20.
Phytochem Anal ; 33(6): 831-837, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35557478

RESUMO

INTRODUCTION: The essential oils of tea tree (Melaleuca alternifolia) leaves mainly contain eucalyptol, α-terpinene, γ -terpinene, and terpinen-4-ol and have anti-bacterial, anti-fungal, anti-infective, and anti-inflammatory actions. The essential oils of lemon grass (Cymbopogon citratus) leaves mainly contain neral, geranial, and geraniol and have anti-microbial and anti-fungal activities and hypocholesterolemic effect. OBJECTIVES: The present study describes the use of low-toxicity solvents called betaine-based deep eutectic solvents (DESs) for efficient extraction of essential oils from tea tree and lemon grass. H2 O and EtOH were used for extraction as control methods. METHODOLOGY: Quantitative analysis was performed using gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode. Scanning electron micrography (SEM) and antioxidant assays for extracted samples were also conducted. RESULTS: The results indicated that extraction for tea tree using betaine/sucrose (molar ratio 2:1) improved the yields of terpinolene and eucalyptol 2.5- and 1.9-fold, respectively, compared with the control method. In lemon grass, extraction using betaine/sucrose (molar ratio 2:1) improved the yields of neral and geranial 1.9- and 1.7-fold, respectively, compared with the control method. CONCLUSION: These results demonstrated the effective extraction of essential oils from plant leaves under milder conditions than those needed for the conventional methods. The environmentally benign DESs for the extraction would be applicable to the food and cosmetic industries.


Assuntos
Cymbopogon , Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Betaína , Cymbopogon/química , Solventes Eutéticos Profundos , Eucaliptol , Melaleuca/química , Óleos Voláteis/química , Solventes , Sacarose , Chá , Óleo de Melaleuca/química , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA